Cryopreservation of Woody Crops: The Avocado Case
Abstract
:1. Introduction
2. Field Repositories of Woody Crops
3. In Vitro Conservation
4. Plant Cryopreservation of Somatic Embryos and Shoot Tips
4.1. Methods to Reduce Water Content
4.2. Cryopreservation Methods
4.2.1. Vitrification
4.2.2. Droplet-Vitrification
4.2.3. Encapsulation-Vitrification and Encapsulation-Dehydration
4.2.4. Dehydration
4.2.5. Pre-Growth and Pre-Growth-Dehydration
4.2.6. D-cryoplate and V-cryoplate
5. The Avocado Case
5.1. Background
5.2. Avocado Conservation
5.2.1. Global Germplasm Repositories
5.2.2. Cryopreservation of Avocado Somatic Embryos
5.2.3. Shoot-Tip Cryopreservation of Avocado
5.2.4. Critical Factors Identified for Successful Cryopreservation of Avocado Shoot-Tips
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilson, E. The Diversity of Life; Penguin: London, UK, 1992. [Google Scholar]
- Harlan, J.R.; de Wet, J.M. Toward a rational classification of cultivated plants. Taxon 1971, 20, 509–517. [Google Scholar] [CrossRef]
- Engels, J.; Ebert, A.; Thormann, I.; De Vicente, M. Centres of crop diversity and/or origin, genetically modified crops and implications for plant genetic resources conservation. Genet. Resour. Crop Evol. 2006, 53, 1675–1688. [Google Scholar] [CrossRef]
- Maxted, N.; Guarino, L.; Myer, L.; Chiwona, E. Towards a methodology for on-farm conservation of plant genetic resources. Genet. Resour. Crop Evol. 2002, 49, 31–46. [Google Scholar] [CrossRef]
- Haidet, M.; Olwell, P. Seeds of success: A national seed banking program working to achieve long-term conservation goals. Nat. Areas J. 2015, 35, 165–173. [Google Scholar] [CrossRef]
- Engelmann, F.; Engels, J. Technologies and strategies for ex situ conservation. In Managing Plant Genetic Diversity; Engels, J.M., Ramanatha, R.U., Brown, A.H.D., Jackson, M.T., Eds.; CAB International: Wallingford, UK, 2002; pp. 89–103. ISBN 9780851995229. [Google Scholar] [CrossRef]
- Panis, B.; Nagel, M. Challenges and Prospects for the Conservation of Crop Genetic Resources in Field Genebanks, in In Vitro Collections and/or in Liquid Nitrogen. Plants 2020, 9, 1634. [Google Scholar] [CrossRef]
- Tsioumani, E. The State of the World’s Biodiversity for Food and Agriculture: A Call to Action? Environ. Policy Law 2019, 49, 110–112. [Google Scholar] [CrossRef]
- Migicovsky, Z.; Warschefsky, E.; Klein, L.L.; Miller, A.J. Using living germplasm collections to characterize, improve, and conserve woody perennials. Crop Sci. 2019, 59, 2365–2380. [Google Scholar] [CrossRef] [Green Version]
- Normah, M.N.; Sulong, N.; Reed, B.M. Cryopreservation of shoot tips of recalcitrant and tropical species: Advances and Strategies. Cryobiology 2019, 87, 1–14. [Google Scholar] [CrossRef]
- Berjak, P.; Pammenter, N. Seed recalcitrance-current perspectives. S. Afr. J. Bot. 2001, 67, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Niino, T.; Arizaga, M.V. Cryopreservation for preservation of potato genetic resources. Breed. Sci. 2015, 65, 41–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engelmann, F. Use of biotechnologies for the conservation of plant biodiversity. Vitr. Cell. Dev. Biol. Plant 2011, 47, 5–16. [Google Scholar] [CrossRef]
- Acedo, V.; Arradoza, C. In vitro conservation of yam germplasm. Philipp. J. Crop Sci. 2005. [Google Scholar] [CrossRef] [Green Version]
- Reed, B.; Bell, R. In Vitro Tissue Culture of Pear: Advances in Techniques for Micropropagation and Germplasm Preservation. In Proceedings of the VIII International Symposium on Pear 596, Ferrara—Bologna, Italy, 31 December 2002; pp. 412–418, ISBN 9066058668. [Google Scholar] [CrossRef]
- Bertrand-Desbrunais, A.; Noirot, M.; Charrier, A. Slow growth in vitro conservation of coffee (Coffea spp.). Plant Celltissue Organ Cult. 1992, 31, 105–110. [Google Scholar] [CrossRef]
- Engelmann, F. In vitro conservation methods. In Biotechnology and Plant Genetic Resources: Conservation and Use; Callow, J.A., Ford-Lloyd, B.V., Newburry, J.H., Eds.; CABI: Wallingford, UK, 1997; pp. 119–162. ISBN 0851991424. [Google Scholar]
- George, E.F.; Sherrington, P.D. Plant propagation by tissue culture: Handbook and directory of commercial laboratories. In Journal of Basic Microbiology; Schmauder, H.P., Ed.; Exegetics Ltd.: Eversley, UK, 1984; ISBN 0950932507. [Google Scholar] [CrossRef]
- Reed, B.M.; Gupta, S.; Uchendu, E.E. In vitro genebanks for preserving tropical biodiversity. In Conservation of Tropical Plant Species, 1st ed.; Normah, M.N., Chin, H.F., Reed, B.M., Eds.; Springer New York: New York, NY, USA, 2013; pp. 77–106. ISBN 978-1-4614-3776-5. [Google Scholar] [CrossRef]
- Bhojwani, S.S.; Razdan, M.K. Plant Tissue Culture: Theory and Practice; Elsevier: Amsterdam, The Netherlands, 1986; p. 0444596151. [Google Scholar]
- Benson, E.E. Cryopreservation Theory. In Plant Cryopreservation: A Practical Guide; Reed, B.M., Ed.; Springer: New York, NY, USA, 2008; pp. 15–32. ISBN 978-0-387-72275-7. [Google Scholar] [CrossRef]
- Harding, K. Genetic integrity of cryopreserved plant cells: A review. CryoLetters 2004, 25, 3–22. [Google Scholar]
- Engelmann, F. Cryopreservation of embryos: An overview. In Plant Embryo Culture, Methods in Molecular Biology (Methods and Protocols.); Thorpe, T.A., Yeung, E.C., Eds.; Humana Press: Totowa, NJ, USA, 2011; Volume 710, pp. 155–184. ISBN 978-1-61737-987-1. [Google Scholar] [CrossRef]
- Bi, W.L.; Pan, C.; Hao, X.Y.; Cui, Z.H.; Kher, M.; Marković, Z.; Wang, Q.C.; Teixeira da Silva, J. Cryopreservation of grapevine (Vitis spp.)—A review. Vitr. Cell. Dev. Biol. Plant 2017, 53, 449–460. [Google Scholar] [CrossRef]
- Benelli, C.; de Carlo, A.; Engelmann, F. Recent Advances in the cryopreservation of shoot-derived germplasm of economically important fruit trees of Actinidia, Diospyros, Malus, Olea, Prunus, Pyrus and Vitis. Biotechnol. Adv. 2013, 31, 175–185. [Google Scholar] [CrossRef]
- Engelmann, F. Germplasm collection, storage, and conservation. In Plant Biotechnology and Agriculture. Prospects for 21st Century; Altman, A., Hagegawa, A., Eds.; Academic Press: San Diego, CA, USA, 2012; pp. 255–267. [Google Scholar] [CrossRef]
- Bettoni, J.C.; Costa, M.D.; Gardin, J.P.P.; Kretzschmar, A.A.; Pathirana, R. Cryotherapy: A new technique to obtain grapevine plants free of viruses. Rev. Bras. De Frutic. 2016, 38. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Valkonen, J.P. Cryotherapy of shoot tips: Novel pathogen eradication method. Trends Plant Sci. 2009, 14, 119–122. [Google Scholar] [CrossRef]
- Barrientos-Priego, A.F.; Borys, M.W.; Escamilla-Prado, E.; Ben-Ya’acov, A.; De La Cruz-Torres, E.; Lopez-Lopez, L. A study of the avocado germplasm resources, 1988–1990. IV. Findings in the Mexican Gulf Region. In Proceedings of the Second World Avocado Congress, Orange, CA, USA, 21–26 April 1992; pp. 551–558. [Google Scholar]
- Benz, B. The conservation of cultivated plants. Nat. Educ. Knowl. 2012, 3, 4. Available online: https://www.nature.com/scitable/knowledge/library/the-conservation-of-cultivated-plants-80059198/ (accessed on 18 January 2021).
- GRIN-Global, U.S. National Plant Germplasm System. Available online: https://npgsweb.ars-grin.gov/gringlobal (accessed on 4 January 2020).
- NTBG Breadfruit Institute. To Promote the Conservation, Study, and Use of Breadfruit for Food and Reforestation. Available online: https://ntbg.org/breadfruit/ (accessed on 5 January 2021).
- Hanke, M.V.; Höfer, M.; Flachowsky, H.; Peil, A. Fruit Genetic Resources Management: Collection, Conservation, Evaluation and Utilization in Germany; International Society for Horticultural Science (ISHS): Leuven, Belgium, 2014; pp. 231–234, 2406–6168. [Google Scholar] [CrossRef]
- National-Fruit-Collection National Fruit Collection held at Brogdale Farm. Available online: http://www.nationalfruitcollection.org.uk/ (accessed on 4 January 2020).
- Withers, L.A.; Engelmann, F. In vitro conservation of plant genetic resources. In Agricultural Biotechnology; Altman, A., Ed.; Marcel Dekker: New York, NY, USA, 1998; pp. 57–88. ISBN 0-8247-9439-7. [Google Scholar]
- Ashmore, S.E. Status Report on the Development and Application of In Vitro Techniques for the Conservation and Use of Plant Genetic Resources; International Plant Genetic Resources Institute: Rome, Italy, 1997; ISBN 9290433396. [Google Scholar]
- Mandal, B.; Tyagi, R.; Pandey, R.; Sharma, N.; Agrawal, A. In Vitro Conservation Of Germplasm of Agri-Horticultural Crops at NBPGR: An Overview. In Conservation of Plant Genetic Resources in Vitro; Razdan, M.K., Cocking, E.C., Eds.; Science Publishers Inc.: Hauppauge, NY, USA, 2000; Volume 2, pp. 297–307. [Google Scholar]
- Reed, B.M.; Denoma, J.; Wada, S.; Postman, J. Micropropagation of pear (Pyrus spp.). Methods Mol. Biol. 2013, 11013, 3–18. [Google Scholar] [PubMed]
- FAO. Genebank Standards: For Plant Genetic Resources for Food and Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014; ISBN 978-92-5-108262-1. [Google Scholar]
- Reed, B.M.; Engelmann, F.; Dulloo, M.E.; Engels, J.M.M. Technical Guidelines for the Management of Field and In vitro Germplasm Collections. In IPGRI Handbooks for Genebanks No. 7; International Plant Genetic Resources Institute: Rome, Italy, 2004; Volume 472, ISBN 9290436409. [Google Scholar]
- Benson, E.; Harding, K.; Debouck, D.G.; Dumet, D.; Escobar, R.; Mafla, G.; Panis, B.; Panta, A.; Tay, D.; Houwe, I. Refinement and Standardization of Storage Procedures for Clonal Crops. Global Public Goods Phase 2: Part 1. Project Landscape and General Status of Clonal Crop in Vitro Conservation Technologies; System-Wide Genetic Resources Programme (SGRP): Rome, Italy, 2011; ISBN 929043905X. [Google Scholar]
- Benson, E.; Harding, K.; Debouck, D.G.; Dumet, D.; Escobar, R.; Mafla, G.; Panis, B.; Panta, A.; Tay, D.; Houwe, I. Refinement and Standardization of Storage Procedures for Clonal Crops. Global Public Goods Phase 2. Part 2: Status of in Vitro Conservation Technologies for: Andean Root and Tuber Crops, Cassava, Musa, Potato, Sweetpotato and Yam; System-Wide Genetic Resources Programme (SGRP): Rome, Italy, 2011; ISBN 9290439068. [Google Scholar]
- CGAIR Cassava Diversity. Available online: https://ciat.cgiar.org/what-we-do/crop-conservation-and-use/cassava-diversity/ (accessed on 5 January 2021).
- Gutierrez, B.; (The Agricultural Research Service United States Department of Agriculture, Geneva, NY, USA). Personal Communication, 2020.
- Walters, C.; (The United States Department of Agriculture, Fort Collins, CO, USA). Personal Communication, 2020.
- Reed, B. Choosing and applying cryopreservation protocols to new plant species or tissues. In Proceedings of the I International Symposium on Cryopreservation in Horticultural Species 908, Leuven, Belgium, 5–8 April 2009; pp. 363–372. [Google Scholar]
- Reed, B.M. Plant Cryopreservation: A Practical Guide. Reed, B.M., Ed.; Springer New York: New York City, NY, USA, 2008; ISBN 978-0-387-72275-7. [Google Scholar]
- Kaczmarczyk, A.; Funnekotter, B.; Menon, A.; Phang, P.Y.; Al-Hanbali, A.; Bunn, E.; Mancera, R. Current issues in plant cryopreservation. In Current Frontiers in Cryobiology; Katkov, I.I., Ed.; In Tech: Rijeka, Croatia, 2012; pp. 417–438. ISBN 978-9535101918. [Google Scholar]
- Streczynski, R.; Clark, H.; Whelehan, L.M.; Ang, S.-T.; Hardstaff, L.K.; Funnekotter, B.; Bunn, E.; Offord, C.A.; Sommerville, K.D.; Mancera, R.L. Current issues in plant cryopreservation and importance for ex situ conservation of threatened Australian native species. Aust. J. Bot. 2019, 67, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Panis, B.; Lambardi, M. Status of cryopreservation technologies in plants (crops and forest trees). In The Role of Biotechnology in Exploring and Protecting Agricultural Genetic Resources; Ruane, J., Sonnino, A., Eds.; Food & Agriculture Organization: Rome, Italy, 2006; pp. 61–78. ISBN 92-5-105480-0. [Google Scholar]
- Pérez, R.M. Cryostorage of Citrus embryogenic cultures. In Somatic Embryogenesis in Woody Plants; Jain, S.M., Gupta, P.K., Newton, R.J., Eds.; Springer: Dordrecht, The Netherlands, 2000; Volume 67, pp. 687–705. ISBN 978-90-481-5508-8. [Google Scholar] [CrossRef]
- Sakai, A.; Engelmann, F. Vitrification, encapsulation-vitrification and droplet-vitrification: A review. CryoLetters 2007, 28, 151–172. [Google Scholar] [PubMed]
- Tanino, K.K.; Chen, T.H.H.; Fughigami, L.H.; Weiser, C.J. Metabolic alterations associated with abscisic acid-induced frost hardiness in bromegrass suspension culture cells. Plant Cell Physiol. 1990, 31, 505–511. [Google Scholar] [CrossRef]
- Kim, H.-H.; No, N.-Y.; Shin, D.-J.; Ko, H.-C.; Kang, J.-H.; Cho, E.-G.; Engelmann, F. Development of alternative plant vitrification solutions to be used in droplet-vitrification procedures. Acta Hortic. 2011, 908, 181–186. [Google Scholar] [CrossRef]
- Azimi, M.; O’Brien, C.; Ashmore, S.; Drew, R. Cryopreservation of papaya germplasm. Acta Hortic. 2005, 692, 43–50. [Google Scholar] [CrossRef]
- Yamada, T.; Sakai, A.; Matsumura, T.; Higuchi, S. Cryopreservation of apical meristems of white clover (Trifolium repens L.) by vitrification. Plant Sci. 1991, 78, 81–87. [Google Scholar] [CrossRef]
- McGann, L.E. Differing actions of penetrating and nonpenetrating cryoprotective agents. Cryobiology 1978, 15, 382–390. [Google Scholar] [CrossRef]
- Nishizawa, S.; Sakai, A.; Amano, Y.; Matsuzawa, T. Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by vitrification. Plant Sci. 1993, 91, 67–73. [Google Scholar] [CrossRef]
- Sakai, A.; Kobayashi, S.; Oiyama, I. Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep. 1990, 9, 30–33. [Google Scholar] [CrossRef]
- Uragami, A.; Sakai, A.; Nagai, M. Cryopreservation of asparagus (Asparagus-officinalis L.) cultured in vitro. Jpn. Agric. Res. Q. 1993, 27, 112–115. [Google Scholar]
- Uragami, A.; Sakai, A.; Nagai, M.; Takahashi, T. Survival of cultured cells and somatic embryos of Asparagus officinalis cryopreserved by vitrification. Plant Cell Rep. 1989, 8, 418–421. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T. Studies on Cryopreservation of In Vitro Grown Apical Meristems of Wasabi (Wasabia japonica M.). Doctorial Thesis, Bulletin of Shimane Agricultural Experiment Station, Shimane, Japan, 1999. [Google Scholar]
- Suzuki, M.; Tandon, P.; Ishikawa, M.; Toyomasu, T. Development of a new vitrification solution, VSL, and its application to the cryopreservation of gentian axillary buds. Plant Biotechnol. Rep. 2008, 2, 123. [Google Scholar] [CrossRef] [Green Version]
- Langis, R.; Schnabel, B.; Earle, E.; Steponkus, P. Cryopreservation of Brassica campestris L. cell suspensions by vitrification. Cryoletters 1989. Available online: https://iifiir.org/en/fridoc/cryopreservation-of-brassica-campestris-l-cell-suspensions-by-88804 (accessed on 21 February 2021).
- Towill, L.E. Cryopreservation of isolated mint shoot tips by vitrification. Plant Cell Rep. 1990, 9, 178–180. [Google Scholar] [CrossRef]
- Fahy, G.M.; MacFarlane, D.; Angell, C.; Meryman, H. Vitrification as an approach to cryopreservation. Cryobiology 1984, 21, 407–426. [Google Scholar] [CrossRef]
- Engelmann, F. Importance of cryopreservation for the conservation of plant genetic resources. Cryopreservation of tropical plant germplasm: Current research progress and application. In Proceedings of the an International Workshop, Tsukuba, Japan, 31 October – 1 November 1998; International Plant Genetic Resources Institute (IPGRI): Maccarese, Italy, 2000; pp. 8–20. ISBN 9290434-287. [Google Scholar]
- Yamamoto, S.-i.; Rafique, T.; Priyantha, W.S.; Fukui, K.; Matsumoto, T.; Niino, T. Development of a Cryopreservation Procedure Using Aluminium Cryo-plates. Cryoletters 2011, 32, 256–265. [Google Scholar] [PubMed]
- Adu-Gyamfi, R.; Wetten, A. Cryopreservation of cocoa (Theobroma cacao L.) somatic embryos by vitrification. CryoLetters 2012, 33, 494–505. [Google Scholar]
- de Oliveira Prudente, D.; Paiva, R.; Nery, F.C.; de Oliveira Paiva, P.D.; Alves, J.D.; Máximo, W.P.F.; Silva, L.C. Compatible solutes improve regrowth, ameliorate enzymatic antioxidant systems, and reduce lipid peroxidation of cryopreserved Hancornia speciosa Gomes lateral buds. Vitr. Cell. Dev. Biol. Plant 2017, 53, 352–362. [Google Scholar] [CrossRef]
- Shibli, R.; Al-Juboory, K. Cryopreservation of ’Nabali’ olive (Olea europea l.) somatic embryos by encapsulation-dehydration and encapsulation-vitrification. CryoLetters 2000, 21, 357–366. [Google Scholar] [PubMed]
- Nadarajan, J.; Mansor, M.; Krishnapillay, B.; Staines, H.J.; Benson, E.E.; Harding, K. Applications of differential scanning calorimetry in developing cryopreservation strategies for Parkia speciosa, a tropical tree producing recalcitrant seeds. CryoLetters 2008, 29, 95–110. [Google Scholar]
- Soliman, H.I. Cryopreservation of in vitro-grown shoot tips of apricot (Prunus armeniaca L.) using encapsulation-dehydration. Afr. J. Biotechnol. 2013, 12, 1419–1430. [Google Scholar]
- Ballesteros, D.; Pence, V.C. Survival and growth of embryo axes of temperate trees after two decades of cryo-storage. Cryobiology 2019, 88, 110–113. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.; Normah, M. The survival of in vitro shoot tips of Garcinia mangostana L. after cryopreservation by vitrification. Plant Growth Regul. 2013, 70, 237–246. [Google Scholar] [CrossRef]
- Yamamoto, S.; Rafique, T.; Sekizawa, K.; Koyama, A.; Ichihashi, T.; Niino, T. Development of an effective cryopreservation protocol using aluminum cryo-plates for in vitro-grown shoot tips of mulberries (Morus spp.) originated from the tropics and subtropics. Sanshi Konchu Biotec (J. Insect Biotechnol. Sericology) 2012, 81, 57–62. [Google Scholar]
- Matsumoto, T.; Yamamoto, S.-i.; Fukui, K.; Rafique, T.; Engelmann, F.; Niino, T. Cryopreservation of persimmon shoot tips from dormant buds using the D cryo-plate technique. Hortic. J. 2015. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.H.; Kim, J.B.; Baek, H.J.; Cho, E.G.; Chae, Y.A.; Engelmann, F. Evolution of DMSO concentration in garlic shoot tips during a vitrification procedure. CryoLetters 2004, 25, 90–100. [Google Scholar]
- Kartha, K.; Leung, N.; Mroginski, L. In vitro growth responses and plant regeneration from cryopreserved meristems of cassava (Manihot esculenta Crantz). Z. Für Pflanzenphysiol. 1982, 107, 133–140. [Google Scholar] [CrossRef]
- Bettoni, J.C.; Bonnart, R.; Volk, G.M. Challenges in implementing plant shoot tip cryopreservation technologies. Plant Cell Tissue Organ Cult. 2020. [Google Scholar] [CrossRef]
- Panis, B.; Piette, B.; Swennen, R. Droplet vitrification of apical meristems: A cryopreservation protocol applicable to all Musaceae. Plant Sci. 2005, 168, 45–55. [Google Scholar] [CrossRef]
- Benson, E.; Harding, K.; Debouck, D.G.; Dumet, D.; Escobar, R.; Mafla, G.; Panis, B.; Panta, A.; Tay, D.; Houwe, I. Refinement and Standardization of Storage Procedures for Clonal Crops. Global Public Goods Phase 2. Part 3: Multi-Crop Guidelines for Developing in Vitro Conservation Best Practices for Clonal Crops; System-Wide Genetic Resources Programme (SGRP): Rome, Italy, 2011; ISBN 9290438339. [Google Scholar]
- Mathew, L.; McLachlan, A.; Jibran, R.; Burritt, D.J.; Pathirana, R. Cold, antioxidant and osmotic pre-treatments maintain the structural integrity of meristematic cells and improve plant regeneration in cryopreserved kiwifruit shoot tips. Protoplasma 2018, 255, 1065–1077. [Google Scholar] [CrossRef]
- Niino, T.; Sakai, A. Cryopreservation of alginate-coated in vitro-grown shoot tips of apple, pear and mulberry. Plant Sci. 1992, 87, 199–206. [Google Scholar] [CrossRef]
- Paul, H.; Daigny, G.; Sangwan-Norreel, B. Cryopreservation of apple (Malus× domestica Borkh.) shoot tips following encapsulation-dehydration or encapsulation-vitrification. Plant Cell Rep. 2000, 19, 768–774. [Google Scholar] [CrossRef]
- Wang, Q.; Tanne, E.; Arav, A.; Gafny, R. Cryopreservation of in vitro-grown shoot tips of grapevine by encapsulation-dehydration. Plant Celltissue Organ Cult. 2000, 63, 41–46. [Google Scholar] [CrossRef]
- Wang, Q.; Batuman, Ö.; Li, P.; Bar-Joseph, M.; Gafny, R. Cryopreservation of in vitro-grown shoot tips of’Troyer’citrange [Poncirus trifoliata (L.) Raf.× Citrus sinensis (L.) Osbeck.] by encapsulation-dehydration. Plant Cell Rep. 2002, 20, 901–906. [Google Scholar] [CrossRef]
- Wang, Q.; Batuman, Ö.; Li, P.; Bar-Joseph, M.; Gafny, R. A simple and efficient cryopreservation of in vitro-grown shoot tips ofTroyer’citrange [Poncirus trifoliata (L.) Raf.× Citrus sinensis (L.) Osbeck.] by encapsulation-vitrification. Euphytica 2002, 128, 135–142. [Google Scholar] [CrossRef]
- Niino, T.; Yamamoto, S.; Matsumoto, T.; Engelmann, F.; Valle Arizaga, M.; Tanaka, D. Development of V and D Cryo-Plate Methods as Effective Protocols for Cryobanking; International Society for Horticultural Science (ISHS): Leuven, Belgium, 2019; pp. 249–262, 2406–6168. [Google Scholar] [CrossRef]
- Kopp, L. A taxonomic revision of the genus Persea in the Western Hemisphere (Persea: Lauraceae). Revisión taxonómica del género Persea en el hemisferio occidental (Persea: Lauraceae). Garden 1966, 14, 1–120. [Google Scholar]
- Scora, R.W.; Bergh, B.O. Origin of and Taxonomic Relationships within the Genus Persea. In Proceedings of the Second World Avocado Congress, Orange, CA, USA, 21–26 April 1992; Volume 2, pp. 505–574. [Google Scholar]
- Bergh, B.; Ellstrand, N. Taxonomy of the avocado. Calif. Avocado Soc. Yearb. 1986, 70, 135–145. [Google Scholar]
- Rohwer, J.G.; Li, J.; Rudolph, B.; Schmidt, S.A.; van der Werff, H.; Li, H.-w. Is Persea (Lauraceae) monophyletic? Evidence from nuclear ribosomal ITS sequences. Taxon 2009, 58, 1153–1167. [Google Scholar] [CrossRef]
- Storey, W.; Bergh, B.; Zentmyer, G. The origin, indigenous range and dissemination of the avocado. Calif. Avocado Soc. Yearb. 1986, 70, 127–133. [Google Scholar]
- Pliego-Alfaro, F.; Palomo-Ríos, E.; Mercado, J.; Pliego, C.; Barceló-Muñoz, A.; López-Gómez, R.; Hormaza, J.; Litz, R. Persea americana avocado. Biotechnol. Fruit Nut Crop. 2020, 258–281. [Google Scholar] [CrossRef]
- Ben-Ya’acov, A.; Bufler, G.; Barrientos-Priego, A.; De La Cruz-Torres, E.; López-López, L. A Study of Avocado Germplasm Resources, 1988–1990. I. General Description of the International Project and its Findings. In Proceedings of the Second World Avocado Congress, Orange, CA, USA, 21–26 April 1992; Volume 2, pp. 535–541. [Google Scholar]
- Ge, Y.; Zhang, T.; Wu, B.; Tan, L.; Ma, F.; Zou, M.; Chen, H.; Pei, J.; Liu, Y.; Chen, Z.; et al. Genome-wide assessment of avocado germplasm determined from specific length amplified fragment sequencing and transcriptomes: Population structure, genetic diversity, identification, and application of race-specific markers. Genes 2019, 10, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Brien, C.; Hiti-Bandaralage, J.C.H.; Hayward, A.; Mitter, N. Avocado (Perse, americana Mill.). In Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants; Jain, S.M., Gupta, P.K., Eds.; Springer Cham: cham, Switzerland, 2018; Volume 85, pp. 305–328. ISBN 978-3-319-79086-2. [Google Scholar] [CrossRef]
- Furnier, G.; Cummings, M.; Clegg, M. Evolution of the avocados as revealed by DNA restriction fragment variation. J. Hered. 1990, 81, 183–188. [Google Scholar] [CrossRef]
- Popenoe, W. The avocado—a horticultural problem. Trop Agric. 1941, 18, 3–7. [Google Scholar]
- Crane, J.H.; Balerdi, C.F.; Maguire, I. Avocado growing in the Florida home landscape. Hort. Sci. Dept. Fla. Coop. Ext. Serv. Inst. Food Agric. Sci. Univ. Florida. Circ. 2007, 1034, 1–12. [Google Scholar]
- Krezdorn, A. Influence of rootstock on cold hardiness of avocados. Proc. Fla. State Hort. Soc. 1973, 86, 346–348. [Google Scholar]
- Mickelbart, M.V.; Arpaia, M.L. Rootstock influences changes in ion concentrations, growth, and photosynthesis of ’Hass’ avocado trees in response to salinity. J. Am. Soc. Hortic. Sci. 2002, 127, 649–655. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Morrell, P.L.; Ashworth, V.E.; de La Cruz, M.; Clegg, M.T. Tracing the geographic origins of major avocado cultivars. J. Hered. 2009, 100, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Barrientos-Priego, A.F.; López-López, L. Historia y genética del aguacate. Télizd. Y Moraa.(Comps.). El Aguacate Y Su Manejo Integrado. 2ª (Ed.) Ed. Mundi-Prensa. Df México 2000, 19–31. Available online: http://www.avocadosource.com/Journals/CICTAMEX/CICTAMEX_1998/cictamex_1998_33-51.pdf (accessed on 12 February 2021).
- Ayala-Silva, T.; Ledesma, N. Avocado history, biodiversity and production. In Sustainable Horticultural Systems; Nandwani, D., Ed.; Springer: Cham, Switzerland, 2014; pp. 157–205. ISBN 978-3-319-06903-6. [Google Scholar] [CrossRef]
- Köhne, S. Selection of Avocado Scions and breeding of rootstocks in South Africa. In Proceedings of the New Zealand and Australia Avocado Grower’s Conference, Tauranga, New Zealand, 20–22 September 2005. [Google Scholar]
- Rendón-Anaya, M.; Ibarra-Laclette, E.; Bravo, A.M.; Lan, T.; Zheng, C.; Carretero-Paulet, L.; Perez-Torres, C.A.; Chacón-López, A.; Hernandez-Guzmán, G.; Chang, T.-H. The avocado genome informs deep angiosperm phylogeny, highlights introgressive hybridization, and reveals pathogen influenced gene space adaptation. Proc. Natl. Acad. Sci. USA 2019, 116, 17081–17089. [Google Scholar] [CrossRef] [Green Version]
- Avocados Australia. Facts at a Glance 2019/20 for the Australian Avocado Industry. Available online: https://avocado.org.au/news-publications/statistics/ (accessed on 11 February 2021).
- Dreher, M.L.; Davenport, A.J. Hass avocado composition and potential health effects. Crit. Rev. Food Sci. Nutr. 2013, 53, 738–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiti-Bandaralage, J.C.; Hayward, A.; Mitter, N. Micropropagation of avocado (Persea americana Mill.). Am. J. Plant Sci. 2017, 8, 2898–2921. [Google Scholar] [CrossRef] [Green Version]
- Alcaraz, M.; Hormaza, J. Selection of potential pollinizers for ‘Hass’ avocado based on flowering time and male–female overlapping. Sci. Hortic. 2009, 121, 267–271. [Google Scholar] [CrossRef]
- Davenport, T. Avocado flowering. Hortic. Rev. 1986, 8, 89. [Google Scholar]
- Lavi, U.; Lahav, E.; Degani, C.; Gazit, S.; Hillel, J. Genetic variance components and heritabilities of several avocado traits. J. Am. Soc. Hortic. Sci. 1993, 118, 400–404. [Google Scholar] [CrossRef] [Green Version]
- Arpaia, M.L. Avocado Brainstorming 2018, Towards a Sustainable Future; Fairview Hotel: Tzaneen, South Africa, 2018. [Google Scholar]
- Bergh, B. Avocado research in Israel. Calif. Avocado Soc. Yearb. 1975, 58, 103–126. [Google Scholar]
- Parkinson, L.; Geering, A. Biosecurity capacity building for the Australian avocado industry. Available online: https://avocado.org.au/public-articles/ta30v2-biosec/ (accessed on 11 February 2021).
- Darvas, J.; Kotze, J. Avocado fruit diseases and their control in South Africa. S. Afr. Avocado Grow. Assoc. Yearb. 1987, 10, 117–119. [Google Scholar]
- Vega, D.E.S. Propagation in vitro of Rootstocks of Avocado. Calif. Avocado Soc. Yearb. 1989, 73, 196–199. [Google Scholar]
- Pliego-Alfaro, F.; Murashige, T. Possible rejuvenation of adult avocado by graftage onto juvenile rootstocks in vitro. HortScience 1987, 22, 1321–1324. [Google Scholar]
- Lorea Hernández, F.G. La familia Lauraceae en el sur de México: Diversidad, distribución y estado de conservación. Boletín De La Soc. Botánica De México 2002, 71. [Google Scholar] [CrossRef] [Green Version]
- Ben-Ya’acov, A. Avocado rootstock-scion relationships. S. Afr. Avocado Grow. Assoc. Yearb. 1987, 10, 30–32. [Google Scholar]
- Wolstenholme, B. Theoretical and applied aspects of avocado yield as affected by energy budgets and carbon partitioning. S. Afr. Avocado Grow. Assoc. Yearb. 1987, 10, 58–61. [Google Scholar]
- Wolstenholme, B. Avocado rootstocks: What do we know; are we doing enough research. S. Afr. Avocado Grow. Assoc. Yearb. 2003, 2003, 106–112. [Google Scholar]
- Smith, L.; Dann, E.; Pegg, K.; Whiley, A.; Giblin, F.; Doogan, V.; Kopittke, R. Field assessment of avocado rootstock selections for resistance to Phytophthora root rot. Australas. Plant Pathol. 2011, 40, 39–47. [Google Scholar] [CrossRef]
- Mickelbart, M.V.; Bender, G.S.; Witney, G.W.; Adams, C.; Arpaia, M.L. Effects of clonal rootstocks on ‘Hass’ avocado yield components, alternate bearing, and nutrition. J. Hortic. Sci. Biotechnol. 2007, 82, 460–466. [Google Scholar] [CrossRef]
- New Zealand avocado Varieties and rootstocks. Available online: https://industry.nzavocado.co.nz/grow/avocado-varieties/ (accessed on 6 February 2021).
- Folgado, R.; (The Huntington Library, Art Museum, and Botanical Gardens, San Marino CA, USA). Personal Communication, 2020.
- Arpaia, M.L.; Focht, E.; (Department of Botany and Plant Sciences, University of California, Riverside, CA, USA). Personal Communication, 2020.
- Manosalva, P.; (Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA). Personal Communication, 2020.
- Goenaga, R.; (Agricultural Research Service, United States Department of Agriculture, Miami, FL, USA). Personal Communication, 2020.
- Álvarez, S.P.; Quezada, G.Á.; Arbelo, O.C. Avocado (Persea americana Mill). Cultiv. Trop. 2015, 36, 111–123. [Google Scholar] [CrossRef]
- Barrientos-Priego, A.; (Departamento de Fitotecnia, Texcoco de Mora, Mexico). Personal Communication, 2020.
- Nkansah, G.; Ofosu-Budu, K.; Ayarna, A. Avocado germplasm conservation and improvement in Ghana. In Proceedings of the VII World Avocado Congress 2011, Cairns, Australia, 5–9 September 2011. [Google Scholar]
- Alcaraz, M.; Hormaza, J. Molecular characterization and genetic diversity in an avocado collection of cultivars and local Spanish genotypes using SSRs. Hereditas 2007, 144, 244–253. [Google Scholar] [CrossRef]
- Dann, E.; (Centre for Horticultural Science Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland, Australia). Personal Communication, 2020.
- Borokini, T.I. Conservation Science. Int. J. Conserv. Sci. 2013, 4, 197–212. [Google Scholar]
- Cantuarias-Avilés, T.; (Department of Plant Production, University of Sao Paulo, Piracicaba SP, Brazil). Personal Communication, 2020.
- Encina, C.L.; Parisi, A.; O’Brien, C.; Mitter, N. Enhancing somatic embryogenesis in avocado (Persea americana Mill.) using a two-step culture system and including glutamine in the culture medium. Sci. Hortic. 2014, 165, 44–50. [Google Scholar] [CrossRef]
- Guan, Y.; Li, S.-G.; Fan, X.-F.; Su, Z.-H. Application of somatic embryogenesis in woody plants. Front. Plant Sci. 2016, 7, 938. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, V.; Suprasanna, P.; Bapat, V. Plant regeneration through multiple shoot formation and somatic embryogenesis in a commercially important and endangered Indian banana cv. Rajeli. Curr. Sci. 2006, 842–846. Available online: http://www.jstor.org/stable/24089199 (accessed on 4 April 2021).
- Márquez-Martín, B.; Barceló-Muñoz, A.; Pliego-Alfaro, F.; Sánchez-Romero, C. Somatic embryogenesis and plant regeneration in avocado (Persea americana Mill.): Influence of embryogenic culture type. J. Plant Biochem. Biotechnol. 2012, 21, 180–188. [Google Scholar] [CrossRef]
- Jain, S.M.; Ishii, K. Micropropagation of Woody Plants and Fruits; Kluwer Academic Publishers: Amsterdam, The Netherlands, 2003; Volume 75, ISBN 1-4020-1135-0. [Google Scholar]
- O’Brien, C.; Constantin, M.; Walia, A.; Yiing, J.L.Y.; Mitter, N. Cryopreservation of somatic embryos for avocado germplasm conservation. Sci. Hortic. 2016, 211, 328–335. [Google Scholar] [CrossRef]
- Pliego-Alfaro, F.; Murashige, T. Somatic embryogenesis in avocado (Persea americana Mill.) in vitro. Plant Celltissue Organ Cult. 1988, 12, 61–66. [Google Scholar] [CrossRef]
- Litz, R.; Litz, W. Somatic embryogenesis of avocado (Persea americana) and its application for plant improvement. Int. Symp. Trop. Subtrop. Fruits 2000, 575. [Google Scholar] [CrossRef]
- Mujib, A.; Šamaj, J. Somatic Embryogenesis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; Volume 2, p. 3540287175. [Google Scholar]
- Mooney, P.; Staden, J.V. Induction of embryogenesis in callus from immature embryos of Persea americana. Can. J. Bot. 1987, 65, 622–626. [Google Scholar] [CrossRef]
- Ammirato, P.V. Organizational events during somatic embryogenesis. Plant Biol. 1986. Available online: https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=1114828 (accessed on 7 January 2021).
- Raharjo, S.; Litz, R.E. Rescue of Genetically Transformed Avocado by Micrografting. In Proceedings of the V World Avocado Congress (Actas V Congreso Mundial del Aguacate), Granada-Málaga, Spain, 19–24 October 2003; pp. 119–122. [Google Scholar]
- Witjaksono, Y.; Litz, R. Maturation and germination of avocado (Persea americana Mill.) somatic embryos. Plant Cell Tissue Organ Cult 1999, 58, 141–148. [Google Scholar] [CrossRef]
- Efendi, D.; Litz, R.E. Cryopreservation of Avocado. In Proceedings of the V Congreso Mundial del Aguacate, Actas; Consejería de Agricultura y Pesca, Junta de Andalucía, Sevilla, Spain; 2003; Volume 1, pp. 111–114. [Google Scholar]
- Guzmán-García, E.; Bradaï, F.; Sánchez-Romero, C. Cryopreservation of avocado embryogenic cultures using the droplet-vitrification method. Acta Physiol. Plant. 2013, 1–11. [Google Scholar] [CrossRef]
- Vargas, V.M. Efecto Fisiológico de Brasinoesteroides y Crioprotectores Sobre Yemas Axilares de Aguacate Criollo Producidas in Vitro. 2008. Available online: http://www.avocadosource.com/WAC7/WAC7_TOC.htm (accessed on 24 February 2021).
- Vidales-Fernandez, I.; Larios-Guzman, A.; Tapia-Vargas, L.M.; Guillen-Andrade, H.; Villasenor-Ramirez, F. Criopreservación de germoplasma de aguacate. In Proceedings of the VII World Avocado Congress, Cairns, Australia, 5–9 September 2011. [Google Scholar]
- Panis, B.; Piette, B.; André, E.; Van den houwe, I.; Swennen, R. Droplet Vitrification: The First Generic Cryopreservation Protocol for Organized Plant Tissues? International Society for Horticultural Science (ISHS): Leuven, Belgium, 2011; pp. 157–162, 2406–6168. [Google Scholar] [CrossRef]
- Engelmann, F. Plant cryopreservation: Progress and prospects. Vitr. Cell. Dev. Biol. Plant 2004, 40, 427–433. [Google Scholar] [CrossRef]
- Burke, M.J. The glassy state and survival of anhydrous biological systems. In Membranes, Metabolism and Dry Organisms; Cornell University Press: Ithaca, NY, USA, 1986; pp. 358–363. ISBN 978-0801419799. [Google Scholar]
- Krishna, H.; Sairam, R.; Singh, S.; Patel, V.; Sharma, R.; Grover, M.; Nain, L.; Sachdev, A. Mango explant browning: Effect of ontogenic age, mycorrhization and pre-treatments. Sci. Hortic. 2008, 118, 132–138. [Google Scholar] [CrossRef]
- Uchendu, E.E.; Paliyath, G.; Brown, D.C.; Saxena, P.K. In vitro propagation of North American ginseng (Panax quinquefolius L.). Vitr. Cell. Dev. Biol. Plant 2011, 47, 710–718. [Google Scholar] [CrossRef]
- Preece, J.; Compton, M. Problems with Explant Exudation in Micropropagation. In High-Tech and Micropropagation I. Biotechnology in Agriculture and Forestry; Bajaj, Y.P.S., Ed.; Springer: Berlin, Germany, 1991; Volume 17, pp. 168–189. ISBN 978-3-642-76417-2. [Google Scholar] [CrossRef]
- Akram, N.A.; Shafiq, F.; Ashraf, M. Ascorbic Acid-A Potential Oxidant Scavenger and Its Role in Plant Development and Abiotic Stress Tolerance. Front. Plant Sci. 2017, 8, 613. [Google Scholar] [CrossRef]
- Shao, H.-B.; Chu, L.-Y.; Lu, Z.-H.; Kang, C.-M. Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int. J. Biol. Sci. 2007, 4, 8. [Google Scholar] [CrossRef] [PubMed]
- Smirnoff, N.; Wheeler, G.L. Ascorbic acid in plants: Biosynthesis and function. Crit. Rev. Plant Sci. 2000, 19, 267–290. [Google Scholar] [CrossRef]
- González-Benito, M.E.; Kremer, C.; Ibáñez, M.A.; Martín, C. Effect of antioxidants on the genetic stability of cryopreserved mint shoot tips by encapsulation–dehydration. Plant Celltissue Organ Cult. 2016, 127, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Johnston, J.W.; Harding, K.; Benson, E.E. Antioxidant status and genotypic tolerance of Ribes in vitro cultures to cryopreservation. Plant Sci. 2007, 172, 524–534. [Google Scholar] [CrossRef]
- Reed, B.M. 4. Are antioxidants a magic bullet for reducing oxidative stress during cryopreservation? Cryobiology 2012, 65, 340. [Google Scholar] [CrossRef]
- Uchendu, E.E.; Leonard, S.W.; Traber, M.G.; Reed, B.M. Vitamins C and E improve regrowth and reduce lipid peroxidation of blackberry shoot tips following cryopreservation. Plant Cell Rep. 2010, 29, 25. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Laamanen, J.; Uosukainen, M.; Valkonen, J. Cryopreservation of in vitro-grown shoot tips of raspberry (Rubus idaeus L.) by encapsulation–vitrification and encapsulation–dehydration. Plant Cell Rep. 2005, 24, 280–288. [Google Scholar] [CrossRef]
- O’Brien, C.; Hiti-Bandaralage, J.C.A.; Folgado, R.; Lahmeyer, S.; Hayward, A.; Mitter, N. Developing a Cryopreservation Protocol for Avocado (Persea americana Mill.) Apical Shoot Tips Using Different Antioxidants; International Society for Horticultural Science (ISHS): Leuven, Belgium, 2020; pp. 15–22, 2406–6168. [Google Scholar] [CrossRef]
- Sharma, S.D. Cryopreservation of Somatic Embryos—An Overview. 2005. Available online: http://nopr.niscair.res.in/bitstream/123456789/5629/1/IJBT%204%281%29%2047-55.pdf (accessed on 12 January 2021).
- Chang, Y.; Reed, B.M. Pre-culture conditions influence cold hardiness and regrowth of Pyrus cordata shoot tips after cryopreservation. HortScience 2001, 36, 1329–1333. [Google Scholar] [CrossRef]
- Feng, C.-H.; Cui, Z.-H.; Li, B.-Q.; Chen, L.; Ma, Y.-L.; Zhao, Y.-H.; Wang, Q.-C. Duration of sucrose pre-culture is critical for shoot regrowth of in vitro-grown apple shoot-tips cryopreserved by encapsulation-dehydration. Plant Celltissue Organ Cult. 2013, 112, 369–378. [Google Scholar] [CrossRef]
- Kaczmarczyk, A.; Shvachko, N.; Lupysheva, Y.; Hajirezaei, M.-R.; Keller, E.R.J. Influence of alternating temperature pre-culture on cryopreservation results for potato shoot tips. Plant Cell Rep. 2008, 27, 1551–1558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.U.; Kim, H.H. Cryopreservation of sweet potato shoot tips using a droplet-vitrification procedure. CryoLetters 2015, 36, 344–352. [Google Scholar] [PubMed]
- Ashmore, S.E.; Azimi, M.; Drew, R.A. Cryopreservation trials in Carica papaya. Acta Hortic. 2001, 560, 117–120. [Google Scholar] [CrossRef]
- López-López, L.; Barrientos-Priego, A.; Ben-Ya’acov, A. Variabilidad genética de los bancos de germoplasma de aguacate preservados en el Estado de México. Rev. Chapingo Ser. Hortic. 1999, 5, 19–23. [Google Scholar]
- Mikuła, A. Comparison of three techniques for cryopreservation and reestablishment of long-term Gentiana tibetica suspension culture. CryoLetters 2006, 27, 269–282. [Google Scholar]
- Mikuła, A.; Tykarska, T.; Kuraś, M. Ultrastructure of Gentiana tibetica proembryogenic cells before and after cooling treatments. CryoLetters 2005, 26, 367–378. [Google Scholar]
- Pritchard, H.; Grout, B.; Short, K. Osmotic stress as a pregrowth procedure for cryopreservation: 1. Growth and ultrastructure of sycamore and soybean cell suspensions. Ann. Bot. 1986, 57, 41–48. [Google Scholar] [CrossRef]
- Panis, B.; Strosse, H.; van den Hende, S.; Swennen, R. Sucrose pre-culture to simplify cryopreservation of banana meristem cultures. CryoLetters 2002, 23, 375–384. [Google Scholar]
- Lynch, P.T.; Siddika, A.; Johnston, J.W.; Trigwell, S.M.; Mehra, A.; Benelli, C.; Lambardi, M.; Benson, E.E. Effects of osmotic pre-treatments on oxidative stress, antioxidant profiles and cryopreservation of olive somatic embryos. Plant Sci. 2011, 181, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Malabadi, R.B.; Nataraja, K. Cryopreservation and plant regeneration via somatic embryogenesis using shoot apical domes of mature Pinus roxburghii sarg, trees. Vitr. Cell. Dev. Biol. Plant 2006, 42, 152. [Google Scholar] [CrossRef]
- Crowe, L.M. Lessons from nature: The role of sugars in anhydrobiosis. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2002, 131, 505–513. [Google Scholar] [CrossRef]
- Antony, J.J.J.; Keng, C.L.; Mahmood, M.; Subramaniam, S. Effects of ascorbic acid on PVS2 cryopreservation of Dendrobium Bobby Messina’s PLBs supported with SEM analysis. Appl. Biochem. Biotechnol. 2013, 171, 315–329. [Google Scholar] [CrossRef]
- Hirsh, A.G. Vitrification in plants as a natural form of cryoprotection. Cryobiology 1987, 24, 214–228. [Google Scholar] [CrossRef]
- Herbert, R.; Vilhar, B.; Evett, C.; Orchard, C.; Rogers, H.; Davies, M.; Francis, D. Ethylene induces cell death at particular phases of the cell cycle in the tobacco TBY-2 cell line. J. Exp. Bot. 2001, 52, 1615–1623. [Google Scholar] [CrossRef]
- Williams, W.P.; Quinn, P.J.; Tsonev, L.I.; Koynova, R.D. The effects of glycerol on the phase behaviour of hydrated distearoylphosphatidylethanolamine and its possible relation to the mode of action of cryoprotectants. Biochim. Biophys. Acta Bba Biomembr. 1991, 1062, 123–132. [Google Scholar] [CrossRef]
- Burritt, D.J. Proline and the cryopreservation of plant tissues: Functions and practical applications. In Current Frontiers in Cryopreservation; Katkov, I.I., Ed.; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Cleland, D.; Krader, P.; McCree, C.; Tang, J.; Emerson, D. Glycine betaine as a cryoprotectant for prokaryotes. J. Microbiol. Methods 2004, 58, 31–38. [Google Scholar] [CrossRef]
- Janská, A.; Maršík, P.; Zelenková, S.; Ovesná, J. Cold stress and acclimation—What is important for metabolic adjustment? Plant Biol. 2010, 12, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Arora, R. Freezing Tolerance and Cold Acclimation in Plants; Deparment of Horticulture, Iowa State University: Ames, IA, USA, 2010. [Google Scholar] [CrossRef]
- Gusta, L.; Trischuk, R.; Weiser, C.J. Plant cold acclimation: The role of abscisic acid. J. Plant Growth Regul. 2005, 24, 308–318. [Google Scholar] [CrossRef]
- Reed, B. Pre-treatment strategies for cryopreservation of plant tissues. In In Vitro Conservation of Plant Genetic Resources; Normah, M.N., Narimah, M.K., Clyde, M.M., Eds.; Universiti Kebangsaan: Bangi Selangor, Malaysia, 1996; pp. 73–87. [Google Scholar]
- Janmohammadi, M.; Zolla, L.; Rinalducci, S. Low temperature tolerance in plants: Changes at the protein level. Phytochemistry 2015, 117, 76–89. [Google Scholar] [CrossRef] [PubMed]
- Thomashow, M.F. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Biol. 1999, 50, 571–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumet, D.; Chang, Y.; Reed, B.M.; Benson¹, E.E. Replacement of cold acclimatization with high sucrose pretreatment in black currant cryopreservation. Satoshi Katomasaya Ishikawamiwako Ito Tatsuo Matsumoto 338 2000, 17, 393. [Google Scholar]
- Coelho, N.; González-Benito, M.E.; Martín, C.; Romano, A. Cryopreservation of Thymus lotocephalus shoot tips and assessment of genetic stability. CryoLetters 2014, 35, 119–128. [Google Scholar]
- Fki, L.; Bouaziz, N.; Chkir, O.; Benjemaa-Masmoudi, R.; Rival, A.; Swennen, R.; Drira, N.; Panis, B. Cold hardening and sucrose treatment improve cryopreservation of date palm meristems. Biol. Plant. 2013, 57, 375–379. [Google Scholar] [CrossRef]
- Kushnarenko, S.V.; Romadanova, N.V.; Reed, B.M. Cold acclimation improves regrowth of cryopreserved apple shoot tips. CryoLetters 2009, 30, 47–54. [Google Scholar]
- Reed, B.M. Responses to ABA and cold acclimation are genotype dependent for cryopreserved blackberry and raspberry meristems. Cryobiology 1993, 30, 179–184. [Google Scholar] [CrossRef]
- O’Brien, C.; Hiti-Bandaralage, J.; Folgado, R.; Lahmeyer, S.; Hayward, A.; Folsom, J.; Mitter, N. A method to increase regrowth of vitrified shoot tips of avocado (Persea americana Mill.): First critical step in developing a cryopreservation protocol. Sci. Hortic. 2020, 266, 109305. [Google Scholar] [CrossRef]
- O’Brien, C.; Hiti-Bandaralage, J.C.; Folgado, R.; Lahmeyer, S.; Hayward, A.; Mitter, N. Developing a cryopreservation protocol for avocado (Persea americana Mill.) shoot tips. Cryobiology 2018, 85, 171. [Google Scholar] [CrossRef]
- O’Brien, C.; Hiti-Bandaralage, J.C.A.; Folgado, R.; Lahmeyer, S.; Hayward, A.; Folsom, J.; Mitter, N. First report on cryopreservation of mature shoot tips of two avocado (Persea americana Mill.) rootstocks. Plant Celltissue Organ Cult. 2020. [Google Scholar] [CrossRef]
- Sánchez-Romero, C.; Márquez-Martín, B.; Pliego-Alfaro, F. Somatic and zygotic embryogenesis in avocado. In Somatic Embryogenesis; Springer: Berlin/Heidelberg, Germany, 2006; pp. 271–284. [Google Scholar]
- Hiti-Bandaralage, J.; Hayward, A.; O’Brien, C.; Gleeson, M.; Nak, W.; Mitter, N. Advances in Avocado Propagation for the Sustainable Supply of Planting Materials. In Achieving Sustainable Cultivation of Tropical Fruits; Burleigh dodds Science Publishing: Cambridge, UK, 2019; pp. 215–238. ISBN 9781786762849. [Google Scholar]
Country | Field Repositories | Genus/Species | Reference |
---|---|---|---|
USA | USDA—Geneva NY, Davis CA, Riverside CA | Malus domestia Borkh. (apple) Vitis vinifera L. (grape) Actinidia deliciosa (kiwifruit) Diospyros spp. (persimmon) Ficus carica L. (fig) Juglans spp. (walnut) Olea europaea L. (olive) Pistacia vera L. (pistachio) Punica granatum L. (pomegranate) Citrus spp. (citrus) Prunus spp. (plum) | [31] |
USA | Tropical Botanical Garden | Artocarpus altilis (breadfruit) | [32] |
Germany | German Fruit Gene bank | Malus spp. (apple) Prunus avium (cherry) Prunus domestica (plum) Rubus spp. (raspberry) | [12,33] |
United Kingdom | National Fruit Collection | Malus domestica Borkh. (apple) Prunus domestica (plum) Pyrus communis L. (pear) Prunus avium (cherry) | [34] |
Country | Gene Bank | Genus/Species | Accessions Held | Reference |
---|---|---|---|---|
France | Institute of Research Development | Coffea spp. (coffee) | ~500 | [12] |
Columbia | International Centre for Tropical Agriculture | Manihot esculenta (cassava) | 5690 | [43] |
Japan | National Institute of Agrobiological Sciences | Morus spp. (mulberry) Juncus effusus (rush) | ~1000 50 | [12] |
Japan | Shimane Agriculture Research Centre | Wasabi japonica M. (Japanese horseradish) | 40 | [12] |
USA | National Clonal Germplasm Repository | Malus spp. (apple) Pyrus spp. (pear) Rubus spp. (raspberry) Vitis spp. (grape) | 6073 131 57 1405 | [44,45] |
Belgium | Bioversity International Transit Centre | Musa spp. (banana) | 1600 | [7] |
Dehydration Method | Uses |
---|---|
Desiccation | (1) Air drying of explants in laminar flow hood or using flow of compressed air. (2) Dehydration of explants in a desiccator with silica gel. |
Cryoprotectants | (1) Penetrating cryoprotectants, e.g., dimethyl sulfoxide (DMSO) and glycerol act by replacing intracellular water. (2) Non-penetrating cryoprotectants, e.g., sucrose, polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG), display different osmotic potential inside and outside the cells. |
Freeze-induced dehydration | Preferential freezing of extracellular water by slow cooling at a rate of 0.5–2 °C per min creates a hypotonic surrounding for the cell, resulting in outflow of cellular water. |
Pre-conditioning of donor plant or explant | Including DMSO abscisic acid, sucrose, polyols or proline in the pre-culture medium or low temperature treatment to induce tolerance to dehydration and freezing. |
Cryoprotectant | Composition |
---|---|
PVS1 | 30% w/v glycerol, 15% w/v EG, 5% w/v sucrose, 15% w/v DMSO [61] |
PVS2 | 30% w/v glycerol, 15% w/v DMSO, 15% w/v EG and 15% sucrose [59] |
PVS3 | 50% w/v glycerol and 50% w/v sucrose [58] |
PVS4 | 35% w/v glycerol, 20% w/v EG and 20.5% M sucrose [62] |
VSL+ | 20% w/v glycerol, 10% w/v DMSO, 30% w/v EG, 15% sucrose and 10 mM CaCl2 [63] |
VSL | 20% w/v glycerol, 10% w/v DMSO, 30% w/v EG, 5% sucrose and 10 mM CaCl2 [63] |
Steponkus | 50% w/v EG, 15% sorbitol, 6.0% bovine serum albumin, 13.7% sucrose [64] |
Towill | 35% EG, 6.8% w/v DMSO, 10% PEG 8000 and 13.7% sucrose [65] |
Fahy | 20% DMSO, 20% formamide, 15% propylene glycol [66] |
Method | Technique | Application | Survival/Recovery | Reference |
---|---|---|---|---|
Vitrification | Pre-culture of cultures on basal medium supplemented with cryoprotectants, pre-treatment with loading solution, dehydration with PVS, rapid freezing rewarming. | Cocoa secondary somatic embryos | 74.5% survival with 5- day pre-culture on 0.5 M sucrose followed by 60 min dehydration in PVS2 treatment for 1 h at 0 °C. | [69] |
Droplet-vitrification | Resembles vitrification in all steps with only difference that materials are cryopreserved on foil strips in drops of vitirification solution. | Hancornia speciosa Gomes (rubber tree) shoot tips | 43% regrowth with pre-culture on basal + proline (0.193 M) for 24 h in the dark at 25 °C and PVS2 15 min at 0 °C. | [70] |
Encapsulation-vitrification | Sodium alginate beads are formed and explants are encapsulated in them and dehydrated in PVS before freezing. | Olea europaea (olive) somatic embryos Parkia speciosa Hassk. (stink bean) shoot tips | 64% regrowth after 4 day pre-culture in sucrose; PVS2 treatment for 3 h treatment and rapid freezing. Pre-culture on MS + trehalose (5% w/v) for 3 days; PVS2 for 1 h at 0 °C. | [71] [72] |
Encapsulation-dehydration | Sodium alginate-encapsulated cultures are dehydrated osmotically with high concentrations of sucrose for 1–7 days and/or desiccated in an air current before slow cooling to –80 °C and then immersed in LN. | Olea europaea (olive) somatic embryos Prunus armeniaca (apricot) shoots | 40% regrowth following 4 days of sucrose pre-growth, desiccation and freezing. Recovered after treated with 0.5 M sucrose for 2 days followed by air dehydration for 2 h and frozen in LN. | [71] [73] |
Dehydration | Samples are dehydrated by either air current, silica gels, or incubation with cryoprotectant, followed by rapid freezing or two-step freezing. | Juglans nigra (walnut) embryo axes | Dried in a laminar flow hood until 5–15% moisture content and 100% recovery after LN. | [74] |
Pre-growth and pre-growth-dehydration | Samples are cultured on media containing cryoprotectants such as DMSO, dehydrated and then frozen slowly or rapidly. | Garcinia mangostana L. (mangosteen) shoot tips | 50% MS + sucrose (0.6 M) + 5% DMSO for 2 days | [75] |
V-cryoplate | Modification of encapsulation-vitrification and droplet-vitrification. Dehydration is performed using vitrification solution PVS2. | Morus alba (mulberry) shoot tips | 87% regrowth, 13 lines pre-cultured at 25 °C for 1 day on MS medium containing 0.3 M sucrose. PVS2 solution for 30 min at 25 °C. | [76] |
D-cryoplate | Modification of encapsulation-vitrification and droplet-vitrification. Dehydration is achieved using the air current of the laminar flow cabinet or silica gel. | Diospyros kaki (persimmon) shoot tips | Average 87% regrowth, 10 lines 1–3 months cold acclimatization, 3 °C pre-cultured on 0.3 M sucrose, 2 days at 25 °C, laminar flow 30 min at 25 °C. | [77] |
Country | Germplasm Repositories | No. of Accessions | References |
---|---|---|---|
USA | The Huntington San Marino CA | 56 Persea americana accessions 4 wild Persea spp (6 accessions) | [128] |
USA | Riverside University CA | ~230 avocado scion accessions | [129] |
~15 wild Persea spp. | |||
~246 avocado rootstock accessions | [129,130] | ||
USA | National Genetic Resources Program, Miami, Florida | P. americana (167 accessions) and P. schiedeana (1 accession) | [44,131] |
USA | The Sub-Tropical Horticulture Research Station, Miami, Florida | ~400 avocado accessions | [132] |
Mexico | National Research Institute of Forestry and Livestock in Guanajuato | 500 accessions belonging to P. americana: Mexican and Guatemalan races. Related species: P. schiedeana, P. cinerascens, P. floccosa, P nubigena | [133] |
Mexico | State of Mexico of the Fundación Salvador Sanchez Colin-CICTAMEX, S.C. | 800 accessions of avocado and related species. Mexican, Guatemalan, West Indian races, P. americana var. costaricensis race materials. | [133] |
Mexico | Coatepec Harinas and Temascaltepec; State of Mexico | Wild relatives: Beilschmiedia anay, B. miersii, P. schiedeana, P. longipes, P. cinerascens, P. hintonni, P. floccosa, P. tolimanensis, P. steyermarkii, P. nubigena, P. lingue, P. donnell-smithii, P. parvifolia, P. chamissonis, Persea spp. | [133] |
Ghana | University of Ghana Forest and Horticultural Crops Research Centre | 110 local land races and 5 varieties from South Africa (‘Hass’, ‘Fuerte’, ‘Ryan’, ‘Ettinger’ and ‘Nabal’ | [134] |
Israel | Volcanic Centre in Bet Dagan | 194 trees, propagated from 148 accessions | [96] |
Spain | The Experimental Station ‘La Mayora’ in Malaga | 75 avocado accessions | [132,135] |
Cuba | N/A | 210 genotypes | [132] |
Chile | N/A | 4 botanical breeds of P. americana: var. drymifolia, var. guatemalensis, var. jacket and var. costaricencis | [132] |
Australia | Maroochydore Research Station | 46 avocado accessions | [136] |
Nigeria | 8 avocado accessions | [137] | |
Brazil | Brasilia, in the Federal District, depending on the Embrapa Research Institute | 30 avocado accessions | [138] |
Brazil | Conceicao do Almeida and Juazeiro collections, both in the Bahia State | 22 avocado accessions | [138] |
Brazil | Piracicaba, in the Sao Paulo State | 33 avocado accessions | [138] |
Brazil | Jaboticabal, in the Sao Paulo State | 7 avocado accessions | [138] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Brien, C.; Hiti-Bandaralage, J.; Folgado, R.; Hayward, A.; Lahmeyer, S.; Folsom, J.; Mitter, N. Cryopreservation of Woody Crops: The Avocado Case. Plants 2021, 10, 934. https://doi.org/10.3390/plants10050934
O’Brien C, Hiti-Bandaralage J, Folgado R, Hayward A, Lahmeyer S, Folsom J, Mitter N. Cryopreservation of Woody Crops: The Avocado Case. Plants. 2021; 10(5):934. https://doi.org/10.3390/plants10050934
Chicago/Turabian StyleO’Brien, Chris, Jayeni Hiti-Bandaralage, Raquel Folgado, Alice Hayward, Sean Lahmeyer, Jim Folsom, and Neena Mitter. 2021. "Cryopreservation of Woody Crops: The Avocado Case" Plants 10, no. 5: 934. https://doi.org/10.3390/plants10050934