Inheritance of Black Rot Resistance and Development of Molecular Marker Linked to Xcc Races 6 and 7 Resistance in Cabbage
Abstract
:1. Introduction
2. Results
2.1. Inheritance of Xcc Races 6 and 7 Resistance in Cabbage
2.2. Selection of Xcc Races 6 and 7 Resistance Gene
2.3. Cloning and Sequencing of Candidate Gene
2.4. Validation of the InDel Marker
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Bacterial Strains and Culture Media
4.3. Inoculation Test
4.4. Disease Scoring
4.5. Isolation of Genomic DNA
4.6. PCR Amplification
4.7. Cloning and Sequencing
4.8. RNA Extraction and qRT-PCR Analysis
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, J.; Izzah, N.K.; Jayakodi, M.; Perumal, S.; Joh, H.J.; Lee, H.-Y.; Lee, S.-C.; Park, J.-Y.; Yang, W.-K.; Nou, I.-S.; et al. Genome-wide SNP identification and QTL mapping for black rot resistance in cabbage. BMC Plant Biol. 2015, 15, 32. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Sharma, S. Heterosis for mineral elements in single cross-hybrids of cabbage (Brassica oleracea var. capitata L.). Sci. Hortic. 2009, 122, 32–36. [Google Scholar] [CrossRef]
- Williams, P.H. Black rot: A continuing threat to world crucifers. Plant Dis. 1980, 64, 736–742. [Google Scholar] [CrossRef]
- Cook, A.; Walker, J.; Larson, R. Studies on the disease cycle of black rot of crucifers. Phytopathology 1952, 42, 162. [Google Scholar]
- Vicente, G.J.; Holub, E.B. X anthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops. Mol. Plant Pathol. 2013, 14, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.B.; Kalia, P.; Singh, D.; Sharma, T.R. Introgression of Black Rot Resistance from Brassica carinata to Cauliflower (Brassica oleracea botrytis Group) through Embryo Rescue. Front. Plant Sci. 2017, 8, 1255. [Google Scholar] [CrossRef]
- Cruz, J.; Tenreiro, R.; Cruz, L. Assessment of diversity of Xanthomonas campestris pathovars affecting cruciferous plants in Portugal and disclosure of two novel X. campestris pv. campestris races. J. Plant Pathol. 2017, 99, 403–414. [Google Scholar]
- Fargier, E.; Manceau, C. Pathogenicity assays restrict the species Xanthomonas campestris into three pathovars and reveal nine races within X. campestris pv. campestris. Plant Pathol. 2007, 56, 805–818. [Google Scholar] [CrossRef]
- Vicente, J.; Conway, J.; Roberts, S.; Taylor, J.D. Identification and Origin of Xanthomonas campestris pv. campestris Races and Related Pathovars. Phytopathology 2001, 91, 492–499. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Rathaur, P.; Vicente, J. Characterization, genetic diversity and distribution of Xanthomonas campestris pv. campestris races causing black rot disease in cruciferous crops of India. Plant Pathol. 2016, 65, 1411–1418. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, J.; Oh, D.-G. Resistance of pepper cultivars to Ralstonia solanacearum isolates from major cultivated areas of chili peppers in Korea. Hortic. Sci. Technol. 2018, 569–576. [Google Scholar]
- Yerasu, S.R.; Murugan, L.; Halder, J.; Prasanna, H.C.; Singh, A.; Singh, B. Screening tomato genotypes for resistance to early blight and American serpentine leafminer. Hortic. Environ. Biotechnol. 2019, 60, 427–433. [Google Scholar] [CrossRef]
- Bain, D. Reaction of brassica seedlings to blackrot. Phytopathology 1952, 42, 316–319. [Google Scholar]
- Bain, D. Resistance of Cabbage to black rot. Disappearance of black rot symptoms in Cabbage seedlings. Phytopathology 1955, 45, 35–37. [Google Scholar]
- Jensen, B.D.; Massomo, S.; Swai, I.S.; Hockenhull, J.; Andersen, S.B. Field evaluation for resistance to the black rot pathogen Xanthomonas campestris pv. campestris in cabbage (Brassica oleracea). Eur. J. Plant Pathol. 2005, 113, 297–308. [Google Scholar] [CrossRef]
- Taylor, J.D.; Conway, J.; Roberts, S.; Astley, D.; Vicente, J. Sources and Origin of Resistance to Xanthomonas campestris pv. campestris in Brassica Genomes. Phytopathology 2002, 92, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Afrin, K.S.; Rahim, A.; Park, J.-I.; Natarajan, S.; Kim, H.-T.; Nou, I.-S. Identification of NBS-encoding genes linked to black rot resistance in cabbage (Brassica oleracea var. capitata). Mol. Biol. Rep. 2018, 45, 773–785. [Google Scholar] [CrossRef]
- Afrin, K.S.; Rahim, A.; Park, J.-I.; Natarajan, S.; Rubel, M.H.; Kim, H.-T.; Nou, A.I.-S. Screening of Cabbage (Brassica oleracea L.) Germplasm for Resistance to Black Rot. Plant Breed. Biotechnol. 2018, 6, 30–43. [Google Scholar] [CrossRef] [Green Version]
- Dangl, J.L.; Jones, J. Plant pathogens and integrated defence responses to infection. Nature 2001, 411, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Tehrim, S.; Zhang, F.; Tong, C.; Huang, J.; Cheng, X.; Dong, C.; Zhou, Y.; Qin, R.; Hua, W.; et al. Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana. BMC Genom. 2014, 15, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, H.; Fang, Z.; Yang, L.; Zhang, Y.; Wang, Q.; Liu, Y.; Zhuang, M.; Yang, Y.; Xie, B.; Liu, B.; et al. Mapping and analysis of a novel candidate Fusarium wilt resistance gene FOC1 in Brassica oleracea. BMC Genom. 2014, 15, 1094. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Kwon, S.I.; Saha, D.; Anyanwu, N.C.; Gassmann, W. Resistance to the Pseudomonas syringae Effector HopA1 Is Governed by the TIR-NBS-LRR Protein RPS6 and Is Enhanced by Mutations in SRFR1. Plant Physiol. 2009, 150, 1723–1732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, H.; Yuan, W.; Bo, K.; Shen, J.; Pang, X.; Chen, J. Genome-wide analysis of NBS-encoding disease resistance genes in Cucumis sativus and phylogenetic study of NBS-encoding genes in Cucurbitaceae crops. BMC Genom. 2013, 14, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Meyers, B.; Kozik, A.; Griego, A.; Kuang, H.; Michelmore, R.W. Genome-Wide Analysis of NBS-LRR–Encoding Genes in Arabidopsis. Plant Cell 2003, 15, 809–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monosi, B.; Wisser, R.J.; Pennill, L.; Hulbert, S.H. Full-genome analysis of resistance gene homologues in rice. Theor. Appl. Genet. 2004, 109, 1434–1447. [Google Scholar] [CrossRef]
- Hassan, M.Z.; Rahim, A.; Natarajan, S.; Robin, A.H.K.; Kim, H.-T.; Park, J.-I.; Nou, I.-S. Gummy stem blight resistance in melon: Inheritance pattern and development of molecular markers. Int. J. Mol. Sci. 2018, 19, 2914. [Google Scholar] [CrossRef] [Green Version]
- King, O.E.; Ward, M.K.; Raney, E.D. Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med. 1954, 44, 301–307. [Google Scholar] [PubMed]
- Lee, J.H.; Kim, J.C.; Jang, K.S.; Choi, Y.H.; Ahn, K.G.; Choi, G.J. Development of efficient screening method for resistance of cabbage cultivars to black rot disease caused by Xanthomonas campestris pv. campestris. Res. Plant Dis. 2013, 19, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Vicente, J.; Taylor, J.D.; Sharpe, A.G.; Parkin, I.A.P.; Lydiate, D.J.; King, G. Inheritance of Race-Specific Resistance to Xanthomonas campestris pv. campestris in Brassica Genomes. Phytopathology 2002, 92, 1134–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Swift, M.L. GraphPad prism, data analysis, and scientific graphing. J. Chem. Inf. Comput. Sci. 1997, 37, 411–412. [Google Scholar] [CrossRef]
Crosses | Generation | Susceptible | Resistant | Expected Ratio (S:R) | Chi-Square (χ2) | p |
---|---|---|---|---|---|---|
Race 6 | ||||||
SCNU-C-3328 (S) | P1 | 12 | 0 | |||
SCNU-C-3470 (R) | P2 | 0 | 12 | |||
3328 × 3470 | F1 | 12 | 0 | |||
3328 × 3470 | F2 | 72 | 21 | 3:1 | 0.29 | 0.59 |
Race 7 | ||||||
SCNU-C-3328 (S) | P1 | 12 | 0 | |||
SCNU-C-3470 (R) | P2 | 0 | 12 | |||
3328 × 3470 | F1 | 12 | 0 | |||
3328 × 3470 | F2 | 55 | 34 | 3:1 | 8.27 | 0.004 |
Gene ID | InDel Marker | Primer (5′-3′) | Tm (°C) | Product Size | |
---|---|---|---|---|---|
Bol031422 | BR6-InDel | F | TGGGGTGACTGATGAAACTCCTAT | 60 | 724 bp |
R | TCACTTCTGATTCATCCTCGTCATCT |
Sl. No. | Bacterial Race/Strains | Source | Reference |
---|---|---|---|
1 | Xanthomonas campestris pv. campestris Race 6 (6181) | Portugal | [9] |
2 | Xanthomonas campestris pv. campestris Race 7 (8450A) | UK |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, J.-E.; Afrin, K.S.; Rahim, M.A.; Jung, H.-J.; Nou, I.-S. Inheritance of Black Rot Resistance and Development of Molecular Marker Linked to Xcc Races 6 and 7 Resistance in Cabbage. Plants 2021, 10, 1940. https://doi.org/10.3390/plants10091940
Hong J-E, Afrin KS, Rahim MA, Jung H-J, Nou I-S. Inheritance of Black Rot Resistance and Development of Molecular Marker Linked to Xcc Races 6 and 7 Resistance in Cabbage. Plants. 2021; 10(9):1940. https://doi.org/10.3390/plants10091940
Chicago/Turabian StyleHong, Jeong-Eui, Khandker Shazia Afrin, Md Abdur Rahim, Hee-Jeong Jung, and Ill-Sup Nou. 2021. "Inheritance of Black Rot Resistance and Development of Molecular Marker Linked to Xcc Races 6 and 7 Resistance in Cabbage" Plants 10, no. 9: 1940. https://doi.org/10.3390/plants10091940
APA StyleHong, J. -E., Afrin, K. S., Rahim, M. A., Jung, H. -J., & Nou, I. -S. (2021). Inheritance of Black Rot Resistance and Development of Molecular Marker Linked to Xcc Races 6 and 7 Resistance in Cabbage. Plants, 10(9), 1940. https://doi.org/10.3390/plants10091940