Metabolite Profiling and Dipeptidyl Peptidase IV Inhibitory Activity of Coreopsis Cultivars in Different Mutations
Abstract
:1. Introduction
2. Results
2.1. Subsection Identification of Metabolites in Coreopsis Cultivars Using UPLC-QTof-MS
2.1.1. Phenolic Acids
2.1.2. Flavanones and Flavanonols
2.1.3. Chalcones
2.1.4. Flavones and Flavanols
2.1.5. Aurones
2.1.6. Polyacetylene
2.2. DPP-IV Inhibitory Effects of the 70% Ethanol Extract Obtained from Coreopsis cultivars
2.3. Multivariate Analysis
3. Materials and Methods
3.1. Plant Material
3.2. Sample Preparation
3.3. Ultra-Performance Liquid Chromatography Time-of-Flight Mass Spectrometry (UPLC-QTof-MS) Analysis
3.4. DPP-IV Inhibitor Screening Assay
3.5. Chemometric Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kim, S.-C.; Crawford, D.J.; Tadesse, M.; Berbee, M.; Ganders, F.R.; Pirseyedi, M.; Esselman, E.J. ITS sequences and phylogenetic relationships in Bidens and Coreopsis (Asteraceae). Syst. Bot. 1999, 24, 480–493. [Google Scholar] [CrossRef]
- Pardede, A.; Mashita, K.; Ninomiya, M.; Tanaka, K.; Koketsu, M. Flavonoid profile and antileukemic activity of Coreopsis lanceolata flowers. Bioorg. Med. Chem. Lett. 2016, 26, 2784–2787. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Sun, X.; Liu, J.; Kang, L.; Chen, S.; Ma, B.; Guo, B. Quantitative and qualitative analysis of flavonoids and phenolic acids in snow chrysanthemum (Coreopsis tinctoria Nutt.) by HPLC-DAD and UPLC-ESI-QTOF-MS. Molecules 2016, 21, 1307. [Google Scholar] [CrossRef] [Green Version]
- Nakabo, D.; Okano, Y.; Kandori, N.; Satahira, T.; Kataoka, N.; Akamatsu, J.; Okada, Y. Convenient synthesis and physiological activities of flavonoids in Coreopsis lanceolata L. Petals and their related compounds. Molecules 2018, 23, 1671. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-G.; Oh, H.-J.; Ko, J.-H.; Song, H.S.; Lee, Y.-G.; Kang, S.C.; Lee, D.Y.; Baek, N.-I. Lanceolein A–G, hydroxychalcones, from the flowers of Coreopsis lanceolate and their chemopreventive effects against human colon cancer cells. Bioor. Chem. 2019, 85, 274–281. [Google Scholar] [CrossRef]
- Kim, H.-G.; Jung, Y.S.; Oh, S.M.; Oh, H.-J.; Ko, J.-H.; Kim, D.-O.; Kang, S.C.; Lee, Y.-G.; Baek, N.-I. Coreolanceolins A–E, new flavanones from the flowers of Coreopsis lanceolata, and their antioxidant and anti-inflammatory effects. Antioxidants 2020, 9, 539. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, L.; Oliveira, A.P.; Silva, L.R.; Andrade, P.B.; Pinho, P.G.D.; Botelho, J.; Valentão, P. Metabolic and biological prospecting of Coreopsis tinctoria. Rev. Bras. Farmacogn. 2012, 22, 350–358. [Google Scholar] [CrossRef] [Green Version]
- Dias, T.; Bronze, M.R.; Houghton, P.J.; Mota-Filipe, H.; Paulo, A. The flavonoid-rich fraction of Coreopsis tinctoria promotes glucose tolerance regain through pancreatic function recovery in streptozotocin-induced glucose-intolerant rats. J. Ethnopharmacol. 2010, 132, 483–490. [Google Scholar] [CrossRef]
- Wang, T.; Xi, M.; Guo, Q.; Shen, Z. Chemical components and antioxidant activity of volatile oil of a Compositae tea (Coreopsis tinctoria Nutt.) from Mt. Kunlun. Ind. Crop. Prod. 2015, 67, 318–323. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, S.; Zhao, M.; Chai, X.; Tu, P. Coreosides A–D, C14-polyacetylene glycosides from the capitula of Coreopsis tinctoria and its anti-inflammatory activity against COX-2. Fitoterapia 2013, 87, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.F.; Oidovsambuu, S.; Jeon, J.-S.; Nho, C.W.; Um, B.-H. Chalcones from flowers of Coreopsis lanceolata and thier in vitro antioxidative activity. Planta Med. 2013, 79, 295–300. [Google Scholar]
- Kim, B.-R.; Paudel, S.B.; Nam, J.-W.; Jin, C.H.; Lee, I.-S.; Han, A.-R. Constituents of Coreopsis lanceolate flower and their dipeptidyl peptidase IV inhibitory effects. Molecules 2020, 25, 4370. [Google Scholar] [CrossRef]
- Kimura, Y.; Hiraoka, K.; Kawano, T.; Fujioka, S.; Shimada, A. Nematicidal activities of acetylene compounds from Coreopsis lanceolata L. J. Biosci. 2008, 63, 843–847. [Google Scholar] [CrossRef]
- Okada, Y.; Okita, M.; Murai, Y.; Okano, Y.; Nomura, M. Isolation and identification of flavonoids from Coreopsis lanceolata L. pentals. Nat. Prod. Res. 2014, 28, 201–204. [Google Scholar] [CrossRef]
- Tanimoto, S.; Miyazawa, M.; Inoue, T.; Okada, Y.; Nomura, M. Chemical constituents of Coreopsis lanceolata L. and their physiological activities. J. Oleo Sci. 2009, 58, 141–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Z.; Zheng, S.; Han, H.; Meng, J.; Yang, X.; Zeng, S.; Zhou, H.; Jiang, H. The bioactive components of Coreopsis tinctoria (Asteraceae) capitula: Antioxidant activity in vitro and profile in rat plasma. J. Funct. Foods 2015, 20, 575–586. [Google Scholar] [CrossRef]
- Kim, H.-G.; Oh, H.-J.; Ko, J.-H.; Jung, Y.S.; Oh, S.-M.; Lee, Y.-G.; Kim, D.-O.; Baek, N.-I. Phenolic compounds from the flowers of Coreopsis lanceolata. J. Appl. Biol. Chem. 2019, 62, 323–326. [Google Scholar] [CrossRef]
- Kim, B.-R.; Kim, H.M.; Jin, C.H.; Kang, S.-Y.; Kim, J.-B.; Jeon, Y.G.; Park, K.Y.; Lee, I.-S.; Han, A.-R. Composition and antioxidant activities of volatile organic compounds in radiation-bred Coreopsis cultivars. Plants 2020, 9, 717. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Li, G.; Wang, J.; Pan, Y.; Jiao, K.; Du, J.; Chen, R.; Wang, B.; Li, N. Okanin, effective constituent of the flower tea Coreopsis tinctoria, attenuates LPS-induced microglial activation through inhibition of the TLR4/NF-κB signaling pathways. Sci. Rep. 2017, 7, 45705. [Google Scholar] [CrossRef] [Green Version]
- Korea Seed & Variety Service. Available online: http://www.seed.go.kr/sites/seed_eng/index..do (accessed on 19 July 2021).
- Ali, H.; Ghori, Z.; Sheikh, S.; Gul, A.E. Effects of gamma radiation on crop production. In Crop Production and Global Environmental Issues; Hakeem, K., Ed.; Springer: Cham, Switzerland, 2016; pp. 27–78. [Google Scholar]
- Burnett, S.E.; Keever, G.J.; Kessler, J.R.; Cilliam, C.H. Foliar application of plant growth retardants to Coreopsis rosea ‘American dream’. J. Environ. Hort. 2000, 18, 39–62. [Google Scholar] [CrossRef]
- Park, K.-Y.; Hwang, H.-J.; Chae, W.-B.; Choi, G.-W. Development of a new Coreopsis variety ‘Uridream Pink’ by gamma-ray irradiation. Kor. J. Hort. Sci. Technol. 2014, 32, 906–911. [Google Scholar]
- Sorrie, B.A.; LeBlond, R.J.; Weakley, A.S. Identification, distribution, and habitat of Coreopsis section Eublepharis (Asteraceae) and description of a new species. J. Bot. Res. Inst. Tex. 2013, 7, 299–310. [Google Scholar]
- Kessler, J.R., Jr.; Keever, G.J. Plant growth retardants affect growth and flowering of Coreopsis verticillata ‘Moonbeam’. J. Environ. Hortic. 2007, 25, 229–233. [Google Scholar] [CrossRef]
- Peng, A.; Lin, L.; Zhao, M.; Sun, B. Classification of edible chrysanthemums based on phenolic profiles and mechanisms underlying the protective effects of characteristic phenolics on oxidatively damaged erythrocyte. Food Res. Int. 2019, 123, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, P.; Luo, Y.; Gao, B.; Sun, J.; Lu, W.; Liu, J.; Chen, P.; Zhang, Y.; Yu, L. Chemical compositions of chrysanthemum teas and their anti-inflammatory and antioxidant properties. Food Chem. 2019, 286, 8–16. [Google Scholar] [CrossRef]
- Shen, J.; Hu, M.; Tan, W.; Ding, J.; Jiang, B.; Xu, L.; Hamulati, H.; He, C.; Sun, Y.; Xiao, P. Traditional uses, phytochemistry, pharmacology, and toxicology of Coreopsis tinctoria Nutt.: A review. J. Ethnopharmacol. 2021, 269, 113690. [Google Scholar] [CrossRef]
- Zălaru, C.; Crişan, C.; Călinescu, I.; Moldovan, Z.; Ţârcomnicu, I.; Litescu, S.; Tatia, R.; Moldovan, L.; Boda, D.; Iovu, M. Polyphenols in Coreopsis tinctoria Nutt. fruits and the plant extracts antioxidant capacity evaluation. Cent. Eur. J. Chem. 2014, 12, 858–867. [Google Scholar] [CrossRef]
- UNIFI Scientific Information System, Driver Pack 2020 Release 1; Waters: Milford, MA, USA, 2020.
- MassBank. Available online: www.massbank.jp/Search (accessed on 19 July 2021).
- Saleem, M.; Hareem, S.; Khan, A.; Naheed, S.; Raza, M.; Hussain, R.; Imran, M.; Choudhary, M.I. Dual inhibitors of urease and carbonic anhydrase-II from Iris species. Pure Appl. Chem. 2019, 91, 1695–1707. [Google Scholar] [CrossRef]
- Wollenweber, E.; Valant-Vetschera, K.M.; Fernandes, G.W. Chemodiversity of exudate flavonoids in Baccharis concinna and three further south-american Baccharis species. Nat. Prod. Commun. 2006, 1, 627–632. [Google Scholar] [CrossRef] [Green Version]
- Wollenweber, E.; Mann, K.; Doerr, M.; Fritz, H.; Roitman, J.N.; Yatskievych, G. Exudate flavonoids in three Ambrosia species. Nat. Prod. Lett. 1995, 7, 109–116. [Google Scholar] [CrossRef]
- Abraham, J.; Thomas, T.D. Isolation, characterization and evaluation of antibacterial activity of a flavanone derivative 8-hydroxyl naringenin from Elephantopus scaber Linn. World J. Pharm. Res. 2015, 4, 2232–2240. [Google Scholar]
- Rani, G.; Yadav, L.; Kalidhar, S.B. Phytochemical investigation of Citrus sinensis flavedo variety Blood Red. J. Indian Chem. Soc. 2011, 88, 887–888. [Google Scholar]
- Wang, Y.-M.; Zhao, J.-Q.; Yang, J.-L.; Tao, Y.-D.; Mei, L.-J.; Shi, Y.-P. Separation of antioxidant and α-glucosidase inhibitory flavonoids from the aerial parts of Asterothamnus centrali-asiaticus. Nat. Prod. Res. 2017, 31, 1365–1369. [Google Scholar] [CrossRef]
- Elshamy, A.I.; Mohamed, T.A.; Marzouk, M.M.; Hussien, T.A.; Umeyama, A.; Hegazy, M.E.F.; Efferth, T. Phytochemical constituents and chemosystematic significance of Pulicaria jaubertii E.Gamal-Eldin (Asteraceae). Phytochem. Lett. 2018, 24, 105–109. [Google Scholar] [CrossRef]
- Shimokoriyama, M.; Hattori, S. Anthoclor pigments of Cosmos sulphureus, Coreopsis lanceolata, and C saxicola. J. Am. Chem. Soc. 1953, 75, 1900–1904. [Google Scholar] [CrossRef]
- Hoffmann, B.; Hoelzl, J. Chalcone glucosides from Bidens pilosa. Phytochemistry 1988, 28, 247–249. [Google Scholar] [CrossRef]
- Sato, T.; Nakayama, T.; Kikuchi, S.; Fukui, Y.; Yonekura-Sakakibara, K.; Ueda, T.; Nishino, T.; Tanaka, Y.; Kusumi, T. Enzymatic formation of aurones in the extracts of yellow snapdragon flowers. Plant Sci. 2001, 160, 229–236. [Google Scholar] [CrossRef]
- Kaintz, C.; Molitor, C.; Thill, J.; Kampatsikas, I.; Michael, C.; Halbwirth, H.; Rompel, A. Cloning and functional expression in E. coli of a polyphenol oxidase transcript from Coreopsis grandiflora involved in aurone formation. FEBS Lett. 2014, 588, 3417–3426. [Google Scholar]
- Li, J.; Wen, Q.; Feng, Y.; Zhang, J.; Luo, Y.; Tan, T. Characterization of the multiple chemical components of Glechomae Herba using ultra high performance liquid chromatography coupled to quadrupole-time-of-flight tandem mass spectrometry with diagnostic ion filtering strategy. J. Sep. Sci. 2019, 42, 1312–1322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ammar, S.; Abidi, J.; Vlad Luca, S.; Boumendjel, M.; Skalicka-Wozniak, K.; Bouaziz, M. Untargeted metabolite profiling and phytochemical analysis based on RP-HPLC-DAD-QTOF-MS and MS/MS for discovering new bioactive compounds in Rumex algeriensis flowers and stems. Phytochem. Anal. 2020, 31, 616–635. [Google Scholar] [CrossRef]
- Kandil, F.E.; Grace, M.H. Polyphenols from Cornulaca monacantha. Phytochemistry 2001, 58, 611–613. [Google Scholar] [CrossRef]
- Ruiz, E.; Donoso, C.; Gonzalez, F.; Becerra, J.; Marticorena, C.; Silva, M. Phenetic relationships between Juan Fernandez and continental Chilean species of Sophora (Fabaceae) based on flavonoid patterns. Bol. Soc. Chil. Quím. 1999, 44, 351–356. [Google Scholar] [CrossRef]
- Elgindi, M.R.; Elgindi, O.D.; Mabry, T.J. Flavonoids of Aptenia cordifolia. Asian J. Chem. 1999, 11, 1525–1527. [Google Scholar]
- Olennikov, D.N.; Chirikova, N.K.; Kashchenko, N.I. Spinacetin, a New Caffeoylglycoside, and Other Phenolic Compounds from Gnaphalium uliginosum. Chem. Nat. Compd. 2015, 51, 1085–1090. [Google Scholar] [CrossRef]
- Parejo, I.; Bastida, J.; Viladomat, F.; Codina, C. Acylated quercetagetin glycosides with antioxidant activity from Tagetes maxima. Phytochemistry 2005, 66, 2356–2362. [Google Scholar] [CrossRef]
- Lai, J.-P.; Lim, Y.H.; Su, J.; Shen, H.-M.; Ong, C.N. Identification and characterization of major flavonoids and caffeoylquinic acids in three Compositae plants by LC/DAD-APCI/MS. J. Chromatogr. B 2007, 848, 215–225. [Google Scholar] [CrossRef]
- Hung, T.M.; Cuong, T.D.; Nguyen, H.D.; Zhu, S.; Long, P.Q.; Komatsu, K.; Min, B.S. Flavonoid glycosides from Chromolaena odorata leaves and their in vitro cytotoxic activity. Chem. Pharm. Bull. 2011, 59, 129–131. [Google Scholar] [CrossRef] [Green Version]
- Saleem, H.; Zengin, G.; Locatelli, M.; Tartaglia, A.; Ferrone, V.; Htar, T.T.; Naidu, R.; Mahomoodally, M.F.; Ahemad, N. Filago germanica (L.) Huds. bioactive constituents: Secondary metabolites fingerprinting and in vitro biological assays. Ind. Crop. Prod. 2020, 152, 112505. [Google Scholar] [CrossRef]
- Nicholls, K.W.; Bohm, B.A. Flavonoids and affinities of Coreopsis bigelovii. Phytochemistry 1979, 186, 1076. [Google Scholar] [CrossRef]
- Ishimaru, K.; Sadoshima, S.; Neera, S.; Koyama, K.; Takahashi, K.; Shimomura, K. A polyacetylene gentiobioside from hairy roots of Lobelia inflate. Phytochemistry 1992, 31, 1577–1579. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Y.; Wang, R.; Guo, F.; Yan, C. Two-dimensional liquid chromatography coupled with mass spectrometry for the analysis of Lobelia chinensis Lour. using an ESI/APCI multimode ion source. J. Sep. Sci. 2008, 31, 2388–2394. [Google Scholar] [CrossRef] [PubMed]
- Nauck, M. Incretin therapies: Highlighting common features and differences in the modes of action of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Diabetes Obes. Metab. 2016, 18, 203–216. [Google Scholar] [CrossRef] [Green Version]
- Mentlein, R. Dipeptidyl-peptidase IV (CD26)-role in the inactivation of regulatory peptides. Regul. Pept. 1999, 85, 9–24. [Google Scholar] [CrossRef]
- Langley, A.K.; Suffoletta, T.J.; Jennings, H.R. Dipeptidyl peptidase IV inhibitors and the incretin system in type 2 Diabets Mellitus. Pharmacotherapy 2007, 27, 1163–1180. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Y.; Zhu, J.; Li, B.; Li, Z.; Zhu, W.; Shi, J.; Jia, Q.; Li, Y. Recent progress in natural products as DPP-4 inhibitors. Future Med. Chem. 2015, 7, 1079–1089. [Google Scholar] [CrossRef]
- Kalhotra, P.; Chittepu, V.; Osorio-Revilla, G.; Gallardo-Velázquez, T. Structure-activity relationship and molecular docking of natural product library reveal chrysin as a novel dipeptidyl peptidase-4 (DPP-4) inhibitors: An integrated in silico and In Vitro study. Molecules 2018, 23, 1368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parmar, H.S.; Jain, P.; Chauhan, D.S.; Bhinchar, M.K.; Munjal, V.; Yusuf, M.; Choube, K.; Tawani, A.; Tiwari, V.; Manivannan, E.; et al. DPP-IV inhibitory potential of naringin: An in silico, in vitro and in vivo study. Diabetes Res. Clin. Pract. 2012, 97, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.-R.; Kim, H.Y.; Choi, I.H.; Kim, J.-B.; Jin, C.H.; Han, A.-R. DPP-IV Inhibitory Potentials of Flavonol Glycosides Isolated from the Seeds of Lens culinaris: In Vitro and Molecular Docking Analyses. Molecules 2018, 23, 1998. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.-R.; Thapa, P.; Kim, H.M.; Jin, C.H.; Kim, S.H.; Kim, J.-B.; Choi, H.J.; Han, A.-R.; Nam, J.-W. Purification of phenylpropanoids from the scaly bulbs of Lilium longiflorum by CPC and determination of their DPP-IV inhibitory potentials. ACS Omega 2020, 5, 4050–4057. [Google Scholar] [CrossRef] [Green Version]
Group (Plant Name) | No. | Cultivar Names | Registration No. | Application No. | Breeding Process |
---|---|---|---|---|---|
I (C. rosea) | 1 | Heaven’s gate | - | - | Original cultivar |
2 | Luckyten 6 | 3869 | - | Herbicide-induced artificial mutation | |
3 | Redfin | 4408 | - | γ-Irradiated mutation | |
4 | Lemon candy | 4418 | - | γ-Irradiated mutation | |
5 | Shiny pink | 4420 | - | γ-Irradiated mutation | |
6 | Uri-dream 01 | 3993 | - | Herbicide-induced artificial mutation | |
7 | Luckyten5 | 4411 | - | Herbicide-induced artificial mutation | |
8 | Luckyten9 | 4413 | - | Herbicide-induced artificial mutation | |
9 | Uri-dream red | 6001 | - | γ-Irradiated mutation | |
10 | Uri-dream 07 | 3998 | - | Herbicide-induced artificial mutation | |
11 | Uri-dream 06 | 3997 | - | Herbicide-induced artificial mutation | |
12 | Pink sherbet | 4415 | - | γ-Irradiated mutation | |
II (C. verticillata) | 13 | Citrine | - | - | Original cultivar |
14 | Golden ball No.18 | 6421 | - | γ-Irradiated mutation | |
15 | Golden ball No.21 | 6422 | - | γ-Irradiated mutation | |
16 | Golden ball No.26 | 5995 | - | γ-Irradiated mutation | |
17 | Golden ball No.42 | 5997 | - | γ-Irradiated mutation | |
18 | Golden ball No.48 | 5999 | - | γ-Irradiated mutation | |
III (C. rosea) | 19 | Pumpkin Pie | - | - | Original cultivar |
20 | Gold ring | 7523 | - | γ-Irradiated mutation | |
21 | Golden ring | 5994 | - | γ-Irradiated mutation | |
22 | Mini ball yellow | 6453 | - | γ-Irradiated mutation | |
23 | Box tree | 6462 | - | γ-Irradiated mutation | |
24 | Orange ball | 6005 | - | γ-Irradiated mutation | |
IV (C. verticillata) | 25 | Route 66 | - | - | Original cultivar |
26 | Golden sunlight | - | 2018-406 | γ-Irradiated mutation | |
27 | Red sunlight | - | 2018-410 | γ-Irradiated mutation | |
28 | Bright sunlight | - | 2018-408 | γ-Irradiated mutation | |
29 | Yellow sunlight | - | 2018-411 | γ-Irradiated mutation | |
30 | Orange sunlight | - | 2018-399 | γ-Irradiated mutation | |
V (C. verticillata) | 31 | Moonbeam | - | - | Original cultivar |
32 | Moonlight sonata | - | 2018-401 | Selection of phenotypic variant |
Peak No. | ESI-MS tR (min) | Observed Mass (m/z) | Caculated Mass (m/z) | Error (ppm) | Molecular Formula | Key MSE Fragment Ions (m/z) | Identification |
---|---|---|---|---|---|---|---|
1 | 4.48 | 465.1030 | 465.1039 | −0.8 | C21H22O12 | 303.0503, 285.0397, 151.0034, 125.0239 | Taxifolin-7-O-glucoside |
2 | 4.50 | 353.0864 | 353.0878 | −1.4 | C16H18O9 | 191.0556, 133.0290 | Chlorogenic acid |
3 | 4.96 | 465.1030 | 465.1039 | −0.8 | C21H22O12 | 303. 0503, 287.0550, 285.0397, 151.0034, 125.0234 | Taxifolin-3-O-glucoside |
4 | 5.21 | 329.0865 | 329.0878 | −1.3 | C14H18O9 | 167.0338, 151.0026 | Vanillic acid-4-glucoside |
5 | 5.74 | 449.1085 | 449.1089 | −0.4 | C21H22O11 | 287.0554, 269.0446, 151.0034, 135.0449 | Flavanomarein |
6 | 5.85 | 595.1649 | 595.1668 | −1.9 | C27H32O15 | 449.1069, 287.0548, 269.0428, 151.0028, 135.0447 | Isookanin-7-O-rutinoside |
7 | 5.93 | 609.1454 | 609.1461 | −0.7 | C27H30O16 | 447.0932, 285.0392, 151.0033 | Luteolin-7-O-sophoroside |
8 | 5.98 | 433.1135 | 433.1140 | −0.5 | C21H22O10 | 271.0605, 253.0499, 135.0449 | Butin-7-O-glucoside |
9 | 6.17 | 479.0825 | 479.0831 | −0.6 | C21H20O13 | 317.0291, 166.9963 | 8-Methoxyeriodictyol-7-O-glucoside |
10 | 6.23 | 463.1239 | 463.1246 | −0.7 | C22H24O13 | 301.0708, 165.0188, 135.0449 | Coreolanceoline B |
11 | 6.34 | 463.1251 | 463.1246 | −0.5 | C22H24O11 | 301.0708, 165.0188, 135.0449 | Lanceolin |
12 | 6.48 | 433.1134 | 433.1140 | −0.6 | C21H22O10 | 271.0602, 151.0029, 119.0488 | Naringenin-7-O-glucoside |
13 | 6.51 | 611.1612 | 611.1618 | −0.6 | C27H32O16 | 449.1080, 287.0551, 269.0393, 135.0447 | Okanin-3′,4′-O-diglucoside |
14 | 6.52 | 595.1664 | 595.1668 | −0.4 | C27H32O15 | 433.1121, 271.0604, 135.0447 | 4′,7,8-Trihydroxyflavone-O-diglucoside |
15 | 6.58 | 609.1454 | 609.1461 | −0.7 | C27H30O16 | 447.0932, 285.0394, 135.0082 | Fisetin-3,7-O-diglucoside |
16 | 6.64 | 287.0555 | 287.0561 | −0.6 | C15H12O6 | 151.0031, 135.0449 | Isookanin |
17 | 6.87 | 303.0502 | 303.0510 | −0.8 | C15H12O7 | 285.0399, 151.0084, 135.0447, 125.0240 | Taxifolin |
18 | 6.91 | 581.1501 | 581.1512 | −1.1 | C26H30O15 | 287.0552, 167.0342, 151.0029 | 4′,5,7,8-Tetrahydroxyflavanone-7-O-(6-O-arabinosyl-glucoside) |
19 | 6.94 | 431.0977 | 431.0984 | −0.7 | C21H20O10 | 269.0447, 135.0447, 133.0290 | Sulfuretin-6-O-glucoside |
20 | 6.97 | 463.0885 | 463.0882 | 0.3 | C21H20O12 | 301.0346, 151.0031 | Quercetin-7-O-glucoside |
21 | 7.01 | 447.0929 | 447.0927 | 0.2 | C21H20O11 | 285.0397, 135.0447, 133.0291 | Maritimein |
22 | 7.03 | 447.0929 | 447.0927 | 0.2 | C21H20O11 | 285.0397, 151.0033 | Luteolin-7-O-glucoside |
23 | 7.15 | 449.1081 | 449.1089 | −0.8 | C21H22O11 | 287.0551, 269.0445, 151.0033, 135.0448 | Marein |
24 | 7.26 | 493.0984 | 493.0988 | −0.4 | C22H22O13 | 331.0447, 316.0200, 164.9830 | Taxifolin 3′,7-dimethyl ether 3-O-glucoside |
25 | 7.33 | 461.1085 | 461.1089 | −0.4 | C22H22O11 | 299.0547, 283.0242, 165.0188, 133.0291 | 3,3′,4′-Trihydroxy-7-methoxyflavone 3-O-glucoside |
26 | 7.58 | 641.1141 | 641.1148 | −0.7 | C30H26O16 | 317.0294, 301.0342, 285.0381, 179.0343, 161.0224, 135.0447, 133.0289 | Qurcetagetin-7-O-(6′′-caffeoylglucoside) |
27 | 7.68 | 515.1183 | 515.1195 | −1.2 | C25H24O12 | 353.0869, 191.0557, 179.0346, 135.0447 | 3,5-Dicaffeoylquinic acid |
28 | 7.77 | 269.0449 | 269.0450 | −0.1 | C15H10O5 | 135.0447, 133.0287 | Sulfuretin |
29 | 7.91 | 431.0978 | 431.0984 | −0.6 | C21H20O10 | 285.0398, 151.0031, 133.0289 | Luteolin-6-O-rhamnoside |
30 | 8.02 | 433.1135 | 433.1140 | −0.5 | C21H22O10 | 271.0606, 135.0448 | Coreopsin |
31 | 8.04 | 515.1187 | 515.1195 | −0.8 | C25H24O12 | 353.0862, 191.0556, 179.0340 | 4,5-Dicaffeoylquinic acid |
32 | 8.26 | 287.0556 | 287.0561 | −0.5 | C15H12O6 | 151.0032, 134.0368, 123.0083 | Okanin |
33 | 8.46 | 611.1398 | 611.1406 | −0.8 | C30H28O14 | 449.1109, 287.0559, 269.0441, 151.0024 | Eriodictyol chalcone-O-diglucoside |
34 | 8.73 | 287.0553 | 287.0561 | −0.8 | C15H12O6 | 151.0032, 135.0047 | Eriodictyol chalcone |
35 | 8.74 | 299.0555 | 299.0561 | −0.6 | C16H12O6 | 284.0319, 151.0032, 133.0291 | Kaempferide |
36 | 8.80 | 285.0398 | 285.0405 | −0.7 | C15H10O6 | 151.0032, 133.0291 | Luteolin |
37 | 8.84 | 477.1396 | 477.1402 | −0.6 | C23H26O11 | 315.0864, 300.0624, 282.0527, 148.0524, 135.0435 | 4-Methoxylanceoletin-4′-O-glucoside |
38 | 9.20 | 271.0605 | 271.0612 | −0.7 | C15H12O5 | 253.0496, 135.0448, | Butein |
39 | 9.28 | 269.0447 | 269.0450 | −0.3 | C15H10O5 | 227.0351, 117.0341 | Apigenin |
40 | 9.39 | 831.3595 | 831.3597 | −0.2 | C46H56O14 | 785.3536, 666.2998, 545.2401, 145.0291 | Unknown |
41 | 9.45 | 557.2244 | 557.2240 | −2.1 | C26H38O13 | 233.0650, 191.0554, 149.0441 | Lobetyolinin |
Group (Plant Name) | No. | Cultivar Names | DPP-IV Inhibitory Effects (IC50, μg/mL) 1 |
---|---|---|---|
I (C. rosea) | 1 | Heaven’s gate | 125.29 |
2 | Luckyten 6 | 158.83 | |
3 | Redfin | 117.55 | |
4 | Lemon candy | 95.39 | |
5 | Shiny pink | 76.92 | |
6 | Uri-dream 01 | 95.53 | |
7 | Luckyten5 | 78.06 | |
8 | Luckyten9 | 78.60 | |
9 | Uri-dream red | 66.46 | |
10 | Uri-dream 07 | 118.13 | |
11 | Uri-dream 06 | 134.28 | |
12 | Pink sherbet | 117.70 | |
II (C. verticillata) | 13 | Citrine | 56.86 |
14 | Golden ball No.18 | 53.55 | |
15 | Golden ball No.21 | 49.64 | |
16 | Golden ball No.26 | 63.84 | |
17 | Golden ball No.42 | 45.01 | |
18 | Golden ball No.48 | 41.44 | |
III (C. rosea) | 19 | Pumpkin Pie | 76.40 |
20 | Gold ring | 87.62 | |
21 | Golden ring | 89.22 | |
22 | Mini ball yellow | 74.57 | |
23 | Box tree | 76.83 | |
24 | Orange ball | 124.88 | |
IV (C. verticillata) | 25 | Route 66 | 54.87 |
26 | Golden sunlight | 40.37 | |
27 | Red sunlight | 45.42 | |
28 | Bright sunlight | 47.58 | |
29 | Yellow sunlight | 50.45 | |
30 | Orange sunlight | 34.01 | |
V (C. verticillata) | 31 | Moonbeam | 60.61 |
32 | Moonlight sonata | 61.15 | |
Sitagliptin2 | 0.095 (μM) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B.-R.; Paudel, S.B.; Han, A.-R.; Park, J.; Kil, Y.-S.; Choi, H.; Jeon, Y.G.; Park, K.Y.; Kang, S.-Y.; Jin, C.H.; et al. Metabolite Profiling and Dipeptidyl Peptidase IV Inhibitory Activity of Coreopsis Cultivars in Different Mutations. Plants 2021, 10, 1661. https://doi.org/10.3390/plants10081661
Kim B-R, Paudel SB, Han A-R, Park J, Kil Y-S, Choi H, Jeon YG, Park KY, Kang S-Y, Jin CH, et al. Metabolite Profiling and Dipeptidyl Peptidase IV Inhibitory Activity of Coreopsis Cultivars in Different Mutations. Plants. 2021; 10(8):1661. https://doi.org/10.3390/plants10081661
Chicago/Turabian StyleKim, Bo-Ram, Sunil Babu Paudel, Ah-Reum Han, Jisu Park, Yun-Seo Kil, Hyukjae Choi, Yeo Gyeong Jeon, Kong Young Park, Si-Yong Kang, Chang Hyun Jin, and et al. 2021. "Metabolite Profiling and Dipeptidyl Peptidase IV Inhibitory Activity of Coreopsis Cultivars in Different Mutations" Plants 10, no. 8: 1661. https://doi.org/10.3390/plants10081661
APA StyleKim, B. -R., Paudel, S. B., Han, A. -R., Park, J., Kil, Y. -S., Choi, H., Jeon, Y. G., Park, K. Y., Kang, S. -Y., Jin, C. H., Kim, J. -B., & Nam, J. -W. (2021). Metabolite Profiling and Dipeptidyl Peptidase IV Inhibitory Activity of Coreopsis Cultivars in Different Mutations. Plants, 10(8), 1661. https://doi.org/10.3390/plants10081661