Comparison of Different Semi-Automated Bioreactors for In Vitro Propagation of Taro (Colocasia esculenta L. Schott)
Abstract
:1. Introduction
2. Results
2.1. Effect of Culture Systems on In Vitro Multiplication
2.2. Chlorophyll Content in Different Culture Systems
2.3. Stomatal Content
2.4. Acclimatization Ex Vitro
3. Discussion
3.1. Effect of Culture Systems on In Vitro Multiplication
3.2. Chlorophyll Content in Different Culture Systems
3.3. Stomatal Content
3.4. Acclimatization
4. Materials and Methods
4.1. In Vitro Establishment
4.2. In Vitro Multiplication
4.3. Determination of Chlorophyll
4.4. Stomatal Index and Percentage of Closed Stomata
4.5. Acclimatization
4.6. Experimental Design and Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pereira, P.R.; Mattos Érika, B.D.A.; Corrêa, A.C.N.T.F.; Vericimo, M.A.; Paschoalin, V.M.F. Anticancer and Immunomodulatory Benefits of Taro (Colocasia esculenta) Corms, an Underexploited Tuber Crop. Int. J. Mol. Sci. 2020, 22, 265. [Google Scholar] [CrossRef]
- Gouveia, C.; Ganança, J.F.T.; De Nóbrega, H.G.M.; De Freitas, J.G.R.; Lebot, V.; De Carvalho, M.Â.A.P. Phenotypic flexibility and drought avoidance in taro (Colocasia esculenta (L.) Schott). Emir. J. Food Agric. 2020, 32, 150–159. [Google Scholar] [CrossRef]
- Taylor, M. Material de Propagación de Calidad Declarada, Protocolo y Normas Para Cultivos Propagados Vegetativamente; FAO: Roma, Italy, 2013; pp. 101–107. [Google Scholar]
- Matehus, J.; Romay, G.; y Santana, M.A. Multiplicación in vitro de ocumo y taro. Agron. Trop. 2006, 56, 607–613. [Google Scholar]
- Arano-Avalos, S.; Gómez-Merino, F.C.; Mancilla-Álvarez, E.; Sánchez-Páez, R.; Bello-Bello, J.J. An efficient protocol for commercial micropropagation of malanga (Colocasia esculenta L. Schott) using temporary immersion. Sci. Hortic. 2020, 261, 108998. [Google Scholar] [CrossRef]
- Martínez-Estrada, E.; Islas-Luna, B.; Pérez-Sato, J.A.; Bello-Bello, J.J. Temporary immersion improves in vitro multiplication and acclimatization of Anthurium andreanum Lind. Sci. Hortic. 2019, 249, 185–191. [Google Scholar] [CrossRef]
- Etienne, H.; Berthouly, M. Temporary immersion systems in plant micropropagation. Plant Cell Tissue Organ Cult. (PCTOC) 2002, 69, 215–231. [Google Scholar] [CrossRef]
- Ekmekçigil, M.; Bayraktar, M.; Akkuş, Ö.; Gürel, A. High-frequency protocorm-like bodies and shoot regeneration through a combination of thin cell layer and RITA® temporary immersion bioreactor in Cattleya forbesii Lindl. Plant Cell Tissue Organ Cult. (PCTOC) 2018, 136, 451–464. [Google Scholar] [CrossRef]
- Acanda, Y.; Canton, M.; Wu, H.; Zale, J. Kanamycin selection in temporary immersion bioreactors allows visual selection of transgenic citrus shoots. Plant Cell Tissue Organ Cult. (PCTOC) 2017, 129, 351–357. [Google Scholar] [CrossRef]
- Aragon, C.E.; Sanchez, C.; Gonzalez-Olmedo, J.; Escalona, M.; Carvalho, L.; Amancio, S. Comparison of plantain plantlets propagated in temporary immersion bioreactors and gelled medium during in vitro growth and acclimatization. Biol. Plant 2014, 58, 29–38. [Google Scholar] [CrossRef]
- Bello-Bello, J.J.; Cruz-Cruz, C.A.; Pérez-Guerra, J.C. A new temporary immersion system for commercial micropropagation of banana (Musa AAA cv. Grand Naine). Vitr. Cell. Dev. Biol. Anim. 2019, 55, 313–320. [Google Scholar] [CrossRef]
- Ramírez-Mosqueda, M.A.; Cruz-Cruz, C.A.; Cano-Ricárdez, A.; Bello-Bello, J.J. Assessment of different temporary immersion systems in the micropropagation of anthurium (Anthurium andreanum). 3 Biotech 2019, 9, 307. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, J.A.; Solis-Gracia, N.; Jifon, J.; Souza, S.C.; Mandadi, K.K. Use of bioreactors for large-scale multiplication of sugarcane (Saccharum spp.), energy cane (Saccharum spp.), and related species. Vitr. Cell. Dev. Biol. Anim. 2020, 56, 366–376. [Google Scholar] [CrossRef]
- Escalona, M.; Lorenzo, J.C.; Daquinta, M.; Desjardins, Y.; Borroto, C.G. Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion systems. Plant Cell Rep. 1999, 18, 743–748. [Google Scholar] [CrossRef]
- Ducos, J.P.; Labbe, G.; Lambot, C.; Petiard, V. Pilot scale process for the production of pre-germinated somatic embryos of selected robusta (Coffea canephora) clones. Vitr. Cell. Dev. Biol. Anim. 2007, 43, 652–659. [Google Scholar] [CrossRef]
- Welander, M.; Persson, J.; Asp, H.; Zhu, L. Evaluation of a new vessel system based on temporary immersion system for micropropagation. Sci. Hortic. 2014, 179, 227–232. [Google Scholar] [CrossRef]
- Vervit. SETIS™ Bioreactor Temporary Immersion Systems in Plant Micropropagation. 2021. Available online: http://www.setis-systems.be (accessed on 28 February 2021).
- Kunakhonnuruk, B.; Inthima, P.; Kongbangkerd, A. In vitro propagation of Epipactis flava Seidenf. an endangered rheophytic orchid: A first study on factors affecting asymbiotic seed germination, seedling development and greenhouse acclimatization. Plant Cell Tissue Organ Cult. (PCTOC) 2018, 135, 419–432. [Google Scholar] [CrossRef]
- Kim, N.-Y.; Hwang, H.-D.; Kim, J.-H.; Kwon, B.-M.; Kim, D.; Park, S.-Y. Efficient production of virus-free apple plantlets using the temporary immersion bioreactor system. Hortic. Environ. Biotechnol. 2020, 61, 779–785. [Google Scholar] [CrossRef]
- Mancilla-Álvarez, E.; Ramírez-Mosqueda, M.A.; Arano-Avalos, S.; Núñez-Pastrana, R.; Bello-Bello, J.J. In Vitro Techniques to the Conservation and Plant Regeneration of Malanga (Colocasia esculenta L. Schott). HortScience 2019, 54, 514–518. [Google Scholar] [CrossRef] [Green Version]
- Nasri, A.; Baklouti, E.; Ben Romdhane, A.; Maalej, M.; Schumacher, H.M.; Drira, N.; Fki, L. Large-scale propagation of Myrobolan (Prunus cerasifera) in RITA® bioreactors and ISSR-based assessment of genetic conformity. Sci. Hortic. 2019, 245, 144–153. [Google Scholar] [CrossRef]
- Rosales, C.; Rica, I.T.D.C.; Brenes, J.; Salas, K.; Arce-Solano, S.; Abdelnour-Esquivel, A. Micropropagation of Stevia rebaudiana in temporary immersion systems as an alternative horticultural production method. Rev. Chapingo Ser. Hortic. 2018, 24, 69–84. [Google Scholar] [CrossRef]
- Niemenak, N.; Noah, A.M.; Omokolo, D.N. Micropropagation of cocoyam (Xanthosoma sagittifolium L. Schott) in temporary immersion bioreactor. Plant Biotechnol. Rep. 2013, 7, 383–390. [Google Scholar] [CrossRef]
- Jova, M.C.; Kosky, R.G.; Cuellar, E.E. Effect of liquid media culture systems on yam plant growth (Dioscorea alata L. ‘Pacala Duclos’). BASE 2011, 15, 515–521. [Google Scholar]
- Aragón, C.E.; Escalona, M.; Capote, I.; Pina, D.; Cejas, I.; Rodríguez, R.; Cañal, M.J.; Sandoval, J.; Roels, S.; DeBergh, P.; et al. Photosynthesis and carbon metabolism in plantain (Musa AAB) plantlets growing in temporary immersion bioreactors and during ex vitro acclimatization. Vitr. Cell. Dev. Biol. Anim. 2005, 41, 550–554. [Google Scholar] [CrossRef]
- Fan, L.-M.; Zhao, Z.; Assmann, S.M. Guard cells: A dynamic signaling model. Curr. Opin. Plant Biol. 2004, 7, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Büssis, D.; Von Groll, U.; Fisahn, J.; Altmann, T. Stomatal aperture can compensate altered stomatal density in Arabidopsis thaliana at growth light conditions. Funct. Plant Biol. 2006, 33, 1037–1043. [Google Scholar] [CrossRef]
- Cochard, H.; Coll, L.; Le Roux, X.; Améglio, T. Unraveling the effects of plant hydraulics on stomatal closure during water stress in walnut. Plant Physiol. 2002, 128, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Asayesh, Z.M.; Vahdati, K.; Aliniaeifard, S.; Askari, N. Enhancement of ex vitro acclimation of walnut plantlets through modification of stomatal characteristics in vitro. Sci. Hortic. 2017, 220, 114–121. [Google Scholar] [CrossRef]
- Hazarika, B. Morpho-physiological disorders in in vitro culture of plants. Sci. Hortic. 2006, 108, 105–120. [Google Scholar] [CrossRef]
- Wang, F.; Chen, Z.-H.; Shabala, S. Hypoxia Sensing in Plants: On a Quest for Ion Channels as Putative Oxygen Sensors. Plant Cell Physiol. 2017, 58, 1126–1142. [Google Scholar] [CrossRef]
- Schulze, E.D.; Beck, E.; Buchmann, N.; Clemens, S.; Müller-Hohenstein, K.; Scherer-Lorenzen, M. Water Def-Ciency (Drought). In Plant Ecology; Springer: Berlin/Heidelberg, Germany, 2019; pp. 165–202. [Google Scholar]
- Zobayed, S.M.A. Ventilation in Micropropagation. In Photoautotrophic (Sugar-Free Medium) Micropropagation as a New Micropropagation and Transplant Production System; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2005; pp. 147–186. [Google Scholar]
- Regueira, M.; Rial, E.; Blanco, B.; Bogo, B.; Aldrey, A.; Correa, B.; Varas, E.; Sánchez, C.; Vidal, N. Micropropagation of axillary shoots of Salix viminalis using a temporary immersion system. Trees 2017, 32, 61–71. [Google Scholar] [CrossRef]
- Ahmadian, M.; Babaei, A.; Shokri, S.; Hessami, S. Micropropagation of carnation (Dianthus caryophyllus L.) in liquid medium by temporary immersion bioreactor in comparison with solid culture. J. Genet. Eng. Biotechnol. 2017, 15, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Monja-Mio, K.M.; Olvera-Casanova, D.; Herrera-Herrera, G.; Herrera-Alamillo, M.Á.; Sánchez-Teyer, F.L.; Robert, M.L. Improving of rooting and ex vitro acclimatization phase of Agave tequilana by temporary immersion system (BioMINT™). Vitr. Cell. Dev. Biol. Anim. 2020, 56, 662–669. [Google Scholar] [CrossRef]
- Vieira, L.; de Freitas Fraga, H.P.; dos Antojos, K.G.; Puttkammer, C.C.; Scherer, R.F.; da Silva, D.A.; Guerra, M.P. Light-emitting diodes (LED) increase the stomata formation and chlorophyll content in Musa acuminata (AAA) ‘Nanicão Corupá’ in vitro plantlets. Theor. Exp. Plant Physiol. 2015, 27, 91–98. [Google Scholar] [CrossRef]
- José, M.C.S.; Blázquez, N.; Cernadas, M.J.; Janeiro, L.V.; Cuenca, B.; Sánchez, C.; Vidal, N. Temporary immersion systems to improve alder micropropagation. Plant Cell Tissue Organ Cult. (PCTOC) 2020, 143, 265–275. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Harborne, J.B. Nitrogen Compounds. In Phytochemical Methods; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 1973; pp. 166–211. [Google Scholar]
- Xu, Z.; Zhou, G. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. J. Exp. Bot. 2008, 59, 3317–3325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Culture Systems | Shoots/Explant | Shoot Length (cm) | Leaves/Shoot | Roots/Explant | Root Length (cm) | Survival (%) |
---|---|---|---|---|---|---|
Semi-solid medium | 6.10 ± 0.31 c | 3.80 ± 0.22 b | 2.70 ± 0.21 c | 5.80 ± 0.53 c | 5.60 ± 0.33 a | 99.66 ± 33 a |
TIB | 21.70 ± 1.14 b | 5.50 ± 0.33 a | 3.70 ± 0.30 a | 21.30 ± 1.28 b | 3.00 ± 0.33 b | 99.33 ± 33 a |
SETIS | 36.00 ± 1.26 a | 4.50 ± 0.30 a | 3.60 ± 0.22 a | 41.60 ± 2.50 a | 2.80 ± 0.27 b | 99.33 ± 33 a |
Ebb-and-flow bioreactor | 20.00 ± 0.79 b | 2.50 ± 0.22 c | 3.10 ± 0.23 b | 2.50 ± 0.22 c | 1.40 ± 0.14 c | 99.00 ± 57 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mancilla-Álvarez, E.; Pérez-Sato, J.A.; Núñez-Pastrana, R.; Spinoso-Castillo, J.L.; Bello-Bello, J.J. Comparison of Different Semi-Automated Bioreactors for In Vitro Propagation of Taro (Colocasia esculenta L. Schott). Plants 2021, 10, 1010. https://doi.org/10.3390/plants10051010
Mancilla-Álvarez E, Pérez-Sato JA, Núñez-Pastrana R, Spinoso-Castillo JL, Bello-Bello JJ. Comparison of Different Semi-Automated Bioreactors for In Vitro Propagation of Taro (Colocasia esculenta L. Schott). Plants. 2021; 10(5):1010. https://doi.org/10.3390/plants10051010
Chicago/Turabian StyleMancilla-Álvarez, Eucario, Juan Antonio Pérez-Sato, Rosalía Núñez-Pastrana, José L. Spinoso-Castillo, and Jericó J. Bello-Bello. 2021. "Comparison of Different Semi-Automated Bioreactors for In Vitro Propagation of Taro (Colocasia esculenta L. Schott)" Plants 10, no. 5: 1010. https://doi.org/10.3390/plants10051010
APA StyleMancilla-Álvarez, E., Pérez-Sato, J. A., Núñez-Pastrana, R., Spinoso-Castillo, J. L., & Bello-Bello, J. J. (2021). Comparison of Different Semi-Automated Bioreactors for In Vitro Propagation of Taro (Colocasia esculenta L. Schott). Plants, 10(5), 1010. https://doi.org/10.3390/plants10051010