Productivity and Post-Harvest Fungal Resistance of Hot Pepper as Affected by Potassium Silicate, Clove Extract Foliar Spray and Nitrogen Application
Abstract
:1. Introduction
2. Results
2.1. Phenolic and Flavonoid Compounds in Clove Water Extract
2.2. Field Experimental Results
2.2.1. Vegetative Characteristics
2.2.2. Fruit Characteristics and Yield
2.2.3. Severity of Post-Harvest Alternaria alternata Infection
3. Discussion
3.1. Nitrogen Fertilizer-Related Effects
3.2. Potassium Silicate-Related Effects
3.3. Clove Extract-Related Effects
3.4. Severity of Post-Harvest Alternaria alternata Infection
4. Materials and Methods
4.1. Site Description
4.2. Experimental Design and Treatments
4.3. Preparation of Clove Water Extract
4.4. Instrument Condition for Phenolic Compounds
4.5. Instrument Condition for Flavonoids
4.6. Source of Phosphorus
4.7. Data Collection
4.8. Preparation of A. alternata Inoculum and Pathogenicity Test on Pepper Fruit
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhigila, D.A.; Abdullahi, A.A.; Opeyemi, S.K.; Felix, A.O. Fruit morphology as taxonomic features in five vari- eties of Capsicum annuum L. Solanaceae. J. Bot. 2014. [Google Scholar] [CrossRef] [Green Version]
- Carrizo García, C.; Barfuss, M.H.J.; Sehr, E.M.; Barboza, G.E.; Samuel, R.; Moscone, E.A.; Ehrendorfer, F. Phylo-550 genetic relationships, diversification and expansion of chili peppers (Capsicum, Solanaceae). Ann. Bot. 2016, 118, 35–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO STAT. Pepper. 2013. Available online: http://faostat3.fao.org (accessed on 29 March 2021).
- Fan, Z.; Lin, S.; Zhang, X.; Jiang, Z.; Yang, K.; Jian, D.; Wang, J. Conventional flooding irrigation causes an overuse of nitrogen fertilizer and low nitrogen use efficiency in intensively used solar greenhouse vegetable production. Agric. Water Manag. 2014, 144, 11–19. [Google Scholar] [CrossRef]
- Khan, A.; Shah, S.N.M.; Rab, A.; Sajid, M.; Ali, K.; Ahmed, A.; Faisal, S. Influence of nitrogen and potassium. levels on growth and yield of chilies. Int. J. Farming Allied Sci. 2014, 3, 260–264. [Google Scholar]
- Bouchet, A.S.; Laperche, A.; Bissuel-Belaygue, C.; Snowdon, R.; Nesi, N.; Stahl, A. Nitrogen use efficiency in rapeseed. A review. Agron. Sustain. Dev. 2016, 36, 38. [Google Scholar] [CrossRef]
- Tubana, B.S.; Tapasya, B.; Datnoff, L.E. A review of silicon in soils and plants and its role in US agriculture: History and future perspectives. Soil Sci. 2016, 181, 393–411. [Google Scholar] [CrossRef] [Green Version]
- Dann, E.K.; Muir, S. Peas grown in media with elevated plant-available silicon levels have higher activities of chitinase and β-1, 3-glucanase, are less susceptible to a fungal leaf spot pathogen and accumulate more foliar silicon. Australas. Plant Pathol. 2002, 31, 9–13. [Google Scholar] [CrossRef]
- Heath, M.C.; Stumpf, M.A. Ultrastructural observations of penetration sites of the cowpea rust fungus in untreated and silicon-depleted French bean cells. Physiol. Mol. Plant Pathol. 1986, 29, 27–39. [Google Scholar] [CrossRef]
- Chérif, M.; Menzies, J.; Ehret, D.; Bogdanoff, C.; Belanger, R. Yield of cucumber infected with Pythium apha- nidermatum when grown with soluble silicon. HortScience 1994, 29, 896–897. [Google Scholar] [CrossRef]
- Etesami, H.; Jeong, B.R. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicol. Environ. Saf. 2018, 147, 881–896. [Google Scholar] [CrossRef]
- Zhu, Y.; Gong, H. Beneficial effects of silicon on salt and drought tolerance in plants. Agron. Sustain. Dev. 2014, 34, 455–472. [Google Scholar] [CrossRef] [Green Version]
- Coskun, D.; Britto, D.T.; Huynh, W.Q.; Kronzucker, H.J. The role of silicon in higher plants under salinity and drought stress. Front. Plant Sci. 2016, 7, 1072. [Google Scholar] [CrossRef] [Green Version]
- Crusciol, C.A.C.; Arruda, D.P.; Fernandes, A.M.; Antonangelo, J.A.; Alleoni, L.R.F.; Nascimento, C.A.C.; Ros-sato, O.B.; McCray, J.M. Methods and extractants to evaluate silicon availability for sugarcane. Sci. Rep. 2018, 8, 916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, D.; Fang, X.; Zhang, R.; Gao, T.; Bu, H.; Du, G. Influences of nitrogen, phosphorus and silicon addition on plant productivity and species richness in an alpine meadow. AoB Plants. 2015, 7, plv125. [Google Scholar] [CrossRef] [Green Version]
- Camargo, M.S.; Korndörfer, G.H.; Wyler, P. Silicate fertilization of sugarcane cultivated in tropical soils. Field Crops Res. 2014, 167, 64–75. [Google Scholar] [CrossRef]
- Ertani, A.; Sambo, P.; Nicoletto, C.; Santagata, S.; Schiavon, M.; Nardi, S. The use of organic biostimulants in hot pepper plants to help low input sustainable agriculture. Chem. Biol. Technol. Agric. 2015, 2, 11. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yu, T.; Li, Y.; Cai, D.; Liu, X.; Lu, H. Postharvest biocontrol of Alternaria alternata in Chinese winter jujube by Rhodosporidium paludigenum. J. Appl. Microbiol. 2009, 107, 1492–1498. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Cao, J.; Jiang, W.; Zhao, Y. Effects of pre-harvest oligochitosan sprays on postharvest fungal diseases, 607 storage quality, and defense responses in jujube (Zizyphus jujube Mill. cv. Dongzao) fruit. Sci. Hortic. 2012, 142, 196–204. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Waomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Jimoh, S.O.; Arowolo, L.A.; Alabim, K.A. Phytochemical screening and antimicrobial evaluation of Syzygium aromaticum extract and essential oil. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 4557–4567. [Google Scholar] [CrossRef]
- Hamad, Y.K.; Abobakr, Y.; Salem, M.Z.; Ali, H.M.; Al-Sarar, A.S.; Al-Zabib, A.A. Activity of plant extracts/es- 590 sential oils against three plant pathogenic fungi and mosquito larvae: GC/MS analysis of bioactive compounds. BioResources 2019, 14, 4489–4511. [Google Scholar] [CrossRef]
- Abd El Azim, M.; El-Mesallamy, A.M.; El-Gerby, M.; Awad, A. Anti-Tumor, antioxidant and antimicrobial and the phenolic constituents of clove flower buds (Syzygium aromaticum). J. Microb. Biochem. Technol. 2014, 10, S8. [Google Scholar] [CrossRef] [Green Version]
- Cortés-Rojas, D.F.; De Souza, C.R.F.; Pereira Oliveira, W. Clove (Syzygium aromaticum): A precious spice. Asian. Pac. J. Trop. Biomed. 2014, 4, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Cherkupally, R.; Kota, S.R.; Amballa, H.; Reddy, B.N. In vitro antifungal potential of plant extracts against Fusarium oxysporum, Rhizoctonia solani and Macrophomina phaseolina. Ann. Plant Sci. 2017, 6, 1676–1680. [Google Scholar] [CrossRef] [Green Version]
- Aminifard, M.H.; Aroiee, H.; Ameri, A.; Fatemi, H. Effect of plant density and nitrogen fertilizer on growth, yield and fruit quality of sweet pepper (Capsicum annum L.). Afr. J. Agric. Res. 2012, 7, 859–866. [Google Scholar] [CrossRef] [Green Version]
- Vos, J.G.M.; Frinking, H.D. Nitrogen fertilization as a component of integrated crop management of hot pepper (Capsicum spp.) under tropical lowland conditions. Int. J. Pest Manag. 1997, 43, 1–10. [Google Scholar] [CrossRef]
- Aminifard, M.H.; Bayat, H. Influence of different rates of nitrogen fertilizer on growth, yield and fruit quality of sweet pepper (Capsicum annum L. var. California Wander). J. Hortic and Postharvest Res. 2018, 1, 105–114. [Google Scholar] [CrossRef]
- Ghoneim, I.M. Effect of nitrogen fertilization and its application system on vegetative growth, fruit yield and quality of sweet pepper. J. Agric. and Env. Sci. Alex. Univ. 2005, 4, 58–77. [Google Scholar]
- McCullough, M.D. Bedding and Nitrogen Treatments for Spice Pepper Production. Ph.D. Thesis, Oklahoma State University, Stillwater, OK, USA, 1994. [Google Scholar]
- Ayodele, O.J.; Alabi, E.O.; Aluko, M. Nitrogen fertilizer effects on growth, yield and chemical composition of hot pepper (Rodo). Intl. J. Agri. Crop Sci. 2015, 8, 666. [Google Scholar]
- Medina-Lara, F.; Echevarria-Machado, I.; Pacheco-Arjona, R.; Ruiz-Lau, N.; Guzman-Antonio, A.; Martinez-Estevez, M. Influence of nitrogen and potassium fertilization on fruiting and capsaicin content of habanero pepper (Capsicum chinense Jacq). HortScience 2008, 43, 1549–1554. [Google Scholar] [CrossRef] [Green Version]
- Jovicich, E.D.; Cantiffe, J.; Stoffella, P.J.; Vansickle, J.J. Reduced fertigation of soil-less greenhouse peppers improves fruit yield and quality. Acta Hortic. 2003, 609, 193–199. [Google Scholar] [CrossRef]
- Aujla, M.S.; Thind, H.S.; Buttar, G.S. Fruit yield and water use efficiency of eggplant (Solanum melongema L.) as influenced by different quantities of nitrogen and water applied through drip and furrow irrigation. J. Sci. Hortic. 2007, 112, 142–148. [Google Scholar] [CrossRef]
- Shakouri, M.J.; Bijeh, K.M.H.; Feiz, A.A.; Lotfi, M. The effect of N fertilizer and plant density on green peppers yield and its components. Int. J. Adv. Med. Biomed. Res. 2014, 2, 586–590. [Google Scholar]
- Epstein, E. The anomaly of silicon in agriculture. Proc. Natl. Acad. Sci. USA 1994, 91, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Epstein, E. Silicon. Annu. Rev. Plant Physiol. Plant Molec. Biol. 1999, 50, 641–664. [Google Scholar] [CrossRef]
- Epstein, E. The discovery of the essential elements. Discov. Plant Biol. 2000, 3, 1–16. [Google Scholar] [CrossRef]
- Abdelaziz, M.A.; Geeth, R.H.M. Effect of foliar spray with some silicon sources and paclobutrazol on growth, yield and fruit quality of sweet pepper (Capsicum annuum L.) plants under high temperature conditions. Egypt. J. Agric. Res. 2018, 96, 2. [Google Scholar] [CrossRef]
- Raven, J.A. The transport and function of silicon in plants. Biol. Rev. 1983, 58, 179–207. [Google Scholar] [CrossRef]
- Sudradjat, S.; Jufri, A.F.; Sulistyono, E. Studies on the effects of silicon and antitranspirant on chili pepper (Capsicum annuum L.) growth and yield. Eur. J. Sci. Res. 2016, 137, 5–10. [Google Scholar]
- PereiIra, A.I.A.; Guimarães, J.J.; Costa, J.V.; Cantuário, F.S.; Salomão, L.C.; Oliveira, R.C.; Luz, J.M.Q. Growth of sweet pepper plants submitted to water tensions in soil and potassium silicate doses. Hortic. Bras. 2019, 37, 082–088. [Google Scholar] [CrossRef]
- Kamal, A.M. Influence of irrigation levels, antitranspirants and potassium silicate on growth, fruit yield and quality of sweet pepper plants (Capsicum annuum L.) grown under drip irrigation. J. Plant Prod. 2013, 4, 1581–1597. [Google Scholar] [CrossRef] [Green Version]
- Satisha, G.C.; Saxena, A.K.; Ganesshamurthy, A.N. Effect of Silicon and Macronutrients on Plant Growth, Yield and Disease Incidence in Chilli (Capsicum annuum L). In Proceedings of the 7th International Conference on Silicon in Agriculture, Bengaluru, India, 24–28 October 2017; p. 144. [Google Scholar]
- Bin, D.S.; Yizhong, Z.C.; Sun, M.; Harold, C. Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J. Agric. Food Chem. 2005, 53, 7749–7759. [Google Scholar] [CrossRef]
- Avasthi, S.; Gautam, A.; Bhadauria, R. Antifungal activity of plant products against Aspergillus niger: A potential application in the control of a spoilage fungus. Biol. Forum Int. J. 2010, 2, 53–55. [Google Scholar]
- Garg, S.C.; Siddiqui, N. Antifungal activity of some essential oil isolates. Pharmazie 1992, 47, 467–468. [Google Scholar] [PubMed]
- Vazquez, B.I.; Fente, C.; Franco, C.M.; Vazquez, M.J.; Cepeda, A. Inhibitory effects of eugenol and thymol on Penicillium citrinum strains in culture media and cheese. Int. J. Food Microbiol. 2001, 67, 157–163. [Google Scholar] [CrossRef]
- Souri, M.K.; Bakhtiarizade, M. Biostimulation effects of rosemary essential oil on growth and nutrient uptake of tomato seedlings. Sci. Hortic. 2019, 243, 472–476. [Google Scholar] [CrossRef]
- Mohamed, A.A.; El-Hefny, M.; El-Shanhorey, N.A.; Ali, H.M. Foliar application of bio-stimulants enhancing the production and the toxicity of Origanum majorana essential oils against four rice seed-borne fungi. Molecules 2020, 25, 2363. [Google Scholar] [CrossRef] [PubMed]
- Sakr, W.R.A.; El-Sayed, A.A.; Hammouda, A.M.; Saad El Deen, F.S.A. Effect of NPK, Aloe gel and Moringa extracts on geranium plants. J. Hortic. Sci. Ornam. Plants 2018, 10, 1–16. [Google Scholar] [CrossRef]
- Souri, M.K.; Roemheld, V. Split daily application of ammonium cannot ameliorate ammonium toxicity in tomato plants. Hortic. Environ. Biotechnol. 2009, 50, 384–391. [Google Scholar]
- Marschner, P. Mineral Nutrition of Higher Plants, 3rd ed.; Elsevier: London, UK, 2011. [Google Scholar]
- Denre, M.; Ghanti, G.; Sarkar, K. Effect of humic acids application on accumulation of mineral nutrition and pungency in garlic (Allium sativum L.). Int. J. Biotech. Mol. Biol. Res. 2014, 5, 7–12. [Google Scholar]
- Rose, M.T.; Patti, A.F.; Little, K.R.; Brown, A.L. A meta-analysis and review of plant-growth response to humic substances: Practical implications for agriculture. Adv. Agron. 2014, 124, 37–89. [Google Scholar] [CrossRef]
- Wilson, C.L.; Wisniewski, M.E. Biological control of postharvest diseases of fruits and vegetables: An emerging technology. Annu. Rev. Phytopathol. 1989, 27, 425–441. [Google Scholar] [CrossRef]
- El-Bebany, A.F.; Adam, L.R.; Daayf, F. Differential accumulation of phenolic compounds in potato in response to weakly and highly aggressive isolates of Verticillium dahliae. Can. J. Plant Pathol. 2013, 35, 232–240. [Google Scholar] [CrossRef]
- Beg, A.Z.; Ahmad, I. In vitro fungitoxicity of the essential oil of Syzygium aromaticum. World J. Microbiol. Biotechnol. 2002, 18, 317–319. [Google Scholar] [CrossRef]
- Thabet, M.; Khalifa, K. Antifungal activities of clove oil against root rot and wilt pathogens of tomato plants. Am. Eurasian J. Agric. Environ. Sci. 2018, 18, 105–114. [Google Scholar] [CrossRef]
- Rodrigues, F.A.; McNally, D.J.; Datnoff, L.E.; Jones, J.B. Silicon influences cytological and molecular events in compatible and incompatible rice-Magnaporthe grisea interactions. Physiol. Mol. Plant Pathol. 2005, 66, 144–159. [Google Scholar] [CrossRef]
- Kang, J.; Zhao, W.; Zhu, X. Silicon improves photosynthesis and strengthens enzyme activities in the C3 succu- lent xerophyte Zygophyllum xanthoxylum under drought stress. J. Plant Physiol. 2016, 199, 76–86. [Google Scholar] [CrossRef]
- Page, A.L.; Miller, R.H.; Keeney, D.R. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; ASA Madison: Madison, WI, USA, 1982. [Google Scholar]
- Hassan, S.M.; Ghoneim, I.M.; El-Araby, S.M.; Elsharkawy, A. Effect of different plastic covers on vegetative growth and yield quality of cucumber plants (Cucumis sativus L.). World Appl. Sci. J. 2014, 32, 217–225. [Google Scholar] [CrossRef]
- El sharkawy, A.M.; El-Araby, S.M.; Ghoneim, I.M.; Hassan, S.M. Efficiency of different nitrogen levels and cal- cium spraying rates on vegetative growth, yield, and quality of cucumber under greenhouse conditions. Alex. J. Agric. Sci. 2017, 62, 1–12. [Google Scholar]
- Salem, M.Z.M.; Hayssam, M.A.; Nader, E.S.; Ahmed, A.M. Evaluation of extracts and essential oil from callistemon and antioxidant activities, total phenolic and flavonoid content. Asian Pac. J. Trop. Med. 2013, 6, 10. [Google Scholar] [CrossRef] [Green Version]
- Ramdial, H.R.; Rampersad, S.N. Characterization of Colletotrichum spp. causing anthracnose of bell pepper (Cap- sicum annuum L.) in Trinidad. Phytoparasitica 2015, 43, 37–49. [Google Scholar] [CrossRef]
Compound | mg/100 g Extract |
---|---|
Phenolic | |
Gallic acid | 13.26 |
Catechol | 20.15 |
p-Hydroxy benzoic acid | ND |
Caffeine | 2.03 |
Vanillic acid | 11.39 |
Caffeic acid | ND |
Syringic acid | 6.39 |
Vanillin | 3.18 |
p-Coumaric acid | 2.26 |
Ferulic acid | 3.06 |
Ellagic acid | 100.83 |
Benzoic acid | 106.22 |
o-Coumaric acid | 6.48 |
Salicylic acid | ND |
Cinnamic acid | ND |
Flavonoids | |
Rutin | 7588.01 |
Myricetin | 77.71 |
Quercetin | 68.32 |
Naringenin | ND |
Kaempferol | 29.71 |
Apigenin | 30.35 |
Treatment | Plant Height | Number of Branches | Leaf DM Content | ||||
---|---|---|---|---|---|---|---|
Summer 2017 | Summer 2018 | Summer 2017 | Summer 2018 | Summer 2017 | Summer 2018 | ||
Nitrogen fertilization (kg ha−1) | 144 | 70.48 * c | 70.77 b | 5.44 c | 5.03 c | 34.45 b | 34.25 a |
216 | 76.92 b | 78.37 a | 6.74 a | 6.81 a | 35.27 a | 35.16 a | |
288 | 80.88 a | 80.63 a | 5.81 b | 6.11 b | 34.06 b | 33.85 a | |
Potassium silicate (mg L−1) | 0 | 74.07 b | 73.81 b | 5.74 b | 5.74 b | 33.95 b | 34.02 b |
250 | 77.22 a | 77.88 a | 6.29 a | 6.37 a | 34.23 b | 33.79 b | |
500 | 77.00 a | 77.77 a | 5.96 ab | 5.82 b | 35.59 a | 35.45 a | |
Clove water extract (mg L−1) | 0 | 74.33 c | 74.00 b | 5.59 c | 5.70 b | 33.22 b | 33.33 b |
5000 | 76.18 b | 77.07 a | 6.40 a | 6.22 a | 35.09 a | 34.80 a | |
10000 | 77.77 a | 78.40 a | 6.00 b | 6.03 ab | 35.46 a | 35.13 a |
Potassium Silicate (mg L−1) | Nitrogen Fertilization (kg ha−1) | |||||
---|---|---|---|---|---|---|
Summer 2017 | Summer 2018 | |||||
144 | 216 | 288 | 144 | 216 | 288 | |
0 | 61.26 * aB | 64.70 aA | 59.27 bC | 61.23 aB | 65.50 aA | 59.41 bC |
250 | 62.91 aAB | 64.60 aA | 61.31 abB | 62.93 aA | 65.89 aA | 63.05 aA |
500 | 61.93 aA | 61.94 bA | 62.82 aA | 62.66 aA | 58.57 bB | 62.66 aA |
Treatment | Fruit Diameter | ||
---|---|---|---|
Summer 2017 | Summer 2018 | ||
Nitrogen fertilization (kg ha−1) | 144 | 1.22 * a | 1.20 a |
216 | 1.25 a | 1.24 a | |
288 | 1.28 a | 1.27 a | |
Potassium silicate (mg L−1) | 0 | 1.24 a | 1.22 a |
250 | 1.25 a | 1.24 a | |
500 | 1.26 a | 1.25 a | |
CWE (mg L−1) | 0 | 1.20 c | 1.15 c |
5000 | 1.27 b | 1.26 b | |
10,000 | 1.28 a | 1.30 a |
Treatment | Fruit Length | ||||||
---|---|---|---|---|---|---|---|
Summer 2017 | Summer 2018 | ||||||
Nitrogen fertilization (kg ha−1) | 144 | 216 | 288 | 144 | 216 | 288 | |
Potassium Silicate (mg L−1) | 0 | 12.21 * aC | 12.96 bB | 13.50 aA | 13.28 bB | 12.91 bC | 13.52 bA |
250 | 12.27 aC | 13.36 aB | 13.60 aA | 13.38 aB | 13.38 aB | 13.59 bA | |
500 | 12.39 aC | 13.44 aB | 13.65 aA | 13.49 aB | 13.47 aB | 13.78 aA | |
CWE (mg L−1) | 0 | 11.88 cC | 12.99 cB | 13.53 aA | 12.05 bB | 12.98 aA | 13.34 aA |
5000 | 12.31 bC | 13.25 bB | 13.65 aA | 12.34 bB | 13.28 aA | 13.66 aA | |
10,000 | 12.68 aC | 13.52 aB | 13.78 aA | 15.77 aA | 13.50 aA | 13.90 aA |
Season | Nitrogen Fertilization (kg h−1) | Potassium Silicate (mg L−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 250 | 500 | ||||||||
Clove Water Extract (mg L−1) | ||||||||||
0 | 5000 | 10,000 | 0 | 5000 | 10,000 | 0 | 5000 | 10,000 | ||
Summer 2017 | 144 | 18.84 | 20.39 | 21.24 | 20.22 | 22.00 | 22.05 | 21.10 | 22.48 | 22.43 |
216 | 22.84 | 23.71 | 23.95 | 22.93 | 23.90 | 24.36 | 23.19 | 24.36 | 24.84 | |
288 | 24.20 | 25.15 | 26.22 | 24.60 | 25.75 | 27.06 | 25.74 | 28.48 | 31.71 | |
LSD0.05 | 1.59 | |||||||||
Summer 2018 | 144 | 18.00 | 21.09 | 21.36 | 20.52 | 21.74 | 21.88 | 21.28 | 22.63 | 22.29 |
216 | 22.77 | 23.64 | 23.88 | 23.16 | 23.88 | 24.43 | 23.35 | 24.69 | 24.91 | |
288 | 24.31 | 25.17 | 26.54 | 24.84 | 25.72 | 27.21 | 25.82 | 28.51 | 31.22 | |
LSD0.05 | 0.52 |
A. alternata Rot lesion (mm) | Nitrogen Fertilization (kg h−1) | Potassium Silicate (mg L−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 250 | 500 | ||||||||
Clove Water Extract (mg L−1) | ||||||||||
0 | 5000 | 10,000 | 0 | 5000 | 10,000 | 0 | 5000 | 10,000 | ||
10 DAI * | 144 | 1.50 | 1.66 | 1.16 | 1.50 | 2.33 | 1.60 | 1.50 | 1.33 | 1.33 |
216 | 2.66 | 2.33 | 2.33 | 2.56 | 2.50 | 2.50 | 1.33 | 2.66 | 1.36 | |
288 | 3.00 | 2.50 | 2.50 | 6.83 | 3.58 | 3.25 | 2.83 | 2.83 | 1.33 | |
LSD0.05 | 0.98 | |||||||||
15 DAI | 144 | 2.33 | 2.66 | 2.33 | 5.00 | 7.00 | 3.00 | 7.00 | 7.50 | 5.83 |
216 | 2.83 | 5.75 | 2.50 | 9.50 | 7.83 | 4.50 | 2.50 | 2.90 | 2.66 | |
288 | 5.83 | 7.75 | 3.50 | 8.50 | 6.50 | 6.50 | 5.00 | 3.60 | 3.33 | |
LSD0.05 | 0.93 |
Weather Under Greenhouse Monthly | Seasons | Average Temperature (°C) | Average Humidity % | |
---|---|---|---|---|
Max | Min | |||
February | 2017 | 19.00 | 7.78 | 73.47 |
2018 | 23.55 | 13.5 | 75.35 | |
March | 2017 | 23.48 | 14.63 | 77.38 |
2018 | 27.58 | 14.83 | 78.67 | |
April | 2017 | 27.50 | 15.80 | 78.52 |
2018 | 30.37 | 18.66 | 79.10 | |
May | 2017 | 32.00 | 20.83 | 79.80 |
2018 | 33.49 | 21.86 | 79.74 |
Soil Properties | Season | |
---|---|---|
Winter 2017 | Winter 2018 | |
Physical | ||
Sand % | 43.3 | 42.8 |
Silt % | 25.5 | 23.5 |
Clay % | 31.2 | 33.7 |
Soil texture | Sandy loam | Sandy loam |
Chemical | ||
pH | 8.45 | 8.88 |
E.C.* (dS.m−1) | 3.01 | 3.00 |
Soluble cations (m eq/L) | ||
Ca+ | 2.43 | 2.24 |
Mg+2 | 2.63 | 2.93 |
Na+ | 3.59 | 3.43 |
K+ | 0.41 | 0.38 |
Soluble anions (m eq/L) | ||
CO3−2 | 2.10 | 2.40 |
HCO3− | 1.35 | 1.20 |
Cl− | 2.00 | 1.89 |
SO−2 | 3.20 | 3.11 |
Total N % | 0.19 | 0.15 |
Week after Transplanting | The Rate of N-P (%) | Nitrogen Fertilization | Phosphoric Acid (cm3 h−1) | ||
---|---|---|---|---|---|
N1 (144) kg h−1 | N2 (216) kg h−1 | N3 (288) kg h−1 | |||
2 | 2 | 2.88 | 4.32 | 5.76 | 3.83 |
3 | 4 | 5.76 | 8.64 | 11.52 | 7.66 |
4 | 6 | 8.64 | 12.96 | 17.28 | 11.49 |
5 | 8 | 11.52 | 17.28 | 23.04 | 15.32 |
6 | 12 | 17.28 | 25.92 | 34.56 | 22.98 |
7 | 12 | 17.28 | 25.92 | 34.56 | 22.98 |
8 | 12 | 17.28 | 25.92 | 34.56 | 22.98 |
9 | 12 | 17.28 | 25.92 | 34.56 | 22.98 |
10 | 8 | 11.52 | 17.28 | 23.04 | 15.32 |
11 | 8 | 11.52 | 17.28 | 23.04 | 15.32 |
12 | 8 | 11.52 | 17.28 | 23.04 | 15.32 |
13 | 8 | 11.52 | 17.28 | 23.04 | 15.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, S.M.; El-Bebany, A.F.; Salem, M.Z.M.; Komeil, D.A. Productivity and Post-Harvest Fungal Resistance of Hot Pepper as Affected by Potassium Silicate, Clove Extract Foliar Spray and Nitrogen Application. Plants 2021, 10, 662. https://doi.org/10.3390/plants10040662
Hassan SM, El-Bebany AF, Salem MZM, Komeil DA. Productivity and Post-Harvest Fungal Resistance of Hot Pepper as Affected by Potassium Silicate, Clove Extract Foliar Spray and Nitrogen Application. Plants. 2021; 10(4):662. https://doi.org/10.3390/plants10040662
Chicago/Turabian StyleHassan, Shimaa M., Ahmed F. El-Bebany, Mohamed Z. M. Salem, and Doaa A. Komeil. 2021. "Productivity and Post-Harvest Fungal Resistance of Hot Pepper as Affected by Potassium Silicate, Clove Extract Foliar Spray and Nitrogen Application" Plants 10, no. 4: 662. https://doi.org/10.3390/plants10040662
APA StyleHassan, S. M., El-Bebany, A. F., Salem, M. Z. M., & Komeil, D. A. (2021). Productivity and Post-Harvest Fungal Resistance of Hot Pepper as Affected by Potassium Silicate, Clove Extract Foliar Spray and Nitrogen Application. Plants, 10(4), 662. https://doi.org/10.3390/plants10040662