Time Course of Root Axis Elongation and Lateral Root Formation in Perennial Ryegrass (Lolium perenne L.)
Abstract
:1. Introduction
2. Results
2.1. Plant Environment and Plant Development
2.2. Root Dry Weight, Main Axis Length and Number of Roots per Phytomer
2.3. Ontogeny of Root Morphological Development
2.3.1. Total Length, Surface Area and Volume of Individual Roots
2.3.2. Phases of Root Development
3. Discussion
3.1. Ontogeny of Root Developemnt
3.2. Hypothesized Seasonal Shift in C Supply to Roots
3.3. Branching as a Mechanism for Surface Area Development
3.4. Extrapolation of Results to Field Swards
4. Materials and Methods
4.1. Plant Culture
4.2. Root Harvest
4.3. Root Age Determination
4.4. Root Measurements
4.5. Root Preservation and Processing
4.6. Root Scanning Using WinRHIZO® Software
4.7. Root Data Derivation
4.7.1. Root Dry Weight Correction
4.7.2. Root Dry Weight of the Individual Roots (RDWi)
4.7.3. Dry Matter Deposition Rate at Each Phytomer
4.7.4. Specific Root Length, Surface Area, and Volume
4.8. Visual Scoring for the Root Branching Orders
4.9. Root Length:Volume and Surface Area:Volume Ratios
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jewiss, O.R. Morphological and physiological aspects of growth of grasses during the vegetative phase. In The Growth of Cereals and Grasses, Proceedings of the Twelfth Easter School in Agricultural Science University of Nottingham, Butterworths, London, UK, 1 January 1966; Milthorpe, F.L., Ivins, J.D., Eds.; Butterworths: London, UK, 1966; p. 39. [Google Scholar]
- Silsbury, J.H. Leaf growth in pasture grasses. Trop. Grassl. 1970, 4, 17–39. [Google Scholar]
- Yang, J.Z.; Matthew, C.; Rowland, R.E. Tiller axis observations for perennial ryegrass (Lolium perenne) and tall rescue (Festuca arundinacea): Number of active phytomers, probability of tiller appearance, and frequency of root appearance per phytomer for three cutting heights. N. Z. J. Agric. Res. 1988, 41, 11–18. [Google Scholar] [CrossRef]
- Skinner, R.H.; Nelson, C.J. Epidermal Cell Division and the Coordination of Leaf and Tiller Development. Ann. Bot. 1994, 74, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Durand, J.-L.; Schäufele, R.; Gastal, F. Grass Leaf Elongation Rate as a Function of Developmental Stage and Temperature: Morphological Analysis and Modelling. Ann. Bot. 1999, 83, 577–588. [Google Scholar] [CrossRef] [Green Version]
- Fournier, C.; Durand, J.L.; Ljutovac, S.; Schäufele, R.; Gastal, F.; Andrieu, B. A functional–structural model of elongation of the grass leaf and its relationships with the phyllochron. New Phytol. 2005, 166, 881–894. [Google Scholar] [CrossRef]
- Matthew, C.; Van Loo, E.N.; Thom, E.R.; Dawson, L.A.; Care, D.A. Understanding shoot and root development. In Proceedings of the XIX International Grassland Congress, Piracicaba, Brazil, 11–21 February 2001; pp. 19–27. [Google Scholar]
- Weaver, J.E.; Zink, E. Length of Life of Roots of Ten Species of Perennial Range and Pasture Grasses. Plant Physiol. 1946, 21, 201–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacques, W.A.; Schwass, R.H. Root development in some common N. Z. pasture plants VII. Seasonal root replacement in perennial ryegrass (Lolium perenne), Italian ryegrass (L. multiforum), and tall fescue (Festuca arundinaceae). N. Z. J. Sci. Technol. 1956, 37A, 569–583. [Google Scholar]
- Caradus, J.R.; Evans, P.S. Seasonal root formation of white clover, ryegrass, and cocksfoot in New Zealand. N. Z. J. Agric. Res. 1977, 20, 337–342. [Google Scholar] [CrossRef]
- Klepper, B.; Belford, R.K.; Rickman, R.W. Root and Shoot Development in Winter Wheat 1. Agron. J. 1984, 76, 117–122. [Google Scholar] [CrossRef]
- Matthew, C.; Kemball, W.D. Allocation of carbon–14 to roots of different ages in perennial ryegrass (Lolium perenne L.). In Proceedings of the XVIII International Grassland Congress, Saskatoon, SK, Canada, 8–17 June 1997; Association Management Centre: Calgary, AB, Canada, 1997; Volume 7, pp. 1–2. [Google Scholar]
- Matthew, C.; Yang, J.Z.; Potter, J.F. Determination of tiller and root appearance in perennial ryegrass (Lolium perenne) swards by observation of the tiller axis, and potential application in mechanistic modelling. N. Z. J. Agric. Res. 1998, 41, 1–10. [Google Scholar] [CrossRef]
- Matthew, C.; Xia, J.; Chu, A.; Mackay, A.; Hodgson, J. Relationship between Root Production and Tiller Appearance Rates in Perennial Ryegrass (Lolium perenne L.). In Plant Root Growth, an Ecological Perspective, British Ecological Society Special Publication; Atkinson, D., Ed.; Balckwell Scientific Publications: London, UK, 1991; pp. 281–290. [Google Scholar]
- Cheng, W.; Coleman, D.C.; Box, J.E., Jr. Measuring root turnover using the minirhizotron technique. Agric. Ecosyst. Environ. 1991, 34, 261–267. [Google Scholar] [CrossRef]
- Majdi, H. Root sampling methods—Applications and limitations of the minirhizotron technique. Plant Soil 1996, 185, 255–258. [Google Scholar] [CrossRef]
- Johnson, M.; Tingey, D.; Phillips, D.; Storm, M. Advancing fine root research with minirhizotrons. Environ. Exp. Bot. 2001, 45, 263–289. [Google Scholar] [CrossRef]
- Bennie, A.; Taylor, H.; Georgen, P. An assessment of the core-break method for estimating rooting density of different crops in the field. Soil Tillage Res. 1987, 9, 347–353. [Google Scholar] [CrossRef]
- Robin, A.H.K. Segmental Morphology of Perennial Ryegrass (Lolium perenne L.): A Study of Functional Implications of Plant Architecture. Ph.D. Thesis, Massey University, Palmerston North, New Zealand, 2011; p. 262. [Google Scholar]
- Robin, A.H.K.; Matthew, C.; Crush, J. Time course of root initiation and development in perennial ryegrass—A new perspective. Proc. N. Z. Grassl. Assoc. 2010, 2010. 72, 233–239. [Google Scholar]
- Robin, A.H.K.; Irving, L.J.; Khaembah, E.N.; Matthew, C. Modelling Carbon Fluxes as an Aid to Understanding Perennial Ryegrass (Lolium perenne) Root Dynamics. Agronomy 2018, 8, 236. [Google Scholar] [CrossRef] [Green Version]
- Etter, A.G. How Kentucky Bluegrass Grows. Ann. Mo. Bot. Gard. 1951, 38, 293. [Google Scholar] [CrossRef]
- Callaghan, T.V. Growth and Population Dynamics of Carex Bigelowii in an Alpine Environment. Strategies of Growth and Population Dynamics of Tundra Plants 3. Oikos 1976, 27, 402. [Google Scholar] [CrossRef]
- Evans, P.S. Plant root distribution and water use patterns of some pasture and crop species. N. Z. J. Agric. Res. 1978, 21, 261–265. [Google Scholar] [CrossRef]
- Crush, J.R.; Easton, H.S.; Waller, J.E.; Hume, D.; Faville, M. Genotypic variation in patterns of root distribution, nitrate interception and response to moisture stress of a perennial ryegrass (Lolium perenne L.) mapping population. Grass Forage Sci. 2007, 62, 265–273. [Google Scholar] [CrossRef]
- Wedderburn, M.; Crush, J.; Pengelly, W.; Walcroft, J. Root growth patterns of perennial ryegrasses under well-watered and drought conditions. N. Z. J. Agric. Res. 2010, 53, 377–388. [Google Scholar] [CrossRef]
- Carvalho, D.; Irving, L.; Carnevalli, R.; Hodgson, J.; Matthew, C. Distribution of current photosynthate in two Guinea grass (Panicum maximum Jacq.) cultivars. J. Exp. Bot. 2006, 57, 2015–2024. [Google Scholar] [CrossRef]
- Irving, L.; Scheneiter, O.; Fischer Sbrissia, A.; Matthew, C. Destino de asimilatos de macollos jóvenes en gramíneas templadas. Rev. Argent. Prod. Anim. 2009, 29, 467–468. [Google Scholar]
- Fulkerson, W.J.; Donaghy, D.J. Plant-soluble carbohydrate reserves and senescence-key criteria for developing an effective grazing management system for ryegrass-based pastures: A review. Aust. J. Exp. Agric. 2001, 41, 261–275. [Google Scholar] [CrossRef]
- Matthew, C.; Mackay, A.D.; Robin, A.H.K. Do Phytomer Turnover Models of Plant Morphology Describe Perennial Ryegrass Root Data from Field Swards? Agriculture 2016, 6, 28. [Google Scholar] [CrossRef] [Green Version]
- Garwood, E.A. Seasonal variation in appearance and growth of grass roots. Grass Forage Sci. 1967, 22, 121–130. [Google Scholar] [CrossRef]
- Troughton, A. Length of life of grass roots. Grass Forage Sci. 1981, 36, 117–120. [Google Scholar] [CrossRef]
- Watson, C.A.; Ross, J.M.; Bagnaresi, U.; Minotta, G.F.; Roffi, F.; Black, K.E.; Hooker, J.E.; Atkinson, D. Environment-induced Modifications to Root Longevity in Lolium perenne and Trifolium repens. Ann. Bot. 2000, 85, 397–401. [Google Scholar] [CrossRef] [Green Version]
- Troughton, A. Studies on the roots and storage organs of herbage plants. Grass Forage Sci. 1951, 6, 197–206. [Google Scholar] [CrossRef]
- Tozer, K.N.; Carswell, K.; Griffiths, W.M.; Crush, J.R.; Cameron, C.A.; Chapman, D.F.; King, W. Growth responses of diploid and tetraploid perennial ryegrass (Lolium perenne) to soil-moisture deficit, defoliation and a root-feeding inverte-brate. Crop Pasture Sci. 2017, 68, 632–642. [Google Scholar] [CrossRef]
- Crush, J.R.; Ouyang, L.; Eerens, J.P.J.; Stewart, A.V. The growth of roots of perennial, Italian, hybrid and annual ryegrasses through a high-strength root medium. Grass Forage Sci. 2002, 57, 322–328. [Google Scholar] [CrossRef]
- Yadav, R.; Courtois, B.; Huang, N.; McLaren, G. Mapping genes controlling root morphology and root distribution in a doubled-haploid population of rice. Theor. Appl. Genet. 1997, 94, 619–632. [Google Scholar] [CrossRef]
- Robin, A.H.K.; Saha, P.S. Morphology of lateral roots of twelve rice cultivars of Bangladesh: Dimension increase and di-ameter reduction in progressive root branching at the vegetative stage. Plant Root 2015, 9, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Robin, A.H.K.; Matthew, C.; Uddin, J.; Bayazid, K.N. Salinity-induced reduction in root surface area and changes in major root and shoot traits at the phytomer level in wheat. J. Exp. Bot. 2016, 67, 3719–3729. [Google Scholar] [CrossRef] [PubMed]
- Boot, R.G.A. The Significance of size And Morphology of Root Systems for Nutrient Acquisition and Competition: Causes and Consequences of Variation in Growth rate and Productivity of Higher Plants; SPB Academic Publishing: The Hague, The Netherlands, 1989; pp. 299–311. [Google Scholar]
- Arif, M.R.; Islam, M.T.; Robin, A.H.K. Salinity Stress Alters Root Morphology and Root Hair Traits in Brassica napus. Plants 2019, 8, 192. [Google Scholar] [CrossRef] [Green Version]
- Hannan, A.; Hassan, L.; Hoque, N.; Arif, T.-U.; Robin, A.H.K. Increasing New Root Length Reflects Survival Mechanism of Rice (Oryza sativa L.) Genotypes under PEG-Induced Osmotic Stress. Plant Breed. Biotechnol. 2020, 8, 46–57. [Google Scholar] [CrossRef]
- Robin, A.; Ghosh, S.; Shahed, A. PEG-Induced Osmotic Stress Alters Root Morphology and Root Hair Traits in Wheat Genotypes. Plants 2021, 10, 1042. [Google Scholar] [CrossRef]
- Röhm, M.; Werner, D. Isolation of root hairs from seedlings of Pisum sativum. Identification of root hair specific proteins by in situ labeling. Physiol. Plant. 1987, 69, 129–136. [Google Scholar] [CrossRef]
- Reid, J.B.; Crush, J.R. Root turnover in pasture species: Perennial ryegrass (Lolium perenne L.). Crop. Pasture Sci. 2013, 64, 165–177. [Google Scholar] [CrossRef]
- Hume, D.E.; Brock, J.L. Morphology of tall fescue (Festuca arundinacea) and perennial ryegrass (Lolium perenne) plants in pastures under sheep and cattle grazing. J. Agric. Sci. 1997, 129, 19–31. [Google Scholar] [CrossRef]
- Crush, J.; Ouyang, L.; Nichols, S. Loss of weight in ryegrass and clover roots preserved in ethanol prior to image analysis for root traits. Acta Physiol. Plant. 2009, 32, 605–606. [Google Scholar] [CrossRef]
- Littell, R.C.; Henry, P.R.; Ammerman, C.B. Statistical analysis of repeated measures data using SAS procedures. J. Anim. Sci. 1998, 76, 1216–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Y.; Hein, M.J.; Deddens, J.A.; Hines, C.J. Analysis of Lognormally Distributed Exposure Data with Repeated Measures and Values below the Limit of Detection Using SAS. Ann. Occup. Hyg. 2010, 55, 97–112. [Google Scholar] [CrossRef] [PubMed]
- Davies, A. Structure of the grass sward. In Irish Grassland Association and Animal Production and An Foras Taluntais, Proceedings of the International Meeting on Animal Production from Temperate Grassland, Dublin, Ireland, 5–12 June 1977; Gilsenan, B., Ed.; Irish Grassland and Animal Production Association: Dublin, Ireland, 1977; pp. 36–44. [Google Scholar]
Variables | Spring | Autumn | p Value |
---|---|---|---|
Leaf dry weight per tiller (mg) a | 498.1 ± 27.8 | 1515 ± 60 | <0.01 |
Number of live leaves per tiller a | 8.1 ± 0.15 | 12.25 ± 0.47 | <0.01 |
Range of leaf elongation rates (mm °C.d−1) | 1.4 to 2.4 | 1.7 to 2.7 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robin, A.H.K.; Irving, L.J.; Crush, J.; Schnyder, H.; Lattanzi, F.A.; Matthew, C. Time Course of Root Axis Elongation and Lateral Root Formation in Perennial Ryegrass (Lolium perenne L.). Plants 2021, 10, 1677. https://doi.org/10.3390/plants10081677
Robin AHK, Irving LJ, Crush J, Schnyder H, Lattanzi FA, Matthew C. Time Course of Root Axis Elongation and Lateral Root Formation in Perennial Ryegrass (Lolium perenne L.). Plants. 2021; 10(8):1677. https://doi.org/10.3390/plants10081677
Chicago/Turabian StyleRobin, Arif Hasan Khan, Louis John Irving, Jim Crush, Hans Schnyder, Fernando Alfredo Lattanzi, and Cory Matthew. 2021. "Time Course of Root Axis Elongation and Lateral Root Formation in Perennial Ryegrass (Lolium perenne L.)" Plants 10, no. 8: 1677. https://doi.org/10.3390/plants10081677
APA StyleRobin, A. H. K., Irving, L. J., Crush, J., Schnyder, H., Lattanzi, F. A., & Matthew, C. (2021). Time Course of Root Axis Elongation and Lateral Root Formation in Perennial Ryegrass (Lolium perenne L.). Plants, 10(8), 1677. https://doi.org/10.3390/plants10081677