Phytochemical Profiling of Methanolic Fruit Extract of Gardenia latifolia Ait. by LC-MS/MS Analysis and Evaluation of Its Antioxidant and Antimicrobial Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical Screening of G. latifolia Fruit Extract
2.2. Characterization of G. latifolia Methanolic Fruit Extract
2.2.1. FTIR Analysis
2.2.2. LC–MS/MS Analysis
2.3. In vitro Antioxidant Activity of G. latifolia Methanolic Fruit Extract
2.3.1. DPPH Free Radical Scavenging Assay
2.3.2. Differential Pulse Voltammetric Method
2.3.3. Antimicrobial Assay of G. latifolia Methanolic Fruit Extract
3. Materials and Methods
3.1. Collection of Plant Material
3.2. Preparation of Extracts
3.3. Characterization of G. latifolia Methanolic Fruit Extract
3.3.1. FTIR Analysis
3.3.2. LC-MS/MS Analysis
3.4. In vitro Antioxidant Activity of G. latifolia Methanolic Fruit Extract
3.4.1. DPPH Free Radical Scavenging Assay
3.4.2. Differential Pulse Voltammetric Method
3.5. Determination of Antimicrobial Potential of Methanolic Fruit Using Resazurin Microtiter Plate Assay
3.5.1. Bacterial Cultures and Culture Media
3.5.2. Preparation of Microtiter Plates
4. Conclusions
Supplementary Materials
Author Contributions
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Reddy, K.; Subbaraju, G.; Reddy, C.; Raju, V. Ethnoveterinary medicine for treating livestock in eastern ghats of Andhra Pradesh. Indian J. Tradit. Knowl. 2006, 5, 368–372. [Google Scholar]
- Rahman, M.A.; Uddin, S.B.; Wilcock, C.C. Medicinal plants used by chakma tribe in hill tracts districts of Bangladesh. Indian J. Tradit. Knowl. 2007, 6, 508–517. [Google Scholar]
- Madhava Chetty, K.; Sivaji, K.; Tulasi Rao, K. Flowering plants of Chittoor District, Andhra Pradesh, India. Publ. Stud. Offset Print. Tirupati 2008, 34–35. [Google Scholar]
- Liu, S.J.; Zhang, X.T.; Wang, W.M.; Qin, M.J.; Zhang, L.H. Studies on chemical constituents of Gardenia jasminoides var. radicans. Chin. Tradit. Herb. Drugs 2015, 43, 238–241. [Google Scholar]
- Sundar, R.A.; Habibur, R.C. Pharmacognostic, phytochemical and antioxidant studies of Gardenia latifolia Aiton: An ethnomedicinal tree plant. Int. J. Pharmacogn. Phytochem. Res. 2018, 10, 216–228. [Google Scholar]
- Ansari, F.; Khare, S.; Dubey, B.K.; Joshi, A.; Jain, A.; Dhakad, S. Phytochemical analysis, antioxidant, antidiabetic and anti-inflammatory activity of Bark of Gardenia latifolia. J. Drug Deliv. Ther. 2019, 9, 141–145. [Google Scholar] [CrossRef] [Green Version]
- Reddy, G.C.S.; Ayengar, K.N.N.; Rangaswami, S. Triterpenoids of Gardenia latifolia. Phytochemistry 1975, 307–308. [Google Scholar] [CrossRef]
- Galaqin, M.; Koji, U.; Minoru, Y.; Tatsuo, I. Simultaneous analysis of major ingredients of Gardenia fruit by HPLC-MS/TQMS method. Mong. J. Chem. 2016, 17, 34–37. [Google Scholar] [CrossRef] [Green Version]
- Saravanakumar, K.; SeonJu, P.; Anbazhagan, S.; Kil-Nam, K.; Su-Hyeon, C.; Arokia, V.A.M.; Myeong-Hyeon, W. Metabolite profiling of methanolic extract of Gardenia jaminoides by LC-MS/MS and GC-MS and its anti-diabetic, and anti-oxidant activities. Pharmaceuticals 2021, 14, 102. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.Y.; Cai, Y.Z.; Zhang, Y. Natural phenolic compounds from medicinal herbs and dietary plants: Potential use for cancer prevention. Nutr. Cancer 2010, 62, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Sarker, S.D.; Nahar, L.; Kumarasamy, Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007, 42, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.; Ghosh, G.; Das, D.; Nayak, S. Phytochemical investigation and in vitro antioxidant activity of an indigenous medicinal plant Alpinia nigra B.L. Burtt. Asian Pac. J. Trop. Biomed. 2013, 3, 871–876. [Google Scholar] [CrossRef] [Green Version]
- Drummond, A.J.; Waigh, R.D. The development of microbiological methods for phytochemical screening. Recent Res. Develop. Phytochem. 2000, 4, 143–152. [Google Scholar]
- Bhat, R.; Ameran, S.B.; Voon, H.C.; Karim, A.A.; Tze, L.M. Quality attributes of starfruit (Averrhoa carambola L.) juice treated with ultraviolet radiation. Food Chem. 2011, 127, 641–644. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Ramesh, K.V.; Chandusingh; Sripathy, K.V.; Agarwal, D.K.; Pal, G.; Kuchlan, M.K.; Singh, R.K.; Ratnaprabha; Kumar, S.P.J. Bio-prospecting nutraceuticals from selected soybean skins and cotyledons. Indian J. Agric. Sci. 2019, 89, 2064–2068. [Google Scholar]
- Kumar, S.P.J.; Kumar, A.; Ramesh, K.V.; Singh, C.; Agarwal, D.K.; Pal, G.; Kuchlan, M.K.; Singh, R. Wall bound phenolics and total antioxidants in stored seeds of soybean (Glycine max) genotypes. Indian J. Agric. Sci. 2020, 90, 118–222. [Google Scholar]
- Alothman, M.; Bhat, R.; Karim, A.A. Effects of radiation processing on phytochemicals and antioxidants in plant produce. Trends Food Sci. Technol. 2009, 20, 201–212. [Google Scholar] [CrossRef]
- Khanam, Z.; Wen, C.S.; Bhat, I.U.H. Phytochemical Screening and Antimicrobial Activity of Root and Stem Extracts of Wild Eurycoma longifolia Jack (Tongkat Ali). J. King Saud Univ. Sci. 2015, 27, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Aiyelaagbe, O.O.; Osamudiamen, P.M. Phytochemical screening for active compounds in Mangifera indica leaves from Ibadan. Plant Sci. Res. 2009, 2, 11–13. [Google Scholar]
- U.S. Department of Agriculture, Agricultural Research Service. 1992–2016. Dr. Duke’s Phytochemical and Ethnobotanical Databases. Home Page. Available online: http://phytochem.nal.usda.gov/ (accessed on 15 February 2021).
- Kumar, S.P.J.; Banerjee, R. Enhanced lipid extraction from oleaginous yeast biomass using ultrasound assisted extraction: A greener and scalable process. Ultrason. Sonochem. 2018, 52, 25–32. [Google Scholar] [CrossRef]
- Kim, K.H.; Kim, Y.H.; Lee, K.R. Isolation of quinic acid derivatives and flavonoids from the aerial parts of Lactuca indica L. and their hepatoprotective activity in vitro. Bioorg. Med. Chem. Lett. 2007, 17, 6739–6743. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Xie, Z.L.; Gao, H.; Ma, W.W.; Dai, Y.; Wang, Y.; Zhong, Y.; Yao, X.S. Bioactive iridoid glucosides from the fruit of Gardenia jasminoides. J. Nat. Prod. 2009, 72, 1459–1464. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-B.; Yu, Y.; Wang, Z.-Z.; Dai, Y.; Gao, H.; Xiao, W.; Yao, X.-S. Iridoid and Bis-Iridoid glucosides from the fruit of Gardenia jasminoides. Fitoterapia 2013, 88, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Kwak, S.C.; Lee, C.; Kim, J.-Y.; Oh, H.M.; So, H.-S.; Lee, M.S.; Rho, M.C.; Oh, J. Chlorogenic acid inhibits osteoclast differentiation and bone resorption by down-regulation of receptor activator of nuclear factor kappa-B ligand-induced nuclear factor of activated T cells C1 expression. Biol. Pharm. Bull. 2013, 36, 1779–1786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valentová, K.; Vrba, J.; Bancířová, M.; Ulrichová, J.; Křen, V. Isoquercitrin: Pharmacology, toxicology, and metabolism. Food Chem. Toxicol. 2014, 68, 267–282. [Google Scholar] [CrossRef]
- Sukpondma, Y.; Rukachaisirikul, V.; Phongpaichit, S. Xanthone and sesquiterpene derivatives from the fruits of Garcinia scortechinii. J. Nat. Prod. 2005, 68, 1010–1017. [Google Scholar] [CrossRef]
- Grougnet, R.; Magiatis, P.; Mitaku, S.; Loizou, S.; Moutsatsou, P.; Terzis, A.; Cabalion, P.; Tillequin, F.; Michel, S. Seco-cycloartane triterpenes from Gardenia aubryi. J. Nat. Prod. 2006, 69, 1711–1714. [Google Scholar] [CrossRef]
- Xiao, W.; Li, S.; Wang, S.; Ho, C.T. Chemistry and bioactivity of Gardenia jasminoides. J. Food Drug Anal. 2017, 25, 43–61. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 162750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, N.S.S.; Kumar, I.S.; Kumar, S.P.J.; Sarbon, N.M.H.D.; Chintagunta, A.D.; Anvesh, B.S.; Dirisala, V.R. Extraction of bioactive compounds from Psidium guajava leaves and its utilization in preparation of jellies. AMB Express. 2021, 11, 36. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.C.; Lin, J.T.; Wang, C.K.; Chen, H.Y.; Yang, D.J. Antioxidant properties of various solvent extracts from lychee (Litchi chinenesis Sonn.) flowers. Food Chem. 2009, 114, 577–581. [Google Scholar] [CrossRef]
- Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef] [Green Version]
- Juma, B.F.; Majinda, R.R.T. Constituents of Gardenia volkensii: Their brine shrimp lethality and dpph radical scavenging properties. Nat. Prod. Res. 2007, 21, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Debnath, T.; Park, P.J.; Deb Nath, N.C.; Samad, N.B.; Park, H.W.; Lim, B.O. Antioxidant activity of Gardenia jasminoides Ellis fruit extracts. Food Chem. 2011, 128, 697–703. [Google Scholar] [CrossRef]
- Barros, L.; Cabrita, L.; Boas, M.V.; Carvalho, A.M.; Ferreira, I.C.F.R. Chemical, biochemical and electrochemical assays to evaluate phytochemicals and antioxidant activity of wild plants. Food Chem. 2011, 127, 1600–1608. [Google Scholar] [CrossRef]
- McNicholl, B.P.; McGrath, J.W.; Quinn, J.P. Development and application of a resazurin-based biomass activity test for activated sludge plant management. Water Res. 2007, 41, 127–133. [Google Scholar] [CrossRef]
- Chang, S.T.; Wu, J.H.; Wang, S.Y.; Kang, P.L.; Yang, N.S.; Shyur, L.F. Antioxidant activity of extracts from Acacia confusa bark and heartwood. J. Agric. Food Chem. 2001, 49, 3420–3424. [Google Scholar] [CrossRef]
- Amidi, S.; Mojab, F.; Bayandori Moghaddam, A.; Tabib, K.; Kobarfard, F. A simple electrochemical method for the rapid estimation of antioxidant potentials of some selected medicinal plants. Iran. J. Pharm. Res. 2012, 11, 117–121. [Google Scholar] [PubMed]
S. No. | Molecular Formula | m/z | RT | Mass | Name of The Compound | Mode +/− |
---|---|---|---|---|---|---|
1. | C11 H12 O5 | 225.0752 | 3.294 | 224.0679 | Sinapinic acid | + |
2. | C16 H12 O6 | 301.0709 | 11.969 | 300.0636 | 4′Hydroxywogonin | + |
3. | C16 H18 O9 | 355.1029 | 2.281 | 354.0956 | 3-caffeoylquinic acid (Chlorogenic acid) | + |
4. | C18 H22 O10 | 397.1154 | 5.302 | 398.1228 | 3-O-sinapoylquinic acid | − |
5. | C19 H22 O5 | 331.1553 | 7.731 | 330.1479 | 5-Deoxystrigol | + |
6. | C20 H20 O8 | 389.1234 | 16.589 | 388.1161 | 5 Hydroxy6,7,3′, 4′,5′pentamethoxyflavone | + |
7. | C20 H20 O9 | 403.1044 | 15.14 | 404.1118 | 5,3′Dihydroxy3,6,7,4′, 5′pentamethoxy flavone | − |
8. | C20 H32 O2 | 305.2476 | 22.752 | 304.2403 | 2-Ketoepimanool | + |
9. | C21 H20 O12 | 465.1031 | 7.685 | 464.0957 | Isoquercitrin | − |
10. | C25 H24 O12 | 517.1344 | 8.177 | 516.1269 | 3,4-Di-O-caffeoylquinic acid | + |
11. | C26 H30 O13 | 549.1627 | 8.502 | 550.1699 | 2′-O-trans-feruloylgardoside (Iridoid glycosides) | − |
12. | C26 H30 O14 | 565.159 | 7.534 | 566.1661 | 6′-O-[(E)-caffeoyl]-deacetylasperulosidic acid methyl ester (Iridoid glycosides) | − |
13. | C27 H28 O13 | 561.1609 | 9.684 | 560.1535 | 4-O-sinapoyl-5-O-caffeoylquinic acid | + |
14. | C27 H30 O16 | 609.1496 | 7.451 | 610.1569 | Quercetin-3-rutinoside (Rutin) | + |
15. | C27 H34 O20 | 677.1545 | 10.708 | 678.1617 | 10-(6-O-trans-sinapoylglucopyranosyl) gardendiol | − |
16. | C30 H48 O3 | 455.354 | 23.505 | 456.3613 | Betulinic acid | − |
17. | C33 H42 O18 | 725.2302 | 9.186 | 726.2369 | 6″-O-trans-feruloylgenipin gentiobioside (Iridoid glycosides) | − |
18. | C34 H40 O10 | 609.271 | 24.561 | 608.2637 | Scortechinone C | + |
19. | C34 H40 O9 | 593.2769 | 25.688 | 592.2695 | Scortechinone B | + |
20. | C35 H42 O9 | 607.2923 | 27.925 | 606.285 | Scortechinone G | + |
21. | C35 H44 O10 | 625.3027 | 25.124 | 624.2953 | Scortechinone I | + |
22. | C6 H8 O6 | 177.041 | 5.731 | 176.0337 | Ascorbic acid | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reddy, Y.M.; Kumar, S.P.J.; Saritha, K.V.; Gopal, P.; Reddy, T.M.; Simal-Gandara, J. Phytochemical Profiling of Methanolic Fruit Extract of Gardenia latifolia Ait. by LC-MS/MS Analysis and Evaluation of Its Antioxidant and Antimicrobial Activity. Plants 2021, 10, 545. https://doi.org/10.3390/plants10030545
Reddy YM, Kumar SPJ, Saritha KV, Gopal P, Reddy TM, Simal-Gandara J. Phytochemical Profiling of Methanolic Fruit Extract of Gardenia latifolia Ait. by LC-MS/MS Analysis and Evaluation of Its Antioxidant and Antimicrobial Activity. Plants. 2021; 10(3):545. https://doi.org/10.3390/plants10030545
Chicago/Turabian StyleReddy, Y. Mohan, S. P. Jeevan Kumar, K. V. Saritha, P. Gopal, T. Madhusudana Reddy, and Jesus Simal-Gandara. 2021. "Phytochemical Profiling of Methanolic Fruit Extract of Gardenia latifolia Ait. by LC-MS/MS Analysis and Evaluation of Its Antioxidant and Antimicrobial Activity" Plants 10, no. 3: 545. https://doi.org/10.3390/plants10030545
APA StyleReddy, Y. M., Kumar, S. P. J., Saritha, K. V., Gopal, P., Reddy, T. M., & Simal-Gandara, J. (2021). Phytochemical Profiling of Methanolic Fruit Extract of Gardenia latifolia Ait. by LC-MS/MS Analysis and Evaluation of Its Antioxidant and Antimicrobial Activity. Plants, 10(3), 545. https://doi.org/10.3390/plants10030545