Micropropagation of Ginger (Zingiber officinale Roscoe) ‘Bentong’ and Evaluation of Its Secondary Metabolites and Antioxidant Activities Compared with the Conventionally Propagated Plant
Abstract
:1. Introduction
2. Results
2.1. Micropropagation of ‘Bentong’ Ginger
2.1.1. Explant Surface Sterilization of ‘Bentong’ Ginger
2.1.2. Shoot Multiplication of ‘Bentong’ Ginger
Effects of Different Types of Cytokinins on Shoot Multiplication of ‘Bentong’ Ginger
Effects of Different Basal Media and Zeatin Concentrations on Shoot Multiplication of ‘Bentong’ Ginger
2.1.3. In Vitro Rooting of ‘Bentong’ Ginger
2.1.4. Acclimatization of ‘Bentong’ Ginger In Vitro-Raised Plantlets
2.2. Quantification of Secondary Metabolites and Antioxidant Activity of Micropropagated and Conventionally Propagated Plant of ‘Bentong’ Ginger
2.2.1. Total Phenolic Acid and Total Flavonoid Content
2.2.2. Antioxidant Activity
3. Discussion
3.1. Micropropagation of ‘Bentong’ Ginger
3.2. Quantification of Secondary Metabolites and Antioxidant Activity of Micropropagated and Conventionally Propagated Plant of ‘Bentong’ Ginger
4. Materials and Methods
4.1. Micropropagation of ‘Bentong’ Ginger
4.1.1. Plant Materials and Chemicals
4.1.2. Explant Surface Sterilization and Culture Initiation
4.1.3. In Vitro Shoot Multiplication
4.1.4. In Vitro Rooting of ‘Bentong’ Ginger
4.1.5. Acclimatization and Ex Vitro Establishment of the In Vitro-Raised Plantlet
4.2. Quantification of Secondary Metabolites Content and Antioxidant Activity of ‘Bentong’ Ginger
4.2.1. Planting Materials
4.2.2. Extraction of Antioxidant Compounds
4.2.3. Chemicals and Reagents
4.2.4. Total Phenolic Acid Content
4.2.5. Total Flavonoid Content
4.2.6. 2,2-diphenyl-1-picrylhydrazyl (DPPH) Free Radical Scavenging Activity
4.2.7. Ferric Reducing Antioxidant Power (FRAP) Assay
4.3. Experimental Design and Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, M.M.; Wang, D.; Lu, F.; Zhao, R.; Ye, X.; He, L.; Ai, L.; Wu, C.J. Identification of the active substances and mechanisms of ginger for the treatment of colon cancer based on network pharmacology and molecular docking. BioData Min. 2021, 14, 1–16. [Google Scholar] [CrossRef]
- Ghafoor, B.; Ali, M.N.; Riaz, Z. Synthesis and appraisal of natural drug-polymer-based matrices relevant to the application of drug-eluting coronary stent coatings. Cardiol. Res. Pract. 2020, 2020, 1–11. [Google Scholar] [CrossRef]
- Said, H.; Abdelaziz, H.; Abd Elhaliem, N.; Elsherif, S. A comparative study between ginger and Echinacea possible effect on the albino rat spleen of experimentally induced diabetes. Egypt. J. Histol. 2020, 43, 763–776. [Google Scholar] [CrossRef]
- Choi, J.G.; Kim, S.Y.; Jeong, M.; Oh, M.S. Pharmacotherapeutic potential of ginger and its compounds in age-related neurological disorders. Pharmacol. Ther. 2018, 182, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Rangnekar, H.; Patankar, S.; Suryawanshi, K.; Soni, P. Safety and efficacy of herbal extracts to restore respiratory health and improve innate immunity in COVID-19 positive patients with mild to moderate severity: A structured summary of a study protocol for a randomised controlled trial. Trials 2020, 21, 943. [Google Scholar] [CrossRef]
- Safa, O.; Hassaniazad, M.; Farashahinejad, M.; Davoodian, P.; Dadvand, H.; Hassanipour, S.; Fathalipour, M. Effects of ginger on clinical manifestations and paraclinical features of patients with severe acute respiratory syndrome due to COVID-19: A structured summary of a study protocol for a randomized controlled trial. Trials 2020, 21, 841. [Google Scholar] [CrossRef]
- Ghasemzadeh, A.; Jaafar, H.Z.E.; Rahmat, A. Antioxidant activities, total phenolics and flavonoids content in two varieties of Malaysia young ginger (Zingiber officinale Roscoe). Molecules 2010, 15, 4324–4333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haida, Z.; Syahida, A.; Ariff, S.M.; Maziah, M.; Hakiman, M. Factors affecting cell biomass and flavonoid production of Ficus deltoidea var. kunstleri in cell suspension culture system. Sci. Rep. 2019, 9, 9533. [Google Scholar] [CrossRef]
- Beristain-Bauza, S.D.C.; Hernández-Carranza, P.; Cid-Pérez, T.S.; Ávila-Sosa, R.; Ruiz-López, I.I.; Ochoa-Velasco, C.E. Antimicrobial activity of ginger (Zingiber officinale) and its application in food products. Food Rev. Int. 2019, 35, 407–426. [Google Scholar] [CrossRef]
- Nair, K.P. Turmeric (Curcuma longa L.) and Ginger (Zingiber officinale Rosc.)-World’s Invaluable Medicinal Spices: The Agronomy and Economy of Turmeric and Ginger; Springer Nature: Basel, Switzerland, 2019; ISBN 9783030291884. [Google Scholar]
- Kasilingam, T.; Raman, G.; Sundramoorthy, N.D.; Supramaniam, G.; Mohtar, S.H.; Avin, F.A. A review on in vitro regeneration of ginger: Tips and highlights. Eur. J. Med. Plants 2018, 23, 1–8. [Google Scholar] [CrossRef]
- Abed-Ashtiani, F.; Kadir, J.; Nasehi, A.; Hashemian-Rahaghi, S.-R.; Golkhandan, E. Occurrence of leaf spot or blast on ginger (Zingiber officinale) caused by Pyricularia zingiberi in Malaysia. Plant Dis. 2016, 100, 1505. [Google Scholar] [CrossRef]
- Meenu, G.; Kaushal, M. Diseases infecting ginger (Zingiber officinale Roscoe): A aeview. Agric. Rev. 2017, 38, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Thakur, M.; Sharma, V.; Kumari, G. In vitro production of disease free planting material of ginger (Zingiber officinale Rosc.)—A single step procedure. Res. J. Biotechnol. 2018, 13, 25–29. [Google Scholar]
- Khatun, M.M.; Tanny, T.; Razzak, A.M.; Alam, M.F.; Uddin, M.E.; Amin, R.; Yesmin, S. Standardization of in vitro sterilization procedures for micropropagation of ginger (Zingiber officinale Rosc.). Int. J. Appl. Biol. Pharm. Technol. 2016, 7, 131–138. [Google Scholar]
- Ha, E.; Basu, N.; Bose-O’Reilly, S.; Dórea, J.G.; McSorley, E.; Sakamoto, M.; Chan, H.M. Current progress on understanding the impact of mercury on human health. Environ. Res. 2017, 152, 419–433. [Google Scholar] [CrossRef] [Green Version]
- Thompson, I.M.; Laing, M.; Beck-Pay, S.L.; Fossey, A. Screening of topical sterilants for shoot apex culture of Acacia mearnsii. South. For. J. For. Sci. 2009, 71, 37–40. [Google Scholar] [CrossRef]
- Azhar, S.Z.A.; Ghani, K.A.; Yusuf, N.A. In vitro induction of adventitious root from shoot bud of Boesenbergia rotunda (Zingiberaceae): Effect of plant growth regulators. Sci. Int. 2018, 30, 147–151. [Google Scholar]
- Sathyagowri, S.; Seran, T.H. In vitro plant regeneration of ginger (Zingiber officinale Rosc.) with emphasis on initial culture establishment. J. Med. Aromat. Plants 2011, 1, 195–202. [Google Scholar]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Zuraida, A.R.; Mohd Shukri, M.A.; Erny Sabrina, M.N.; Ayu Nazreena, O.; Che Radziah, C.Z.; Pavallekoodi, G.; Sreeramanan, S. Micropropagation of ginger (Zingiber officinale var. Rubrum) using buds from microshoots. Pakistan J. Bot. 2016, 48, 1153–1158. [Google Scholar] [CrossRef] [Green Version]
- Mehaboob, V.M.; Faizal, K.; Shamsudheen, K.M.; Raja, P.; Thiagu, G.; Shajahan, A. Direct organogenesis and microrhizome production in ginger (Zingiber officinale Rosc.). J. Pharmacogn. Phytochem. 2019, 8, 2880–2883. [Google Scholar]
- Ayenew, B.; Tefera, W.; Kassahun, B. In vitro propagation of Ethiopian ginger (Zingiber officinale Rosc.) cultivars: Evaluation of explant types and hormone combinations. African J. Biotechnol. 2012, 11, 3911–3918. [Google Scholar] [CrossRef]
- Lincy, A.; Sasikumar, B. Enhanced adventitious shoot regeneration from aerial stem explants of ginger using TDZ and its histological studies. Turk. J. Bot. 2010, 34, 21–29. [Google Scholar] [CrossRef]
- Miri, S.M. Micropropagation, callus induction and regeneration of ginger (Zingiber officinale Rosc.). Open Agric. 2020, 5, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Abbas, M.S.; Taha, H.S.; Aly, U.I.; El-Shabrawi, H.M.; Gaber, E.I. In vitro propagation of ginger (Zingiber officinale Rosco). J. Genet. Eng. Biotechnol. 2011, 9, 165–172. [Google Scholar] [CrossRef] [Green Version]
- Mehaboob, V.M.; Faizal, K.; Raja, P.; Thiagu, G.; Aslam, A.; Shajahan, A. Effect of nitrogen sources and 2, 4-D treatment on indirect regeneration of ginger (Zingiber officinale Rosc.) using leaf base explants. J. Plant Biotechnol. 2019, 46, 17–21. [Google Scholar] [CrossRef] [Green Version]
- Jualang, A.G.; Nurul Humaira, T.A.; Devina, D.; Hartinie, M. In vitro shoot regeneration from rhizome bud of native ginger in Borneo, Etlingera coccinea. J. Trop. Plant Physiol. 2015, 7, 36–46. [Google Scholar]
- Linsmaier, E.M.; Skoog, F. Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant. 1965, 18, 100–127. [Google Scholar] [CrossRef]
- Gamborg, O.L.; Miller, R.A.; Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 1968, 50, 151–158. [Google Scholar] [CrossRef]
- Rao, K.; Chodisetti, B.; Gandi, S.; Mangamoori, L.N.; Giri, A. Direct and indirect organogenesis of Alpinia galanga and the phytochemical analysis. Appl. Biochem. Biotechnol. 2011, 165, 1366–1378. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Giri, A.; Bhubaneswari, C.; Narasu, M.L.; Giri, C.C. High frequency plantlet regeneration via direct organogenesis in Andrographis paniculata. Med. Aromat. Plant Sci. Biotechnol. 2009, 3, 94–96. [Google Scholar]
- Bakhshipour, M.; Mafakheri, M.; Kordrostami, M.; Zakir, A.; Rahimi, N.; Feizi, F.; Mohseni, M. In vitro multiplication, genetic fidelity and phytochemical potentials of Vaccinium arctostaphylos L.: An endangered medicinal plant. Ind. Crops Prod. 2019, 141, 111812. [Google Scholar] [CrossRef]
- Marbawi, H.; Cyril, O.; David, D.; Gansau, J.A. In vitro multiple shoot regeneration from stem explant of commercially important medicinal herb Labisia pumila var. pumila. ASM Sci. J. 2018, 11, 171–180. [Google Scholar]
- Zahid, N.A.; Jaafar, H.Z.E.; Hakiman, M. Alterations in microrhizome induction, shoot multiplication and rooting of ginger (Zingiber officinale Roscoe) var. Bentong with regards to sucrose and plant growth regulators application. Agronomy 2021, 11, 320. [Google Scholar] [CrossRef]
- Dwivedi-Burks, S. Cytokinin metabolism. In Phytohormones and Abiotic Stress Tolerance in Plants; Khan, N.A., Nazar, R., Iqbal, N., Anjum, N.A., Eds.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; pp. 157–168. ISBN 9783642258282. [Google Scholar]
- Sakakibara, H. Cytokinins: Activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 2006, 57, 431–449. [Google Scholar] [CrossRef] [Green Version]
- Skoog, F.; Hamzi, H.Q.; Szweykowska, A.M.; Leonard, N.J.; Carraway, K.L.; Fujii, T.; Helgenson, J.P.; Loeppky, R.N. Cytokinins: Structure/activity relationships. Phytochemistry 1967, 6, 1169–1192. [Google Scholar] [CrossRef]
- Jaworek, P.; Tarkowski, P.; Hluska, T.; Kouřil, Š.; Vrobel, O.; Nisler, J.; Kopečný, D. Characterization of five CHASE-containing histidine kinase receptors from Populus × canadensis cv. Robusta sensing isoprenoid and aromatic cytokinins. Planta 2020, 251, 1. [Google Scholar] [CrossRef]
- Lomin, S.N.; Krivosheev, D.M.; Steklov, M.Y.; Arkhipov, D.V.; Osolodkin, D.I.; Schmülling, T.; Romanov, G.A. Plant membrane assays with cytokinin receptors underpin the unique role of free cytokinin bases as biologically active ligands. J. Exp. Bot. 2015, 66, 1851–1863. [Google Scholar] [CrossRef] [Green Version]
- Bejoy, M.; Dan, M.; Anish, N.P.; Nair, A.R.G.; Radhika, B.J.; Manesh, K. Micropropagation of an Indian ginger (Curcuma vamana Sabu and Mangaly): A wild relative of turmeric. Biotechnology 2012, 11, 333–338. [Google Scholar] [CrossRef]
- Máximo, W.P.F.; Santos, P.A.A.; Mendonça, E.G.; Santos, B.R.; Paiva, L.V. Nitrate (NO3−) and ammonium (NH4+) ratios for propagation of Eucalyptus hybrid in two different in vitro cultivation systems. Aust. J. Crop Sci. 2015, 9, 1242–1248. [Google Scholar]
- Ivanova, M.; Van Staden, J. Nitrogen source, concentration, and NH4+: NO3 ratio influence shoot regeneration and hyperhydricity in tissue cultured Aloe polyphylla. Plant Cell. Tissue Organ Cult. 2009, 99, 167–174. [Google Scholar] [CrossRef]
- Salvi, N.D.; George, L.; Eapen, S. Micropropagation and field evaluation of micropropagated plants of turmeric. Plant Cell. Tissue Organ Cult. 2002, 68, 143–151. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Sen, A. In vitro regeneration of pathogen free Kaempferia galanga L.—A rare medicinal plant. Res. Plant Biol. 2013, 3, 24–30. [Google Scholar]
- Choi, Y.I.; Noh, E.W.; Kim, H.J.; Park, W.J. Differential regulation of cytokinin oxidase genes and cytokinin-induced auxin biosynthesis by cellular cytokinin level in transgenic poplars. Plant Cell Rep. 2014, 33, 1737–1744. [Google Scholar] [CrossRef]
- Gaudinová, A.; Dobrev, P.I.; Šolcová, B.; Novák, O.; Strnad, M.; Friedecký, D.; Motyka, V. The involvement of cytokinin oxidase/dehydrogenase and zeatin reductase in regulation of cytokinin levels in pea (Pisum sativum L.) leaves. J. Plant Growth Regul. 2005, 24, 188–200. [Google Scholar] [CrossRef]
- Motyka, V.; Vaňková, R.; Čapková, V.; Petrášek, J.; Kamínek, M.; Schmülling, T. Cytokinin-induced upregulation of cytokinin oxidase activity in tobacco includes changes in enzyme glycosylation and secretion. Physiol. Plant 2003, 117, 11–21. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Xin, Q. Genome-wide analysis and identification of cytokinin oxidase/dehydrogenase (CKX) gene family in foxtail millet (Setaria italica). Crop J. 2014, 2, 244–254. [Google Scholar] [CrossRef] [Green Version]
- Ivanova, M.; Van Staden, J. Effect of ammonium ions and cytokinins on hyperhydricity and multiplication rate of in vitro regenerated shoots of Aloe polyphylla. Plant Cell Tissue Organ Cult. 2008, 92, 227–231. [Google Scholar] [CrossRef]
- Kambaska, K.B.; Santilata, S. Effect of plant growth regulator on micropropagation of ginger (Zingiber officinale Rosc.) cv-Suprava and Suruchi. J. Agric. Technol. 2009, 5, 271–280. [Google Scholar]
- David, D.; Ji, T.Y.; Gansau, J.A. In vitro propagation of Zingiber officinale Rosc. “Tambunan”. Trans. Sci. Technol. 2016, 3, 162–167. [Google Scholar] [CrossRef]
- Chavan, J.J.; Gaikwad, N.B.; Umdale, S.D.; Kshirsagar, P.R.; Bhat, K.V.; Yadav, S.R. Efficiency of direct and indirect shoot organogenesis, molecular profiling, secondary metabolite production and antioxidant activity of micropropagated Ceropegia santapaui. Plant Growth Regul. 2014, 72, 1–15. [Google Scholar] [CrossRef]
- Min, B.R.; Marsh, L.E.; Brathwaite, K.; Daramola, A.O. Effects of tissue culture and mycorrhiza applications in organic farming on concentrations of phytochemicals and antioxidant capacities in ginger (Zingiber officinale Roscoe) rhizomes and leaves. J. Food Sci. 2017, 82, 873–881. [Google Scholar] [CrossRef] [PubMed]
- Marinova, D.; Ribarova, F.; Atanassova, M. Total phenolics and total flavonoids in Bulgarian fruits and vegetables. J. Univ. Chem. Technol. Metall. 2005, 40, 255–260. [Google Scholar]
- Sharif, M.F.; Bennett, M.T. The effect of different methods and solvents on the extraction of polyphenols in ginger (Zingiber officinale). J. Teknol. 2016, 78, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Atique, I.; Ahmed, D.; Maqsood, M.; Malik, W. Solvents for extraction of antidiabetic, tron chelating, and antioxidative properties from bottle gourd fruit. Int. J. Veg. Sci. 2018, 24, 212–226. [Google Scholar] [CrossRef]
- Tomsone, L.; Kruma, Z. Comparison of different solvents for isolation of phenolic compounds from horseradish (Armoracia rusticana L.) leaves. Res. Rural Dev. 2013, 1, 104–110. [Google Scholar]
- Hakiman, M.; Maziah, M. Non enzymatic and enzymatic antioxidant activities in aqueous extract of different Ficus deltoidea accessions. J. Med. Plants Res. 2009, 3, 120–131. [Google Scholar]
- Haida, Z.; Hakiman, M. A comprehensive review on the determination of enzymatic assay and nonenzymatic antioxidant activities. Food Sci. Nutr. 2019, 7, 1555–1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haida, Z.; Nakasha, J.J.; Hakiman, M. In vitro responses of plant growth factors on growth, yield, phenolics content and antioxidant activities of Clinacanthus nutans (Sabah snake grass). Plants 2020, 9, 1030. [Google Scholar] [CrossRef] [PubMed]
Treatment (Clorox® %) | Aseptic Culture ± SE (%) | Survival Rate ± SE (%) |
---|---|---|
Control | 0.00 ± 0.00 e | 0.00 ± 0.00 d |
30 | 41.25 ± 3.75 d | 100.00 ± 0.00 a |
40 | 43.75 ± 3.15 cd | 100.00 ± 0.00 a |
50 | 51.25 ± 3.75 bc | 100.00 ± 0.00 a |
60 | 57.5 ± 3.23 b | 91.48 ± 3.41 b |
70 | 75 ± 3.54 a | 83.60 ± 4.18 c |
Cytokinin (µM) | Explant Responded to Shoot Induction (%) | Number of Days to Shoot Initiation | Number of Shoots/Explant | Shoots Length (cm) | Number of Leaves/Shoot | Number of Roots/Explant |
---|---|---|---|---|---|---|
Control (0) | 77.78 | 10.83 ± 0.20 a | 1.93 ± 0.12 e | 3.73 ± 0.07 a | 2.43 ± 0.12 b | 4.07 ± 0.12 c |
Zeatin (10) | 100 | 6.87 ± 0.31 d | 4.07 ± 0.12 a | 3.71 ± 0.07 a | 2.90 ± 0.19 a | 9.43 ± 0.42 a |
BAP (10) | 100 | 7.13 ± 0.39 cd | 3.53 ± 0.17 b | 3.51 ± 0.15 a | 2.45 ± 0.17 b | 7.43 ± 0.31 b |
Kinetin (10) | 86.67 | 8.60 ± 0.27 b | 2.40 ± 0.19 c | 3.48 ± 0.35 a | 2.05 ± 0.12 b | 6.03 ± 0.37 b |
TDZ (5) | 93.33 | 8.00 ± 0.35 bc | 3.07 ± 0.16 d | 1.08 ± 0.07 b | 1.20 ± 0.12 c | 0.00 ± 0.00 d |
Treatment | Number of Days to Shoot Initiation | Number of Shoots/Explant | Shoot Length (cm) | Number of Leaves/Shoot | Number of Roots/Explant |
---|---|---|---|---|---|
Media | |||||
MS | 10.83 ± 0.40 b | 3.35 ± 0.19 a | 3.33 ± 0.11 a | 2.80 ± 0.10 a | 5.40 ± 0.20 b |
LS | 10.70 ± 0.36 b | 3.15 ± 0.18 a | 3.35 ± 0.11 a | 2.88 ± 0.10 a | 5.79 ± 0.20 b |
B5 | 12.98 ± 0.62 a | 2.90 ± 0.21 b | 2.77 ± 0.14 b | 1.87 ± 0.06 b | 6.60 ± 0.34 a |
Zeatin (µM) | |||||
0 | 13.33 ± 0.61 a | 1.98 ± 0.12 d | 3.77 ± 0.10 a | 2.49 ± 0.18 abc | 4.59 ± 0.17 c |
5 | 12.44 ± 0.54 ab | 2.95 ± 0.10 c | 3.00 ± 0.20 bc | 2.67 ± 0.22 ab | 6.50 ± 0.29 a |
10 | 11.89 ± 0.61 b | 3.81 ± 0.17 a | 3.16 ± 0.12 b | 2.80 ± 0.23 a | 6.46 ± 0.30 ab |
15 | 10.83 ± 0.46 c | 3.58 ± 0.11 ab | 3.07 ± 0.16 bc | 2.39 ± 0.15 bc | 6.28 ± 0.30 ab |
20 | 9.02 ± 0.14 d | 3.34 ± 0.13 b | 2.76 ± 0.13 c | 2.23 ± 0.16 c | 5.81 ± 0.32 b |
F value | |||||
Media | 25.99 *** | 8.51 ** | 13.18 *** | 50.22 *** | 13.18 *** |
Zeatin (µM) | 26.26 *** | 52.29 *** | 10.59 *** | 4.77 ** | 13.36 *** |
Media × Zeatin (µM) | 1.76 ns | 2.52 * | 0.89 ns | 0.5 ns | 1.34 ns |
CV (%) | 8.44 | 9.51 | 11.03 | 12.25 | 11.01 |
Zeatin (µM) | Basal Media | ||
---|---|---|---|
MS | LS | B5 | |
0 | 2.22 ± 0.11 g | 2.17 ± 0.17 g | 1.56 ± 0.06 h |
5 | 3.19 ± 0.10 cde | 3.00 ± 0.19 ef | 2.66 ± 0.09 fg |
10 | 4.28 ± 0.15 a | 3.90 ± 0.21 ab | 3.27 ± 0.07 cde |
15 | 3.73 ± 0.13 bc | 3.57 ± 0.23 bcd | 3.43 ± 0.23 b-e |
20 | 3.31 ± 0.19 cde | 3.12 ± 0.25 def | 3.58 ± 0.22 bcd |
Treatment (Auxin) | Auxin Concentration (µM) | Plantlet Responded to Rooting (%) | Number of Days to Root Initiation | Number of Roots/Explant | Root Length (cm) |
---|---|---|---|---|---|
Control | 0 | 100 | 6.06 ± 0.47 a | 6.33 ± 0.38 e | 3.16 ± 0.19 bc |
IAA | 2.5 | 100 | 5.89 ± 0.22 a | 10.44 ± 0.62 bc | 2.77 ± 0.21 bcd |
IAA | 5 | 100 | 5.44 ± 0.48 a | 8.22 ± 0.59 de | 3.94 ± 0.29 a |
IAA | 7.5 | 100 | 6.00 ± 0.19 a | 6.67 ± 0.33 e | 3.41 ± 0.29 ab |
IBA | 2.5 | 100 | 5.67 ± 0.51 a | 7.22 ± 0.56 de | 2.67 ± 0.24 cde |
IBA | 5 | 100 | 6.22 ± 0.48 a | 9.11 ± 0.40 cd | 3.35 ± 0.28 abc |
IBA | 7.5 | 100 | 6.33 ± 0.33 a | 9.22 ± 0.48 cd | 2.78 ± 0.2 bcd |
NAA | 2.5 | 100 | 6.00 ± 0.38 a | 10.56 ± 0.78 bc | 1.93 ± 0.14 f |
NAA | 5 | 100 | 6.11 ± 0.4 a | 11.67 ± 1.02 b | 2.03 ± 0.16 ef |
NAA | 7.5 | 100 | 6.78 ± 0.59 a | 15.44 ± 0.80 a | 2.19 ± 0.11 edf |
Propagation | Solvent | Phenolic Acid (mg GAE/g DW) | Flavonoid (mg RE/g DW) |
---|---|---|---|
Conventional | Aqueous | 16.53 ± 0.45 c | 16.73 ± 0.53 cd |
Ethanol | 23.1 ± 0.43 a | 32.2 ± 0.64 b | |
Acetone | 19.85 ± 0.42 b | 51.75 ± 1.39 a | |
Hexane | 8.32 ± 0.63 d | 14.65 ± 0.39 d | |
Mean | 16.95 | 28.83 | |
Micropropagation | Aqueous | 16.64 ± 0.37 c | 18.75 ± 0.45 c |
Ethanol | 23.93 ± 0.48 a | 33.74 ± 0.49 b | |
Acetone | 21.1 ± 0.43 b | 52.53 ± 2.01 a | |
Hexane | 8.85 ± 0.52 d | 16.08 ± 0.7 cd | |
Mean | 17.68 | 30.28 | |
F value | |||
Propagation | 4.16 ns | 4.30 ns | |
Solvent | 373.56 *** | 595.03 *** | |
Propagation × Solvent | 0.52 ns | 0.14 ns | |
CV (%) | 4.74 | 5.76 |
Propagation | Solvent | DPPH Inhibition (%) | FRAP (mg TE/g DW) |
---|---|---|---|
Conventional | Aqueous | 58.25 ± 0.01 c | 40.39 ± 0.69 c |
Ethanol | 75.46 ± 2.58 ab | 62.96 ± 0.67 ab | |
Acetone | 71.61 ± 0.65 b | 59.76 ± 1.17 b | |
Hexane | 61.56 ± 0.92 c | 40.48 ± 2.07 c | |
Mean | 66.72 | 50.90 | |
Micropropagation | Aqueous | 63.32 ± 3.41 c | 42.52 ± 0.64 c |
Ethanol | 77.01 ± 0.83 a | 64.10 ± 1.78 a | |
Acetone | 72.28 ± 1.16 ab | 60.59 ± 1.16 ab | |
Hexane | 63.55 ± 0.25 c | 43.37 ± 0.52 c | |
Mean | 69.04 | 52.65 | |
F value | |||
Propagation | 3.98 ns | 4.15 ns | |
Solvent | 40.69 *** | 186.35 *** | |
Propagation × Solvent | 0.68 ns | 0.3 ns | |
CV (%) | 4.2 | 4.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahid, N.A.; Jaafar, H.Z.E.; Hakiman, M. Micropropagation of Ginger (Zingiber officinale Roscoe) ‘Bentong’ and Evaluation of Its Secondary Metabolites and Antioxidant Activities Compared with the Conventionally Propagated Plant. Plants 2021, 10, 630. https://doi.org/10.3390/plants10040630
Zahid NA, Jaafar HZE, Hakiman M. Micropropagation of Ginger (Zingiber officinale Roscoe) ‘Bentong’ and Evaluation of Its Secondary Metabolites and Antioxidant Activities Compared with the Conventionally Propagated Plant. Plants. 2021; 10(4):630. https://doi.org/10.3390/plants10040630
Chicago/Turabian StyleZahid, Nisar Ahmad, Hawa Z. E. Jaafar, and Mansor Hakiman. 2021. "Micropropagation of Ginger (Zingiber officinale Roscoe) ‘Bentong’ and Evaluation of Its Secondary Metabolites and Antioxidant Activities Compared with the Conventionally Propagated Plant" Plants 10, no. 4: 630. https://doi.org/10.3390/plants10040630
APA StyleZahid, N. A., Jaafar, H. Z. E., & Hakiman, M. (2021). Micropropagation of Ginger (Zingiber officinale Roscoe) ‘Bentong’ and Evaluation of Its Secondary Metabolites and Antioxidant Activities Compared with the Conventionally Propagated Plant. Plants, 10(4), 630. https://doi.org/10.3390/plants10040630