Invasive Water Hyacinth: Ecology, Impacts and Prospects for the Rural Economy
Abstract
:1. Introduction
2. Water Hyacinth Invasion
2.1. Ecology of Water Hyacinth
2.2. Impacts on Rural Communities
3. Prospects for Water Hyacinth
3.1. Water Hyacinth for Feeds
3.2. Water Hyacinth for Biofertilisers
3.3. Water Hyacinth in Crafts
3.4. Water Hyacinth Conversion to Bioenergy
3.4.1. Biogas Production through the Anaerobic Digestion of Water Hyacinth
3.4.2. Briquette Production from Water Hyacinth Biomass
3.5. Supplying Water Hyacinth to Other Industries
Phytoremediation and Metal Reclamation
4. Microeconomics of Water Hyacinth for the Rural Community
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dersseh, M.G.; Melesse, A.M.; Tilahun, S.A.; Abate, M.; Dagnew, D.C. Water hyacinth: Review of its impacts on hydrology and ecosystem services—Lessons for management of Lake Tana. In Extreme Hydrology and Climate Variability; Melesse, A.M., Abtew, W., Senay, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 237–251. [Google Scholar] [CrossRef]
- Villamagna, A.M.; Murphy, B.R. Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): A review. Freshw. Biol. 2010, 55, 282–298. [Google Scholar] [CrossRef]
- Eid, E.M.; Shaltout, K.H. Growth dynamics of water hyacinth (Eichhornia crassipes): A modeling approach. Rend. Lincei 2017, 28, 169–181. [Google Scholar] [CrossRef]
- Lolis, L.A.; Alves, D.C.; Fan, S.; Lv, T.; Yang, L.; Li, Y.; Liu, C.; Yu, D.; Thomaz, S.M. Negative correlations between native macrophyte diversity and water hyacinth abundance are stronger in its introduced than in its native range. Divers. Distrib. 2020, 26, 242–253. [Google Scholar] [CrossRef]
- Wu, H.; Ding, J. Abiotic and biotic determinants of plant diversity in aquatic communities invaded by water hyacinth [Eichhornia crassipes (Mart.) Solms]. Front. Plant Sci. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Gezie, A.; Assefa, W.W.; Getnet, B.; Anteneh, W.; Dejen, E.; Mereta, S.T. Potential impacts of water hyacinth invasion and management on water quality and human health in Lake Tana watershed, Northwest Ethiopia. Biol. Invasions 2018, 20, 2517–2534. [Google Scholar] [CrossRef]
- Enyew, B.G.; Assefa, W.W.; Gezie, A. Socioeconomic effects of water hyacinth (Eichhornia crassipes) in Lake Tana, North Western Ethiopia. PLoS ONE 2020, 15, e0237668. [Google Scholar] [CrossRef] [PubMed]
- Honlah, E.; Segbefia, A.Y.; Appiah, D.O.; Mensah, M. The Effects of Water Hyacinth Invasion on Smallholder Farming along River Tano and Tano Lagoon, Ghana. Cogent Food Agric. 2019, 5, 1567042. [Google Scholar] [CrossRef]
- Honlah, E.; Yao Segbefia, A.; Odame Appiah, D.; Mensah, M.; Atakora, P.O. Effects of water hyacinth invasion on the health of the communities, and the education of children along River Tano and Abby-Tano Lagoon in Ghana. Cogent Soc. Sci. 2019, 5, 1619652. [Google Scholar] [CrossRef]
- Cerveira Junior, W.R.; Carvalho, L.B.d. Control of water hyacinth: A short review. Commun. Plant Sci. 2019, 9, 129–132. [Google Scholar] [CrossRef]
- Su, W.; Sun, Q.; Xia, M.; Wen, Z.; Yao, Z. The resource utilization of water hyacinth (Eichhornia crassipes [Mart.] Solms) and its challenges. Resources 2018, 7, 46. [Google Scholar] [CrossRef] [Green Version]
- Gaurav, G.K.; Mehmood, T.; Cheng, L.; Klemeš, J.J.; Shrivastava, D.K. Water hyacinth as a biomass: A review. J. Clean. Prod. 2020, 277, 122214. [Google Scholar] [CrossRef]
- Ilo, O.P.; Simatele, M.D.; Nkomo, S.P.L.; Mkhize, N.M.; Prabhu, N.G. The Benefits of Water Hyacinth (Eichhornia crassipes) for Southern Africa: A Review. Sustainability 2020, 12, 9222. [Google Scholar] [CrossRef]
- Jafari, N. Ecological and socio-economic utilization of water hyacinth (Eichhornia crassipes Mart Solms). J. Appl. Sci. Environ. Manag. 2010, 14, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; He, X.; Srishti, A.; Song, S.; Tan, H.T.W.; Sweeney, D.J.; Ghosh, S.; Wang, C.-H. Water hyacinth for energy and environmental applications: A review. Bioresour. Technol. 2021, 327, 124809. [Google Scholar] [CrossRef]
- Sindhu, R.; Binod, P.; Pandey, A.; Madhavan, A.; Alphonsa, J.A.; Vivek, N.; Gnansounou, E.; Castro, E.; Faraco, V. Water hyacinth a potential source for value addition: An overview. Bioresour. Technol. 2017, 230, 152–162. [Google Scholar] [CrossRef]
- Ali, S.; Abbas, Z.; Rizwan, M.; Zaheer, I.E.; Yavaş, İ.; Ünay, A.; Abdel-Daim, M.M.; Bin-Jumah, M.; Hasanuzzaman, M.; Kalderis, D. Application of Floating Aquatic Plants in Phytoremediation of Heavy Metals Polluted Water: A Review. Sustainability 2020, 12, 1927. [Google Scholar] [CrossRef] [Green Version]
- Buller, L.S.; Bergier, I.; Ortega, E.; Salis, S.M. Dynamic emergy valuation of water hyacinth biomass in wetlands: An ecological approach. J. Clean. Prod. 2013, 54, 177–187. [Google Scholar] [CrossRef]
- De Groote, H.; Ajuonu, O.; Attignon, S.; Djessou, R.; Neuenschwander, P. Economic impact of biological control of water hyacinth in Southern Benin. Ecol. Econ. 2003, 45, 105–117. [Google Scholar] [CrossRef]
- Segbefia, A.Y.; Honlah, E.; Appiah, D.O. Effects of water hyacinth invasion on sustainability of fishing livelihoods along the River Tano and Abby-Tano Lagoon, Ghana. Cogent Food Agric. 2019, 5, 1654649. [Google Scholar] [CrossRef]
- Jones, R.W. Integrated control of water hyacinth on the Nseleni/Mposa Rivers and Lake Nsezi, Kwa Zulu-Natal, South Africa. In Biological and Integrated Control of Water Hyacinth: Eichhornia crassipes, Proceedings of the Second Meeting of the Global Working Group for the Biological and Integrated Control of Water Hyacinth, Beijing, China, 9–12 October 2000; Australian Centre for International Agricultural Research (ACIAR): Canberra, Australia, 2000; pp. 123–129. [Google Scholar]
- Yitbarek, M.; Belay, M.; Bazezew, A. Determinants of manual control of water hyacinth expansion over the Lake Tana, Ethiopia. Int. J. Sci. Technol. 2019, 8, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Fanghella, V.; d’Adda, G.; Tavoni, M. On the use of nudges to affect spillovers in environmental behaviors. Front. Psychol. 2019, 10, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Schubert, C. Green nudges: Do they work? Are they ethical? Ecol. Econ. 2017, 132, 329–342. [Google Scholar] [CrossRef] [Green Version]
- Hilton, D.; Treich, N.; Lazzara, G.; Tendil, P. Designing effective nudges that satisfy ethical constraints: The case of environmentally responsible behaviour. Mind Soc. 2018, 17, 27–38. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Zhang, D.Y.; Barrett, S.C.H. Genetic uniformity characterizes the invasive spread of water hyacinth (Eichhornia crassipes), a clonal aquatic plant. Mol. Ecol. 2010, 19, 1774–1786. [Google Scholar] [CrossRef]
- Wilson, J.R.; Holst, N.; Rees, M. Determinants and patterns of population growth in water hyacinth. Aquat. Bot. 2005, 81, 51–67. [Google Scholar] [CrossRef]
- Lu, J.; Wu, J.; Fu, Z.; Zhu, L. Water hyacinth in China: A sustainability science-based management framework. Environ. Manag. 2007, 40, 823. [Google Scholar] [CrossRef]
- Zarkami, R.; Esfandi, J.; Sadeghi, R. Modelling Occurrence of Invasive Water Hyacinth (Eichhornia crassipes) in Wetlands. Wetlands 2021, 41, 8. [Google Scholar] [CrossRef]
- Bick, E.; de Lange, E.S.; Kron, C.R.; da Silva Soler, L.; Liu, J.; Nguyen, H.D. Effects of salinity and nutrients on water hyacinth and its biological control agent, Neochetina bruchi. Hydrobiologia 2020, 847, 3213–3224. [Google Scholar] [CrossRef]
- Mironga, J.M.; Mathooko, J.M.; Onywere, S.M. Effect of water hyacinth infestation on the physicochemical characteristics of Lake Naivasha. Int. J. Humanit. Soc. Sci. 2012, 2, 103–113. [Google Scholar]
- Dagno, K.; Lahlali, R.; Diourté, M.; Jijakli, H. Present status of the development of mycoherbicides against water hyacinth: Successes and challenges. A review. Biotechnol. Agron. Société Environ. 2012, 16, 360–368. [Google Scholar]
- Jones, R.W.; Hill, J.M.; Coetzee, J.A.; Hill, M.P. The contributions of biological control to reduced plant size and biomass of water hyacinth populations. Hydrobiologia 2018, 807, 377–388. [Google Scholar] [CrossRef]
- Honlah, E.; Appiah, D.O.; Segbefia, A.Y. Coping strategies to water hyacinth invasion among riparian communities in Ghana. Am. J. Environ. Sustain. Dev. 2019, 4, 12–25. [Google Scholar]
- Tobias, V.D.; Conrad, J.L.; Mahardja, B.; Khanna, S. Impacts of water hyacinth treatment on water quality in a tidal estuarine environment. Biol. Invasions 2019, 21, 3479–3490. [Google Scholar] [CrossRef] [Green Version]
- Tewabe, D. Preliminary survey of water hyacinth in Lake Tana, Ethiopia. Glob. J. Allergy 2015, 1, 013–018. [Google Scholar] [CrossRef] [Green Version]
- Rakotoarisoa, T.F.; Waeber, P.O.; Richter, T.; Mantilla-Contreras, J. Water hyacinth (Eichhornia crassipes), any opportunities for the Alaotra wetlands and livelihoods? Madag. Conserv. Dev. 2015, 10, 128–136. [Google Scholar] [CrossRef]
- Akhyadi, A.S.; Sadikin, I.S. The construct of community empowerment through social compass strategy: Case study of empowerment in processing waste and water hyacinth. Int. J. Educ. Stud. 2020, 13, 27–48. [Google Scholar]
- Ramadani, R.F.; Heryanto, N.; Komar, O.; Hasanah, V.R. Community empowerment through social compass strategy: Case study of empowerment in processing waste and water hyacinth. J. Nonform. Educ. 2020, 6, 9. [Google Scholar] [CrossRef]
- Ramadani, R.F.; Akhyadi, A.S.; Heryanto, N. Community Empowerment Strategy in Bangkit Bersama Cooperation (Case Study of the Waste Management and Water Hyacinth Craftsmen Empowerment Program). Int. Conf. Elem. Educ. 2020, 2, 1567–1573. [Google Scholar]
- Aboul-Enein, A.M.; Al-Abd, A.M.; Shalaby, E.; Abul-Ela, F.; Nasr-Allah, A.A.; Mahmoud, A.M.; El-Shemy, H.A. Eichhornia crassipes (Mart) solms: From water parasite to potential medicinal remedy. Plant Signal. Behav. 2011, 6, 834–836. [Google Scholar] [CrossRef] [Green Version]
- Onyango, J.P.; Ondeng, M.A. The contribution of the multiple usage of water hyacinth on the economic development of reparian communities in Dunga and Kichinjio of Kisumu Central Sub County, Kenya. Am. J. Renew. Sustain. Energy 2015, 1, 128–132. [Google Scholar] [CrossRef]
- Bai, Y.F.; Guo, J.Y. Utilization of water hyacinth biomass for animal feed. In Water Hyacinth Environmental Challenges, Management and Utilization; Yan, S.H., Guo, J.Y., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 277–300. [Google Scholar] [CrossRef]
- Hossain, M.E.; Sikder, H.; Kabir, M.H.; Sarma, S.M. Nutritive value of water hyacinth (Eichhornia crassipes). Online J. Anim. Feed Res. 2015, 5, 40–44. [Google Scholar]
- Okoye, F.C.; Daddy, F.; Ilesanmi, B.D. The nutritive value of water hyacinth (Eichhornia crassipes) and its utilisation in fish feed. In Proceedings of the International Conference on Water Hyacinth, New Bussa, Nigeria, 27 November–1 December 2000; pp. 65–70. [Google Scholar]
- Wimalarathne, H.D.A.; Perera, P.C.D. Potentials of water hyacinth as livestock feed in Sri Lanka. Indian J. Weed Sci. 2019, 51, 101–105. [Google Scholar] [CrossRef]
- Islam, S.; Khan, M.J.; Islam, M.N. Effect of feeding wilted water hyacinth (Eichhornia crassipes) on the performance of growing bull cattle. Indian J. Anim. Sci. 2009, 79, 494–497. [Google Scholar]
- Tham, H.T.; Udén, P. Effect of water hyacinth (Eichhornia crassipes) silage on intake and nutrient digestibility in cattle fed rice straw and cottonseed cake. Asian-Australas. J. Anim. Sci. 2013, 26, 646–653. [Google Scholar] [CrossRef] [Green Version]
- Abegunde, T.O.; Akinropo, T.F.; Akande, T.O.; Ogunyemi, E.K. Proximate composition and physico-chemical parameters of water hyacinth (Eichhornia crassipes) ensiled with breadfruit (Artocarpus altilis) as feed for WAD goats. Niger. J. Anim. Prod. 2017, 44, 194–198. [Google Scholar] [CrossRef]
- Sunday, A.D. The utilization of water hyacinth (Eichhornia crassipes) by West African dwarf (WAD) growing goats. Afr. J. Biomed. Res. 2001, 4, 147–149. [Google Scholar] [CrossRef]
- Hang, B.P.T.; Lam, V.; Phuong, T.T.B.; Preston, T. Water hyacinth (Eichhornia crassipes): An invasive weed or a potential feed for goats? Livest. Res. Rural Dev. 2011, 23, 152. [Google Scholar]
- Mohan, B.; Murdia, P.C. Utilization of water hyacinth (Eichhornia crassipes) by goats. Indian J. Small Rumin. 2002, 8, 27–29. [Google Scholar]
- Mekuriaw, S.; Tegegne, F.; Tsunekawa, A.; Ichinohe, T. Effects of substituting concentrate mix with water hyacinth (Eichhornia crassipes) leaves on feed intake, digestibility and growth performance of Washera sheep fed rice straw-based diet. Trop. Anim. Health Prod. 2018, 50, 965–972. [Google Scholar] [CrossRef]
- Chhay, T.; Borin, K.; Preston, T.R. Effect of mixtures of water spinach and fresh water hyacinth leaves on growth performance of pigs fed a basal diet of rice bran and cassava root meal. Livest. Res. Rural Dev. 2007, 19, 194. [Google Scholar]
- Akankali, J.; Elenwo, E. Use of water hyacinth as feed stuff for animals in Niger delta, Nigeria. Int. J. Adv. Sci. Res. Rev. 2019, 4, 91–97. [Google Scholar]
- Lu, J.; Fu, Z.; Yin, Z. Performance of a water hyacinth (Eichhornia crassipes) system in the treatment of wastewater from a duck farm and the effects of using water hyacinth as duck feed. J. Environ. Sci. 2008, 20, 513–519. [Google Scholar] [CrossRef]
- Mangisah, I.; Wahyuni, H.; Tristiarti, T.; Sumarsih, S.; Setyaningrum, S. Nutritive value of fermented water hyacinth (Eichornia crassipes) leaf with Aspergillus niger in tegal duck. Anim. Prod. 2010, 12, 100–104. [Google Scholar]
- Hassan, T.; Abdella, M.; El-Sayaad, G.; Kelyni, R. Effect of feeding different levels of water hyacinth on performance of growing rabbits. Egypt. J. Nutr. Feed. 2015, 18, 223–228. [Google Scholar] [CrossRef]
- Moses, T.; Barku, V.; Kyereme, C.; Odoi, F. Composition of water hyacinth (Eichhornia crassipes) plant harvested from the volta lake in ghana and its potential value as a feed ingredient in rabbit rations. Adv. Anim. Vet. Sci 2021, 9, 230–237. [Google Scholar] [CrossRef]
- Hailu, D.; Negassa, A.; Kebede, B. Evaluation of water hyacinth (Eichhornia crassipes) as a phytogenic diet for Nile tilapia (Oreochromis niloticus). Int. J. Fish. Aquat. Stud. 2020, 8, 210–218. [Google Scholar]
- Jafer Sadique, K.; Pandey, A.; Khairnar, S.O.; BT, N.K. Effect of molasses-fermented water hyacinth feed on growth and body composition of common carp, Cyprinus carpio. J. Entomol. Zool. Stud. 2018, 6, 1161–1165. [Google Scholar]
- Mohapatra, S.; Patra, A. Utilization of water hyacinth (Eichhornia crasipes) meal as partial replacement for fish meal on the growth performance of Cyprinus carpio fry. Int. Res. J. Biol. Sci. 2013, 2, 85–89. [Google Scholar]
- Sangbrita, S.; Ray, A.K. Evaluation of nutritive value of water hyacinth (Eichhornia crassipes) leaf meal in compound diets for rohu, Labeo rohita (Hamilton, 1822) fingerlings after fermentation with two bacterial strains isolated from fish gut. Turk. J. Fish. Aquat. Sci. 2011, 11, 199–207. [Google Scholar] [CrossRef]
- Bai, Y.; Zhou, W.; Yan, S.; Liu, J.; Zhang, H.; Jiang, L. Ensilaging water hyacinth: Effects of water hyacinth compound silage on the performance of goats. Chin. J. Anim. Nutr. 2011, 23, 330–335. [Google Scholar]
- Indulekha, V.P.; Thomas, C.G.; Anil, K.S. Utilization of water hyacinth as livestock feed by ensiling with additives. Indian J. Weed Sci. 2019, 51, 67–71. [Google Scholar] [CrossRef]
- Kumari, P.; Pandey, A. Utilization of water hyacinth compost as manure for rearing of rohu (Labeo rohita), fry. J. Exp. Zool. India 2018, 21, 1295–1300. [Google Scholar]
- Aboud, A.A.O.; Kidunda, R.S.; Osarya, J. Potential of water hyacinth (Eichhornia crassipes) in ruminant nutrition in Tanzania. Livest. Res. Rural Dev. 2015, 17, 2005. [Google Scholar]
- Amit, N.C. Effect of feeding different inclusion rates of water hyacinth [Eichhornia crassipes (Mart.) Solms] on the body weight gain of growing dairy bull calves. Int. J. Res. GRANTHAALAYAH 2019, 7, 293–298. [Google Scholar] [CrossRef]
- Fitrihidajati, H.; Ratnasari, I.E. Effectiveness of ruminant feed formula from the fermented water hyacinth (Eichhornia crassipes) to produce the high level protein of goat meat. Adv. Sci. Lett. 2017, 23, 11972–11975. [Google Scholar] [CrossRef]
- Ratnasari, E.; Fitrihidajati, H.; Isnawati, I. Improving the Quality of Goat Sperm through the Implementation of Fermented Feed based on Water Hyacinth: Fermege Formula 3. In Proceedings of the International Conference on Science and Technology (ICST 2018), Yogyakarta, Indonesia, 7–8 August 2018; pp. 101–104. [Google Scholar]
- Tiwari, M.R.; Karki, M.; Pandey, L.N.; Poudel, N. Replacement of concentrate mixture with different levels of water hyacinth (Eichhornia crassipes) in basal diet on feed intake and production performance of piglets. J. Agric. Nat. Resour. 2020, 3, 205–217. [Google Scholar] [CrossRef]
- Yuniati, D.; Utomo, N.B.P.; Setiawati, M.; Alimuddin, A. Growth Performance and enzyme activities in catfish [Pangasianodon hypophthalmus] fed with water hyacinth-based diet. BIOTROPIA Southeast Asian J. Trop. Biol. 2018, 25, 140–147. [Google Scholar] [CrossRef] [Green Version]
- Mako, A.; Babayemi, O.; Akinsoyinu, A. An evaluation of nutritive value of water hyacinth (Eichhornia crassipes Mart. Solms-Laubach) harvested from different water sources as animal feed. Livest. Res. Rural Dev. 2011, 23, 10. [Google Scholar]
- Adeyemi, O.; Osubor, C.C. Assessment of nutritional quality of water hyacinth leaf protein concentrate. Egypt. J. Aquat. Res. 2016, 42, 269–272. [Google Scholar] [CrossRef] [Green Version]
- Waters-Bayer, A.; Bayer, W. The role of livestock in the rural economy. Nomadic Peoples 1992, 31, 3–18. [Google Scholar]
- Gunnarsson, C.C.; Petersen, C.M. Water hyacinths as a resource in agriculture and energy production: A literature review. Waste Manag. 2007, 27, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, D.; Arunachalam, K.; Arunachalam, A.; Das, A.K. Water hyacinth [Eichhornia crassipes (Mart.) Solms.] engineered soil nutrient availability in a low-land rain-fed rice farming system of north-east India. Ecol. Eng. 2013, 58, 3–12. [Google Scholar] [CrossRef]
- Indulekha, V.; Thomas, C.G. Utilization of water hyacinth as mulch in turmeric. J. Trop. Agric. 2018, 56, 27–33. [Google Scholar]
- Xu, D.; Qiu, X.; Xu, Z. Effect of water hyacinth mulch on soil temperature, water content and maize yield (Zea mays L.) in southeast China. Environ. Eng. Manag. J. 2017, 16, 85–91. [Google Scholar] [CrossRef]
- Lu, X.; Liu, L.; Fan, R.; Luo, J.; Yan, S.; Rengel, Z.; Zhang, Z. Dynamics of copper and tetracyclines during composting of water hyacinth biomass amended with peat or pig manure. Environ. Sci. Pollut. Res. 2017, 24, 23584–23597. [Google Scholar] [CrossRef]
- Gajalakshmi, S.; Ramasamy, E.V.; Abbasi, S.A. High-rate composting–vermicomposting of water hyacinth (Eichhornia crassipes, Mart. Solms). Bioresour. Technol. 2002, 83, 235–239. [Google Scholar] [CrossRef]
- Nath, S.; Singh, K. Analysis of different nutrient status of liquid bio-fertilizer of different combinations of buffalo dung with gram bran and water hyacinth through vermicomposting by Eisenia fetida. Environ. Dev. Sustain. 2016, 18, 645–656. [Google Scholar] [CrossRef]
- Sharma, B.; Suthar, S. Enriched biogas and biofertilizer production from Eichhornia weed biomass in cow dung biochar-amended anaerobic digestion system. Environ. Technol. Innov. 2021, 21, 101201. [Google Scholar] [CrossRef]
- Singh, J.; Kalamdhad, A.S. Reduction of bioavailability and leachability of heavy metals during vermicomposting of water hyacinth. Environ. Sci. Pollut. Res. 2013, 20, 8974–8985. [Google Scholar] [CrossRef]
- Unpaprom, Y.; Pimpimol, T.; Whangchai, K.; Ramaraj, R. Sustainability assessment of water hyacinth with swine dung for biogas production, methane enhancement, and biofertilizer. Biomass Convers. Biorefinery 2020, 11, 849–860. [Google Scholar] [CrossRef]
- Yu, F.-B.; Luo, X.-P.; Song, C.-F.; Zhang, M.-X.; Shan, S.-D. Concentrated biogas slurry enhanced soil fertility and tomato quality. Acta Agric. Scand. Sect. B Soil Plant Sci. 2010, 60, 262–268. [Google Scholar] [CrossRef]
- Zhou, X.; Shen, M.; Lu, C.; Chen, F.; Wang, H.; Shi, L.; Song, H.; Chen, Z. Effects of water hyacinth organic fertilizer on strawberry yield and quality and soil nutrients. Acta Agric. Shanghai 2013, 29, 73–77. [Google Scholar]
- Bhowmik, S.; Bhowal, S.; Chowdhury, M.; Rahman, M.; Faisal, A.; Farhad, I. Effect of different amount of water hyacinth as mulch on potato and tomato at the saline soil of Noakhali. ABC Res. Alert 2019, 7, 168–174. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.S.; Nessem, A.A.; Sun, J.; Li, X. The effects of water hyacinth pretreated digestate on Lupinus termis L. seedlings under salinity stress: A complementary study. J. Environ. Chem. Eng. 2019, 7, 103159. [Google Scholar] [CrossRef]
- Hidayat, K.; Yaskun, M.; Prasnowo, M.A. Value added analysis of water hyacinth bags as regional featured product. Tek. Eng. Sains J. 2018, 2, 115–118. [Google Scholar] [CrossRef]
- Punitha, S.; Sangeetha, D.K.; Bhuvaneshwari, M. Processing of Water hyacinth fiber to improve its absorbency. Int. J. Adv. Res. 2015, 3, 290–294. [Google Scholar]
- Sandeep, P.; Neha, S.; Nirala, A.; Anup, G. Dynamics of water weed Eichhornia crassipes: A review. Int. J. Res. Appl. Sci. Eng. Technol. 2015, 3, 137–140. [Google Scholar]
- Rakotoarisoa, T.; Richter, T.; Rakotondramanana, H.; Mantilla-Contreras, J. Turning a problem into profit: Using Water Hyacinth (Eichhornia crassipes) for making handicrafts at Lake Alaotra, Madagascar. Econ. Bot. 2016, 70, 365–379. [Google Scholar] [CrossRef]
- Patel, S. Threats, management and envisaged utilizations of aquatic weed Eichhornia crassipes: An overview. Rev. Environ. Sci. Bio/Technol. 2012, 11, 249–259. [Google Scholar] [CrossRef]
- Sianturi, O.; Tyas, W.; Manullang, O.; Manaf, A. The Benefit of Internet Using to Affect Income for Water Hyacinth Home-based Entrepreneurs in Rawapening Area-Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2019, 248, 012004. [Google Scholar] [CrossRef]
- Nasution, M.I.T.; Awal, S.M.S.; Permana, D.M. The methods of preventing water hyacinth as aquatic pollution in Lake Toba caused by agricultural waste. Int. J. Environ. Sci. Dev. 2016, 7, 630–633. [Google Scholar] [CrossRef] [Green Version]
- Etuah, S.; Ohene-Yankyera, K.; Aidoo, R.; Haleegoah, J.; Wiggins, S.; Henley, G. Impact of oil palm-related activities on women’s empowerment in Ghana. World Dev. Perspect. 2020, 19, 100225. [Google Scholar] [CrossRef]
- Ristianasari, R.; Muljono, P.; Gani, D.S. Dampak program pemberdayaan model desa konservasi terhadap kemandirian masyarakat: Kasus di taman nasional Bukit Barisan Selatan Lampung. J. Penelit. Sos. Dan Ekon. Kehutan. 2013, 10, 173–185. [Google Scholar] [CrossRef]
- Nieminen, I.; Kylmä, J.; Åstedt-Kurki, P.; Kulmala, A.; Kaunonen, M. Mental health service users’ experiences of training focused on empowerment: Training environment and the benefits of training. Arch. Psychiatr. Nurs. 2016, 30, 309–315. [Google Scholar] [CrossRef]
- Rezania, S.; Ponraj, M.; Din, M.F.M.; Songip, A.R.; Sairan, F.M.; Chelliapan, S. The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: An overview. Renew. Sustain. Energy Rev. 2015, 41, 943–954. [Google Scholar] [CrossRef]
- Feng, W.; Xiao, K.; Zhou, W.; Zhu, D.; Zhou, Y.; Yuan, Y.; Xiao, N.; Wan, X.; Hua, Y.; Zhao, J. Analysis of utilization technologies for Eichhornia crassipes biomass harvested after restoration of wastewater. Bioresour. Technol. 2017, 223, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Chandra, R.; Takeuchi, H.; Hasegawa, T. Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production. Renew. Sustain. Energy Rev. 2012, 16, 1462–1476. [Google Scholar] [CrossRef]
- Mishra, S.; Roy, M.; Mohanty, K. Microalgal bioenergy production under zero-waste biorefinery approach: Recent advances and future perspectives. Bioresour. Technol. 2019, 292, 122008. [Google Scholar] [CrossRef]
- Barua, V.B.; Kalamdhad, A.S. Biogas production from water hyacinth in a novel anaerobic digester: A continuous study. Process Saf. Environ. Prot. 2019, 127, 82–89. [Google Scholar] [CrossRef]
- Li, L.; Zhou, W.; Wu, H.; Yu, Y.; Liu, F.; Zhu, D. Relationship between crystallinity index and enzymatic hydrolysis performance of celluloses separated from aquatic and terrestrial plant materials. BioResources 2014, 9, 3993–4005. [Google Scholar] [CrossRef] [Green Version]
- Carlini, M.; Castellucci, S.; Mennuni, A. Water hyacinth biomass: Chemical and thermal pre-treatment for energetic utilization in anaerobic digestion process. Energy Procedia 2018, 148, 431–438. [Google Scholar] [CrossRef]
- Vijin Prabhu, A.; Antony Raja, S.; Avinash, A.; Pugazhendhi, A. Parametric optimization of biogas potential in anaerobic co-digestion of biomass wastes. Fuel 2021, 288, 119574. [Google Scholar] [CrossRef]
- Photong, N.; Wongthanate, J. Biofuel production from bio-waste by biological and physical conversion processes. Waste Manag. Res. 2020, 38, 69–77. [Google Scholar] [CrossRef]
- Bruni, E.; Jensen, A.P.; Angelidaki, I. Comparative study of mechanical, hydrothermal, chemical and enzymatic treatments of digested biofibers to improve biogas production. Bioresour. Technol. 2010, 101, 8713–8717. [Google Scholar] [CrossRef]
- Ren, N.; Wang, A.; Gao, L.; Xin, L.; Lee, D.-J.; Su, A. Bioaugmented hydrogen production from carboxymethyl cellulose and partially delignified corn stalks using isolated cultures. Int. J. Hydrogen Energy 2008, 33, 5250–5255. [Google Scholar] [CrossRef]
- Roopnarain, A.; Nkuna, R.; Ndaba, B.; Adeleke, R. New insights into the metagenomic link between pre-treatment method, addition of an inoculum and biomethane yield during anaerobic digestion of water hyacinth (Eichhornia crassipes). J. Chem. Technol. Biotechnol. 2019, 94, 3217–3226. [Google Scholar] [CrossRef]
- Romero De León, L.A.; Quinto Diez, P.; Tovar Gálvez, L.R.; Alvarado Perea, L.; López Barragán, C.A.; García Rodríguez, C.A.; Reyes León, A. Biochemical methane potential of water hyacinth and the organic fraction of municipal solid waste using leachate from Mexico City’s Bordo Poniente composting plant as inoculum. Fuel 2021, 285, 119132. [Google Scholar] [CrossRef]
- Barua, V.B.; Rathore, V.; Kalamdhad, A.S. Anaerobic co-digestion of water hyacinth and banana peels with and without thermal pretreatment. Renew. Energy 2019, 134, 103–112. [Google Scholar] [CrossRef]
- Bhui, I.; Mathew, A.K.; Chaudhury, S.; Balachandran, S. Influence of volatile fatty acids in different inoculum to substrate ratio and enhancement of biogas production using water hyacinth and salvinia. Bioresour. Technol. 2018, 270, 409–415. [Google Scholar] [CrossRef]
- Syafrudin, D.N.W.; Laksmi Pradita, L. Biogas Production from Water Hyacinth. In Biogas—Recent Advances and Integrated Approaches, 1st ed.; Abomohra, A., Elsayed, M., Qin, Z., Ji, H., Liu, Z., Eds.; IntechOpen: London, UK, 2020; Volume 1. [Google Scholar]
- Hernández-Shek, M.A.; Cadavid-Rodríguez, L.S.; Bolaños, I.V.; Agudelo-Henao, A.C. Recovering biomethane and nutrients from anaerobic digestion of water hyacinth (Eichhornia crassipes) and its co-digestion with fruit and vegetable waste. Water Sci. Technol. 2015, 73, 355–361. [Google Scholar] [CrossRef]
- Soeprijanto, S.; Prajitno, D.H.; Setiawan, B.; Maghfiro, W.; Rohmawati, R. Biogas production from co-digestion of water hyacinth, banana peel and water spinach wastes using a horizontal anaerobic digester. IOP Conf. Ser. Earth Environ. Sci. 2021, 649, 012022. [Google Scholar] [CrossRef]
- Zala, M.; Solanki, R.; Bhale, P.V.; Vaishak, S. Experimental investigation on anaerobic co-digestion of food waste and water hyacinth in batch type reactor under mesophilic condition. Biomass Convers. Biorefinery 2020, 10, 707–714. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Y.; Wang, D.; Chen, F.; Li, X.; Zeng, G.; Yang, Q. Potential impact of salinity on methane production from food waste anaerobic digestion. Waste Manag. 2017, 67, 308–314. [Google Scholar] [CrossRef]
- Castro, Y.A.; Agblevor, F.A. Effect of wet air oxidation on the composition and biomethanation of water hyacinth. Biomass Convers. Biorefinery 2020. [Google Scholar] [CrossRef]
- Mtui, G.Y. Recent advances in pretreatment of lignocellulosic wastes and production of value added products. Afr. J. Biotechnol. 2009, 8, 1398–1415. [Google Scholar]
- Xu, D.Y. Effect of temperature and feedstock size on biogas production of water hyacinth used for phytoremediation of rural domestic wastewater in Shanghai. In Proceedings of the 2010 International Conference on Mechanic Automation and Control Engineering (MACE2010), Wuhan, China, 26–28 June 2010. [Google Scholar]
- Narayanan, K.V.; Natarajan, E. Experimental studies on cofiring of coal and biomass blends in India. Renew. Energy 2007, 32, 2548–2558. [Google Scholar] [CrossRef]
- Kpalo, S.Y.; Zainuddin, M.F.; Manaf, L.A.; Roslan, A.M. A Review of Technical and Economic Aspects of Biomass Briquetting. Sustainability 2020, 12, 4609. [Google Scholar] [CrossRef]
- Castro, Y.A.; Agblevor, F.A. Biomethanation of invasive water hyacinth from eutrophic waters as a post weed management practice in the Dominican Republic: A developing country. Environ. Sci. Pollut. Res. Int. 2020, 27, 14138–14149. [Google Scholar] [CrossRef]
- Jaktorn, C.; Jiajitsawat, S. Production of thermal insulator from water hyacinth fiber and natural rubber latex. NU Int. J. Sci. 2014, 11, 31–41. [Google Scholar]
- Salas-Ruiz, A.; del Mar Barbero-Barrera, M.; Ruiz-Téllez, T. Microstructural and thermo-physical characterization of a Water Hyacinth petiole for thermal insulation particle board manufacture. Materials 2019, 12, 560. [Google Scholar] [CrossRef] [Green Version]
- Okwadha, G.; Makomele, D. Evaluation of water hyacinth extract as an admixture in concrete production. J. Build. Eng. 2018, 16, 129–133. [Google Scholar] [CrossRef]
- Salas-Ruiz, A.; del Mar Barbero-Barrera, M. Performance assessment of water hyacinth–cement composite. Constr. Build. Mater. 2019, 211, 395–407. [Google Scholar] [CrossRef]
- Song, H.; Wang, J.; Garg, A.; Lin, X.; Zheng, Q.; Sharma, S. Potential of novel biochars produced from invasive aquatic species outside food chain in removing ammonium nitrogen: Comparison with conventional biochars and clinoptilolite. Sustainability 2019, 11, 7136. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M. Pyrolysis of water hyacinth in a fixed bed reactor: Parametric effects on product distribution, characterization and syngas evolutionary behavior. Waste Manag. 2018, 80, 310–318. [Google Scholar] [CrossRef]
- Lalitha, P.; Sripathi, S.K.; Jayanthi, P. Secondary metabolites of Eichhornia crassipes (Water Hyacinth): A review (1949 to 2011). Nat. Prod. Commun. 2012, 7. [Google Scholar] [CrossRef] [Green Version]
- Rezania, S.; Ponraj, M.; Talaiekhozani, A.; Mohamad, S.E.; Md Din, M.F.; Taib, S.M.; Sabbagh, F.; Sairan, F.M. Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. J. Environ. Manag. 2015, 163, 125–133. [Google Scholar] [CrossRef]
- Saha, P.; Shinde, O.; Sarkar, S. Phytoremediation of industrial mines wastewater using water hyacinth. Int. J. Phytoremediation 2017, 19, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Abbas, Z.; Arooj, F.; Ali, S.; Zaheer, I.E.; Rizwan, M.; Riaz, M.A. Phytoremediation of landfill leachate waste contaminants through floating bed technique using water hyacinth and water lettuce. Int. J. Phytoremediation 2019, 21, 1356–1367. [Google Scholar] [CrossRef]
- Nash, D.A.H.; Abdullah, S.R.S.; Hasan, H.A.; Idris, M.; Muhammad, N.F.; Al-Baldawi, I.A.; Ismail, N.I. Phytoremediation of nutrients and organic carbon from sago mill effluent using water hyacinth (Eichhornia crassipes). J. Eng. Technol. Sci. 2019, 51, 573. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Deswal, S. Phytoremediation capabilities of Salvinia molesta, water hyacinth, water lettuce, and duckweed to reduce phosphorus in rice mill wastewater. Int. J. Phytoremediation 2020, 22, 1097–1109. [Google Scholar] [CrossRef]
- Azimi, A.; Azari, A.; Rezakazemi, M.; Ansarpour, M. Removal of heavy metals from industrial wastewaters: A review. ChemBioEng Rev. 2017, 4, 37–59. [Google Scholar] [CrossRef]
- Yong, Y.S.; Lim, Y.A.; Ilankoon, I. An analysis of electronic waste management strategies and recycling operations in Malaysia: Challenges and future prospects. J. Clean. Prod. 2019, 224, 151–166. [Google Scholar] [CrossRef]
- Wainger, L.A.; Harms, N.E.; Magen, C.; Liang, D.; Nesslage, G.M.; McMurray, A.M.; Cofrancesco, A.F. Evidence-based economic analysis demonstrates that ecosystem service benefits of water hyacinth management greatly exceed research and control costs. PeerJ 2018, 6, e4824. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.S.; Rogers, M.B.; Amlôt, R.; Rubin, G.J. What do we mean by’community resilience’? A systematic literature review of how it is defined in the literature. PLoS Curr. 2017, 9. [Google Scholar] [CrossRef]
- Rijke, J.; Geerling, L.; Quan, N.H.; Trung, N.H. Removing Challenges for Building Resilience with Support of the Circular Economy. In Climate Resilient Urban Areas; Palgrave Macmillan: Cham, Switzerland, 2021; pp. 109–127. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harun, I.; Pushiri, H.; Amirul-Aiman, A.J.; Zulkeflee, Z. Invasive Water Hyacinth: Ecology, Impacts and Prospects for the Rural Economy. Plants 2021, 10, 1613. https://doi.org/10.3390/plants10081613
Harun I, Pushiri H, Amirul-Aiman AJ, Zulkeflee Z. Invasive Water Hyacinth: Ecology, Impacts and Prospects for the Rural Economy. Plants. 2021; 10(8):1613. https://doi.org/10.3390/plants10081613
Chicago/Turabian StyleHarun, Irina, Hafizah Pushiri, Ahmad Juhari Amirul-Aiman, and Zufarzaana Zulkeflee. 2021. "Invasive Water Hyacinth: Ecology, Impacts and Prospects for the Rural Economy" Plants 10, no. 8: 1613. https://doi.org/10.3390/plants10081613
APA StyleHarun, I., Pushiri, H., Amirul-Aiman, A. J., & Zulkeflee, Z. (2021). Invasive Water Hyacinth: Ecology, Impacts and Prospects for the Rural Economy. Plants, 10(8), 1613. https://doi.org/10.3390/plants10081613