Not Only a Weed Plant—Biological Activities of Essential Oil and Hydrosol of Dittrichia viscosa (L.) Greuter
Abstract
:1. Introduction
2. Results and Discussion
2.1. Gas Chromatography and Mass Spectrometry (GC-MS) Analysis of the Free Volatile Compounds from Essential Oil and Hydrosol
2.2. HPLC Analysis of Hydrosol
2.3. Wide-Spectrum Antimicrobial Activity
2.4. Antiproliferative Activity
2.5. Glutathione (GSH) Assay
2.6. Antiphytoviral Activity
3. Materials and Methods
3.1. Herbal Material
3.2. Hydrodistillation and Analyses of Free Volatile Compounds
3.3. High-Performance Liquid Chromatography (HPLC)
3.4. Microbial Strains and Culture Conditions
3.5. Broth Microdilution Assays
3.6. Antiproliferative Analysis
3.7. Glutathione (GSH) Assay
3.8. Antiphytoviral Activity
3.8.1. Virus and Plant Hosts
3.8.2. Antiphytoviral Activity Assay
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zaki, M.; Loubidi, M.; Oukhrib, A.; Mallouk, S. Natural products from Dittrichia Viscosa (Mini-Review). RHAZES Green Appl. Chem. 2019, 9, 30–46. [Google Scholar]
- Maleš, Ž.; Šarić, F. Kvantitativna analiza fenolnih spojeva ljepljivog omana-Inula viscosa (L.) Ait. Farm. Glas. 2009, 65, 143–148. [Google Scholar]
- Tutin, T.G.; Heywood, V.H.; Burges, N.A.; Valentine, D.H.; Walters, S.M.; Webb, D.A. Flora Europaea, 2nd ed.; Cambridge University Press: London, UK, 1964–1980; Volume 1–5. [Google Scholar]
- Pignatti, S. Flora Ditalia; Edagricole: Bologna, Italy, 1982; Volume I–III. [Google Scholar]
- Flora Croatica Database: 26865. Available online: https://hirc.botanic.hr/fcd/DetaljiFrame.aspx?IdVrste=26865&taxon=Dittrichia+viscosa+(L.)+Greuter (accessed on 20 July 2021).
- Moeini, A.; van Reenen, A.; Van Otterlo, W.; Cimmino, A.; Masi, M.; Lavermicocca, P.; Valerio, F.; Immirzi, B.; Santagata, G.; Malinconico, M.; et al. α-costic acid, a plant sesquiterpenoid from Dittrichia viscosa, as modifier of Poly (lactic acid) properties: A novel exploitation of the autochthone biomass metabolite for a wholly biodegradable system. Ind. Crops Prod. 2020, 146, 112134. [Google Scholar] [CrossRef]
- Barrero, A.F.; Herrador, M.M.; Arteaga, P.; Catalán, J.V. Dittrichia viscosa L. Greuter: Phytochemistry and biological activity. Nat. Prod. Commun. 2008, 3, 1799–1804. [Google Scholar] [CrossRef] [Green Version]
- Zouaghi, N.; El, N.; Bensiradj, H.; Cavaleiro, C.; Nadjemi, B.; Telfah, A. Antimicrobial activities of natural volatiles organic compounds extracted from Dittrichia viscosa (L.) by hydrodistillation. Jordan J. Biol. Sci 2021, 14, 41–49. [Google Scholar]
- Eljazi, J.S.; Selmi, S.; Zarroug, Y.; Wesleti, I.; Aouini, B.; Jallouli, S.; Limam, F. Essential oil composition, phenolic compound, and antioxidant potential of Inulaviscosa as affected by extraction process. Int. J. Food Prop. 2018, 21, 2309–2319. [Google Scholar] [CrossRef] [Green Version]
- Haoui, I.E.; Derriche, R.; Madani, L.; Oukali, Z. Analysis of the chemical composition of essential oil from Algerian Inula viscosa (L.) Aiton. Arab. J. Chem. 2015, 8, 587–590. [Google Scholar] [CrossRef] [Green Version]
- Grauso, L.; Cesarano, G.; Zotti, M.; Ranesi, M.; Sun, W.; Bonanomi, G.; Lanzotti, V. Exploring Dittrichia viscosa (L.) Greuter phytochemical diversity to explain its antimicrobial, nematicidal and insecticidal activity. Phytochem. Rev. 2020, 19, 659–689. [Google Scholar] [CrossRef]
- Hamedi, A.; Pasdaran, A.; Zebarjad, Z.; Moein, M. A survey on chemical constituents and indications of aromatic waters soft drinks (Hydrosols) used in Persian nutrition culture and folk medicine for neurological disorders and mental health. J. Evid. Based Complementary Altern. Med. 2017, 22, 744–752. [Google Scholar] [CrossRef] [Green Version]
- Rhimi, W.; Ben Salem, I.; Iatta, R.; Chaabane, H.; Saidi, M.; Boulila, A.; Cafarchia, C. Dittrichia viscosa L. leaves lipid extract: An unexploited source of essential fatty acids and tocopherols with antifungal and anti-inflammatory properties. Ind. Crops Prod. 2018, 113, 196–201. [Google Scholar] [CrossRef]
- Bedoya, L.M.; Sanchez Palomino, S.; Abad, M.J.; Bermejo, P.; Alcami, J. Screening of selected plant extracts for in vitro inhibitory activity on human immunodeficiency virus. Phyther. Res. 2002, 16, 550–554. [Google Scholar] [CrossRef]
- Yaniv, Z.; Dafni, A.; Friedman, J.; Palevitch, D. Plants used for the treatment of diabetes in Israel. J. Ethnopharmacol. 1987, 19, 145–151. [Google Scholar] [CrossRef]
- Mohti, H.; Taviano, M.F.; Cacciola, F.; Dugo, P.; Mondello, L.; Marino, A.; Crisafi, G.; Benameur, Q.; Zaid, A.; Miceli, N. Inula viscosa (L.) Aiton leaves and flower buds: Effect of extraction solvent/technique on their antioxidant ability, antimicrobial properties and phenolic profile. Nat. Prod. Res. 2020, 34, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, E.; Karakas, F.P.; Yildirim, A.B.B.; Tas, I.; Eker, I.; Yavuz, M.Z.; Turker, A.U. Promising medicinal plant Inula viscosa L.: Antiproliferative, antioxidant, antibacterial and phenolic profiles. Prog. Nutr. 2019, 21, 652–661. [Google Scholar] [CrossRef]
- Messaoudi, M.; Chahmi, N.; El Mzibri, M.; Gmouh, S.; Amzazi, S.; Benbacer, L.; El Hassouni, M. Cytotoxic effect and chemical composition of Inula viscosa from three different regions of morocco. Eur. J. Med. Plants 2016, 16, 1–9. [Google Scholar] [CrossRef]
- Benbacer, L.; Merghoub, N.; El Btaouri, H.; Gmouh, S.; Attaleb, M.; Morjani, H.; Amzazi, S.; Mzibri, M. Antiproliferative effect and induction of apoptosis by Inula viscosa L. and Retama monosperma L. Extracts in human cervical cancer cells. In Topics on Cervical Cancer with an Advocacy for Prevention; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Rozenblat, S.; Grossman, S.; Bergman, M.; Gottlieb, H.; Cohen, Y.; Dovrat, S. Induction of G2/M arrest and apoptosis by sesquiterpene lactones in human melanoma cell lines. Biochem. Pharmacol. 2007, 75, 369–382. [Google Scholar] [CrossRef]
- Dunkic, V.; Bezic, N.; Vuko, E.; Cukrov, D. Antiphytoviral activity of Satureja montana L. ssp. variegata (host) P.W. Ball essential oil and phenol compounds on CMV and TMV. Molecules 2010, 15, 6713–6721. [Google Scholar] [CrossRef] [Green Version]
- Dunkić, V.; Bezić, N.; Vuko, E. Antiphytoviral activity of essential oil from endemic species Teucrium arduini. Nat. Prod. Commun. 2011, 6, 1385–1388. [Google Scholar] [CrossRef] [Green Version]
- Dunkić, V.; Vuko, E.; Bezić, N.; Kremer, D.; Ruščić, M. Composition and antiviral activity of the essential oils of Eryngium alpinum and E. amethystinum. Chem. Biodivers. 2013, 10, 1894–1902. [Google Scholar] [CrossRef]
- Bezić, N.; Vuko, E.; Dunkić, V.; Ruščić, M.; Blažević, I.; Burčul, F. Antiphytoviral activity of sesquiterpene-rich essential oils from four croatian teucrium species. Molecules 2011, 16, 8119–8129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuko, E.; Rusak, G.; Dunkić, V.; Kremer, D.; Kosalec, I.; Rađa, B.; Bezić, N. Inhibition of Satellite RNA Associated Cucumber Mosaic Virus Infection by Essential Oil of Micromeria croatica (Pers.) Schott. Molecules 2019, 24, 1342. [Google Scholar] [CrossRef] [Green Version]
- Vuko, E.; Dunkić, V.; Ruščić, M.; Nazlić, M.; Mandić, N.; Soldo, B.; Šprung, M.; Fredotović, Ž. Chemical composition and new biological activities of essential oil and hydrosol of Hypericum perforatum L. ssp. veronense (Schrank) H. Lindb. Plants 2021, 10, 1014. [Google Scholar] [CrossRef] [PubMed]
- Vuko, E.; Dunkić, V.; Bezić, N.; Ruščić, M.; Kremer, D. Chemical composition and antiphytoviral activity of essential oil of Micromeria graeca. Nat. Prod. Commun. 2012, 7, 1227–1230. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.; Han, Z.; Xu, Y.; Yao, L. In vitro and in vivo anti-tobacco mosaic virus activities of essential oils and individual compounds. J. Microbiol. Biotechnol. 2013, 23, 771–778. [Google Scholar] [CrossRef] [Green Version]
- Bishop, C.D. Antiviral activity of the essential oil of melaleuca alternifolia (Maiden amp; Betche) cheel (tea tree) against tobacco mosaic virus. J. Essent. Oil Res. 1995, 7, 641–644. [Google Scholar] [CrossRef]
- Madani, L.; Derriche, R.; Haoui, I.E. Essential oil of Algerian Inulaa viscosa leaves. J. Essent. Oil Bear. Plants 2014, 17, 164–168. [Google Scholar] [CrossRef]
- Gharred, N.; Dbeibia, A.; Falconieri, D.; Hammami, S.; Piras, A.; Dridi-Dhaouadi, S. Chemical composition, antibacterial and antioxidant activities of essential oils from flowers, leaves and aerial parts of Tunisian Dittrichia Viscosa. J. Essent. Oil Res. 2019, 31, 582–589. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4.1 ed.; Allured Publishing: Carol Stream, IL, USA, 2017. [Google Scholar]
- Nazlić, M.; Kremer, D.; Grubešić, R.J.; Soldo, B.; Vuko, E.; Stabentheiner, E.; Ballian, D.; Bogunić, F.; Dunkić, V. Endemic Veronica saturejoides vis. ssp. saturejoides–chemical composition and antioxidant activity of free volatile compounds. Plants 2020, 9, 1646. [Google Scholar] [CrossRef]
- Beara, I.; Živković, J.; Lesjak, M.; Ristić, J.; Šavikin, K.; Maksimović, Z.; Janković, T. Phenolic profile and anti-inflammatory activity of three Veronica species. Ind. Crops Prod. 2015, 63, 276–280. [Google Scholar] [CrossRef]
- Stojković, D.S.; Živkovic, J.; Soković, M.; Glamočlija, J.; Ferreira, I.C.; Janković, T.; Maksimović, Z. Antibacterial activity of Veronica montana L. extract and of protocatechuic acid incorporated in a food system. Food Chem. Toxicol. 2013, 55, 209–213. [Google Scholar] [CrossRef]
- Cid-Pérez, T.S.; Ávila-Sosa, R.; Ochoa-Velasco, C.E.; Rivera-Chavira, B.E.; Nevárez-Moorillón, G.V. Antioxidant and antimicrobial activity of mexican oregano (Poliomintha longiflora) essential oil, hydrosol and extracts fromwaste solid residues. Plants 2019, 8, 22. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wang, X.; Chen, D.; Chen, S. Antioxidant activity and mechanism of protocatechuic acid in vitro. Funct. Foods Health Dis. 2011, 1, 232–244. [Google Scholar] [CrossRef]
- Abotaleb, M.; Liskova, A.; Kubatka, P.; Büsselberg, D. Therapeutic potential of plant phenolic acids in the treatment of cancer. Biomolecules 2020, 10, 221. [Google Scholar] [CrossRef] [Green Version]
- Mayer, F.L.; Wilson, D.; Hube, B. Candida albicans pathogenicity mechanisms. Virulence 2013, 4, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Perfect, J.R.; Cox, G.M.; Lee, J.Y.; Kauffman, C.A.; de Repentigny, L.; Chapman, S.W.; Morrison, V.A.; Pappas, P.; Hiemenz, J.W.; Stevens, D.A.; et al. The impact of culture isolation of aspergillus species: A hospital-based survey of aspergillosis. Clin. Infect. Dis. 2001, 33, 1824–1833. [Google Scholar] [CrossRef] [Green Version]
- Ki, V.; Rotstein, C. Bacterial skin and soft tissue infections in adults: A review of their epidemiology, pathogenesis, diagnosis, treatment and site of care. Can. J. Infect. Dis. Med Microbiol. 2008, 19, 173–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambers, H.F.; Deleo, F.R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol. 2009, 7, 629–641. [Google Scholar] [CrossRef]
- Peleg, A.Y.; Seifert, H.; Paterson, D.L. Acinetobacter baumannii: Emergence of a successful pathogen. Clin. Microbiol. Rev. 2008, 21, 538–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pendleton, J.N.; Gorman, S.P.; Gilmore, B.F. Clinical relevance of the ESKAPE pathogens. Expert Rev. Anti. Infect. Ther. 2013, 11, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Ali-Shtayeh, M.S.; Yaghmour, R.M.; Faidi, Y.R.; Salem, K.; Al-Nuri, M.A. Antimicrobial activity of 20 plants used in folkloric medicine in the Palestinian area. J. Ethnopharmacol. 1998, 60, 265–271. [Google Scholar] [CrossRef]
- Al-Masri, M.I.; Sharawi, S.M.; Barakat, R.M.; Al-Masri, M.I.; Sharawi, S.M.; Barakat, R.M. Effect of clammy inula (inula viscose) plant extract in combination with a low dose of the fungicide iprodione on botrytis cinerea in vitro and in vivo. Am. J. Plant Sci. 2015, 6, 1519–1526. [Google Scholar] [CrossRef] [Green Version]
- Blanc, M.C.; Bradesi, P.; Gonçalves, M.J.; Salgueiro, L.; Casanova, J. Essential oil of Dittrichia viscosa ssp. viscosa: Analysis by 13C-NMR and antimicrobial activity. Flavour Fragr. J. 2006, 21, 324–332. [Google Scholar] [CrossRef] [Green Version]
- Bonsignore, L.; Loy, G.; Secci, D.; Logu, A.; de Palmieri, G. A preliminary microbiological screening of Sardinian plants. Fitoterapia 1990, 61, 339–341. [Google Scholar]
- Bekkara, F.; Benhammou, N.; Panovska, T.K. Biological activities of the essential oil and ethanolic extract of Inula viscosa from the Tlemcen region of Algeria. Adv. Food Sci. 2008, 30, 132–139. [Google Scholar]
- Talib, W.H.; Mahasneh, A.M. Antiproliferative activity of plant extracts used against cancer in traditional medicine. Sci. Pharm. 2010, 78, 33. [Google Scholar] [CrossRef] [Green Version]
- Çelik, T.A.; Aslantürk, Ö.S. Evaluation of cytotoxicity and genotoxicity of Inula viscosa leaf extracts with Allium test. J. Biomed. Biotechnol. 2010, 2010, 189252. [Google Scholar] [CrossRef] [Green Version]
- Kaileh, M.; Vanden Berge, W.; Boone, E.; Essawi, T.; Haegman, G. Screening of indigenous Palestinian medicinal plants for potential anti-inflammatory and cytotoxic activity. J. Ethnopharmacol. 2007, 113, 510–516. [Google Scholar] [CrossRef]
- Merghoub, N.; El Btaouri, H.; Benbacer, L.; Gmouth, S.; Trentesaux, C.; Brassart, B.; Terryn, C.; Attaleb, M.; Madoulet, C.; Benjouad, A.; et al. Inula viscosa extracts induces telomere shortening and apoptosis in cancer cells and overcome drug resistance. Nutr. Cancer 2016, 68, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Talib, W.H.; Mahasneh, A.M. Antimicrobial, cytotoxicity and phytochemical screening of Jordanian plants used in traditional medicine. Molecules 2010, 15, 1811–1824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afifi-Yazar, F.U.; Kasabri, V.; Abu-Dahab, R. Medicinal plants from Jordan in the treatment of cancer: Traditional uses vs. in vitro and in vivo evaluations—Part 1. Planta Med. 2011, 77, 1203–1209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talib, W.H.; Abu Zarga, M.H.; Mahasneh, A.M. Antiproliferative, antimicrobial and apoptosis inducing effects of compounds isolated from Inula viscosa. Molecules 2012, 17, 3291–3303. [Google Scholar] [CrossRef]
- Seca, A.M.L.; Grigore, A.; Pinto, D.C.G.A.; Silva, A.M.S. The genus Inula and their metabolites: From ethnopharmacological to medicinal uses. J. Ethnopharmacol. 2014, 154, 286–310. [Google Scholar] [CrossRef] [Green Version]
- Zeouk, I.; Sifaoui, I.; López-Arencibia, A.; Reyes-Batlle, M.; Bethencourt-Estrella, C.J.; Bazzocchi, I.L.; Bekhti, K.; Lorenzo-Morales, J.; Jiménez, I.A.; Piñero, J.E. Sesquiterpenoids and flavonoids from Inula viscosa induce programmed cell death in kinetoplastids. Biomed. Pharmacother. 2020, 130, 110518. [Google Scholar] [CrossRef]
- Asakawa, Y. Dietary monoterpenoids. In Handbook of Dietary Phytochemicals; Springer: Singapore, 2021; pp. 607–731. [Google Scholar] [CrossRef]
- Moteki, H.; Hibasami, H.; Yamada, Y.; Katsuzaki, H.; Imai, K.; Komiya, T. Specific induction of apoptosis by 1,8-cineole in two human leukemia cell lines, but not a in human stomach cancer cell line. Oncol. Rep. 2002, 9, 757–760. [Google Scholar] [CrossRef] [PubMed]
- Murata, S.; Shiragami, R.; Kosugi, C.; Tezuka, T.; Yamazaki, M.; Hirano, A.; Yoshimura, Y.; Suzuki, M.; Shuto, K.; Ohkohchi, N.; et al. Antitumor effect of 1, 8-cineole against colon cancer. Oncol. Rep. 2013, 30, 2647–2652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdalla, A.N.; Shaheen, U.; Abdallah, Q.M.A.; Flamini, G.; Bkhaitan, M.M.; Abdelhady, M.I.S.; Ascrizzi, R.; Bader, A. Proapoptotic activity of achillea membranacea essential oil and its major constituent 1,8-cineole against a2780 ovarian cancer cells. Molecules 2020, 25, 1582. [Google Scholar] [CrossRef] [Green Version]
- Anter, J.; Romero-Jiménez, M.; Fernández-Bedmar, Z.; Villatoro-Pulido, M.; Analla, M.; Alonso-Moraga, Á.; Muñoz-Serrano, A. Antigenotoxicity, cytotoxicity, and apoptosis induction by apigenin, bisabolol, and protocatechuic acid. J. Med. Food 2011, 14, 276–283. [Google Scholar] [CrossRef]
- Kan, A.K.; Rehana, R.; Fatima, N.; Mahmood, S.; Mir, S.; Khan, S.; Jabeen, N.; Murtaza, G. Pharmacological activities of protocatechuic acid. Acta Pol. Pharm. 2015, 72, 643–650. [Google Scholar]
- Hudson, E.A.; Dinh, P.A.; Kokubun, T.; Simmonds, M.S.J.; Gescher, A. Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. Cancer Epidemiol. Prev. Biomark. 2000, 9, 1163–1170. [Google Scholar]
- Lee, I.R.; Yang, M.Y. Phenolic compounds from Duchesnea chrysantha and their cytotoxic activities in human cancer cell. Arch. Pharm. Res. 1994, 17, 476–479. [Google Scholar] [CrossRef] [PubMed]
- Tseng, T.H.; Kao, T.W.; Chu, C.Y.; Chou, F.P.; Lin, W.L.; Wang, C.J. Induction of apoptosis by hibiscus protocatechuic acid in human leukemia cells via reduction of retinoblastoma (RB) phosphorylation and Bcl-2 expression. Biochem. Pharmacol. 2000, 60, 307–315. [Google Scholar] [CrossRef]
- Kampa, M.; Alexaki, V.-I.; Notas, G.; Nifli, A.-P.; Nistikaki, A.; Hatzoglou, A.; Bakogeorgou, E.; Kouimtzoglou, E.; Blekas, G.; Boskou, D.; et al. Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: Potential mechanisms of action. Breast Cancer Res. 2004, 6, R63. [Google Scholar] [CrossRef] [Green Version]
- Yip, E.C.; Chan, A.S.; Pang, H.; Tam, Y.K.; Wong, Y.H. Protocatechuic acid induces cell death in HepG2 hepatocellular carcinoma cells through a c-Jun N-terminal kinase-dependent mechanism. Cell Biol. Toxicol. 2006, 22, 293–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klauning, J.E.; Kamendulis, L.M. The role of oxidative stress in carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 239–267. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Tanaka, T.; Tanaka, M. Potential cancer chemopreventive activity of protocatechuic acid. J. Exp. Clin. Med. 2011, 3, 27–33. [Google Scholar] [CrossRef]
- Ortega, A.L.; Mena, S.; Estrela, J.M. Glutathione in cancer cell death. Cancers 2011, 3, 1285–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, L.; Sandhu, J.K.; Harper, M.E.; Cuperlovic-culf, M. Role of glutathione in cancer: From mechanisms to therapies. Biomolecules 2020, 10, 1–27. [Google Scholar] [CrossRef]
- Wang, W.; Ben-Daniel, B.H.; Cohen, Y. Control of plant diseases by extracts of Inula viscosa. Phytopathology 2004, 94, 1042–1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widhalm, J.R.; Dudareva, N. A familiar ring to it: Biosynthesis of plant benzoic acids. Mol. Plant 2015, 8, 83–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popović, M.; Maravić, A.; Čulić, V.Č.; Đulović, A.; Burčul, F.; Blažević, I. Biological effects of glucosinolate degradation products from horseradish: A horse that wins the race. Biomolecules 2020, 10, 343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fredotović, Ž.; Puizina, J.; Nazlić, M.; Maravić, A.; Ljubenkov, I.; Soldo, B.; Vuko, E.; Bajić, D. Phytochemical characterization and screening of antioxidant, antimicrobial and antiproliferative properties of allium × cornutum clementi and two varieties of Allium cepa L. peel extracts. Plants 2021, 10, 832. [Google Scholar] [CrossRef] [PubMed]
- Rončević, T.; Vukičević, D.; Ilić, N.; Krce, L.; Gajski, G.; Tonkić, M.; Goić-Barišić, I.; Zoranić, L.; Sonavane, Y.; Benincasa, M.; et al. Antibacterial activity affected by the conformational flexibility in glycine—Lysine based α-helical antimicrobial peptides. J. Med. Chem. 2018, 61, 2924–2936. [Google Scholar] [CrossRef] [PubMed]
- Eucast. Available online: https://eucast.org/ (accessed on 8 July 2021).
- Maravić, A.; Rončević, T.; Krce, L.; Ilić, N.; Galić, B.; Čikeš, V.Č.; Carev, I. Halogenated boroxine dipotassium trioxohydroxytetrafluorotriborate K2[B3O3F4OH] inhibits emerging multidrug-resistant and β-lactamase-producing opportunistic pathogens. Drug Dev. Ind. Pharm. 2019, 45, 1770–1776. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.H.; Thomas, N.F.; Inayat-Hussain, S.H.; Chan, K.M. Cytoprotective effects of (E)-N-(2-(3, 5-dimethoxystyryl) phenyl) furan-2carboxamide (BK3C231) against 4-nitroquinoline 1-oxide-induced damage in CCD-18Co human colon fibroblast cells. PLoS ONE 2020, 15, e0223344. [Google Scholar] [CrossRef] [PubMed]
Component | RI* | RI** | EO (Yield in %) | H (Yield in %) |
---|---|---|---|---|
Monoterpene hydrocarbons | 0.71 | 1.56 | ||
α-Pinene * | 938 | 1036 | 0.71 ± 0.01 a | 0.23 ± 0.01 b |
Sabinene | 971 | 1115 | - | 0.28 ± 0.01 |
Myrcene | 992 | 1145 | - | 0.62 ± 0.03 |
Limonene | 1032 | 1204 | - | 0.43 ± 0.03 |
Oxygenated monoterpenes | 53.41 | 81.85 | ||
1,8-Cineole | 1030 | 1211 | 16.41 ± 0.01 b | 18.55 ± 0.01 a |
cis-Sabinene hydrate | 1065 | 1561 | 4.23 ± 0.01 b | 10.97 ± 0.01 a |
Linalool | 1099 | 1548 | 6.62 ± 0.01 b | 11.67 ± 0.01 a |
Borneol * | 1176 | 1699 | 0.32 ± 0.01 a | 0.12 ± 0.05 b |
α-Terpineol | 1186 | 1646 | 2.65 ± 0.01 a | 2.62 ± 0.01 b |
β-Cyclocitral | 1223 | 1629 | 4.81 ± 0.01 a | 2.23 ± 0.01 b |
Bornyl acetate | 1287 | 1591 | 2.71 ± 0.01 a | 0.67 ± 0.01 b |
p-Menth-1-en-9-ol | 1294 | 1915 | - | 29.93 ± 0.01 |
-Terpinyl acetate | 1349 | 1685 | 13.92 ± 0.01 a | 1.31 ± 0.01 b |
Cyclohexene, 1,5,5-trimethyl-6-methylene | 1364 | - | - | 2.02 ± 0.01 |
(E)-Isoeugenol | 1446 | 2314 | 1.74 ± 0.01 | 1.76 ± 0.01 |
Sesquiterpene hydrocarbons | 7.26 | - | ||
allo-Aromadendrene | 1465 | 1662 | 2.34 ± 0.01 | - |
β-Bisabolene | 1494 | 1729 | 4.31 ± 0.01 | - |
δ-Cadinene | 1517 | 1754 | 0.61 ± 0.07 | - |
Oxygenated sesquiterpenes | 30.11 | 13.49 | ||
Caryophyllene-oxide * | 1581 | 1955 | 15.14 ± 0.01 a | 3.24 ± 0.01 b |
α-Muurolol | 1645 | 2181 | 13.75 ± 0.01 a | 10.25 ± 0.01 b |
Cyperotundone | 1696 | - | 1.22 ± 0.01 | - |
Fatty acids | 2.58 | - | ||
Hexadecanoic acid | 1959 | 2913 | 2.58 ± 0.01 | - |
Hydrocarbons | 2.67 | - | ||
Heneicosane * | 2100 | 2100 | 0.42 ± 0.03 | - |
Docosane * | 2200 | 2200 | 1.73 ± 0.01 | - |
Tricosane * | 2300 | 2300 | 0.52 ± 0.01 | - |
Total identification (%) | 96.74 | 96.90 |
Phenolic Compound | mg/L ± SD |
---|---|
3,4-dihydroxybenzoic acid | 62.24 ± 2.72 |
caffeic acid | 0.90 ± 0.06 |
trans-o-coumaric acid | 0.39 ± 0.02 |
cinnamic acid | 1.16 ± 0.01 |
luteolin | 1.75 ± 0.13 |
Species | Strain Origin | Essential Oil (mg/mL) a | |
---|---|---|---|
MIC | MBC | ||
Gram-positive bacteria | |||
Staphylococcus aureus | ATCC 29213 | 2.8 | 2.8 |
Staphylococcus aureus | Clinical/MRSA | 5.6 | 5.6 |
Staphylococcus epidermidis | Human | 1.4 | 1.4 |
Streptococcus pyogenes | ATCC 19615 | 0.09 | 0.09 |
Streptococcus agalactiae | Clinical | 0.09 | 0.09 |
Enterococcus faecalis | ATCC 29212 | 1.4 | 2.8 |
Listeria monocytogenes | ATCC 19111 (1/2a) | 2.8 | 2.8 |
Bacillus cereus | Food | 0.7 | 0.7 |
Clostridium perfringens | Food | 0.09 | 0.09 |
Gram-negative bacteria | |||
Escherichia coli | ATCC 25922 | 2.8 | 2.8 |
Acinetobacter baumannii | ATCC 19606 | 5.6 | 5.6 |
Yeast | MIC50 | MIC90 | |
Candida albicans | ATCC 90029 | 2.8 | 5.6 |
Molds | MIC50 | MIC90 | |
Aspergillus niger | Food | 0.09 | 5.6 |
Control | H Treated | |
---|---|---|
GSH level | 0.287 ± 0.007 a | 0.187 ± 0.025 b |
dpi | LLN ± SD | |
---|---|---|
3rd | C | 6.2 ± 0.2 a |
EO | 4.6 ± 0.2 b | |
H | 0.7 ± 0.2 c | |
7th | C | 14.2 ± 2.4 a |
EO | 8.9 ± 2.0 b | |
H | 1.2 ± 0.4 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vuko, E.; Dunkić, V.; Maravić, A.; Ruščić, M.; Nazlić, M.; Radan, M.; Ljubenkov, I.; Soldo, B.; Fredotović, Ž. Not Only a Weed Plant—Biological Activities of Essential Oil and Hydrosol of Dittrichia viscosa (L.) Greuter. Plants 2021, 10, 1837. https://doi.org/10.3390/plants10091837
Vuko E, Dunkić V, Maravić A, Ruščić M, Nazlić M, Radan M, Ljubenkov I, Soldo B, Fredotović Ž. Not Only a Weed Plant—Biological Activities of Essential Oil and Hydrosol of Dittrichia viscosa (L.) Greuter. Plants. 2021; 10(9):1837. https://doi.org/10.3390/plants10091837
Chicago/Turabian StyleVuko, Elma, Valerija Dunkić, Ana Maravić, Mirko Ruščić, Marija Nazlić, Mila Radan, Ivica Ljubenkov, Barbara Soldo, and Željana Fredotović. 2021. "Not Only a Weed Plant—Biological Activities of Essential Oil and Hydrosol of Dittrichia viscosa (L.) Greuter" Plants 10, no. 9: 1837. https://doi.org/10.3390/plants10091837
APA StyleVuko, E., Dunkić, V., Maravić, A., Ruščić, M., Nazlić, M., Radan, M., Ljubenkov, I., Soldo, B., & Fredotović, Ž. (2021). Not Only a Weed Plant—Biological Activities of Essential Oil and Hydrosol of Dittrichia viscosa (L.) Greuter. Plants, 10(9), 1837. https://doi.org/10.3390/plants10091837