Antidiarrheal and Cardio-Depressant Effects of Himalaiella heteromalla (D.Don) Raab-Straube: In Vitro, In Vivo, and In Silico Studies
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Analysis of Himalaiella heteromalla
2.2. HPLC Separation of Phenolic Acids and Flavonoids
2.3. Effect on Jejunum Preparations
2.4. Effect on Tracheal Preparations
2.5. Effect on Aortic Preparations
2.6. Effect on Atria Preparations
2.7. Antiperistalsis Activity
2.8. Antidiarrheal Activity
2.9. Anti-Inflammatory Activity
2.10. In Silico Studies
3. Discussion
4. Materials and Methods
4.1. Extract Preparation
4.2. Animal Housing
4.3. Chemicals
4.4. Qualitative Phytochemical Detection
4.5. HPLC Separation of Phenolic Acids and Flavonoids
4.6. In Vitro Experiments
4.6.1. Isolated Rabbit Jejunum Preparation
4.6.2. Isolated Rabbit Tracheal Preparations
4.6.3. Isolated Rabbit Paired Atria Preparations:
4.6.4. Isolated Rabbit Aorta Preparations
4.7. In Vivo Activities
4.7.1. Antiperistalsis Activity
4.7.2. Antidiarrheal Activity
4.7.3. Carrageenan-Induced Rat’s Hind Paw Edema Method
4.8. In Silico Studies
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saklani, A.; Hegde, B.; Mishra, P.; Singh, R.; Mendon, M.; Chakrabarty, D.; Kamath, D.V.; Lobo, A.; Mishra, P.D.; Dagia, N.M.; et al. NF-κB dependent anti-inflammatory activity of chlorojanerin isolated from Saussurea heteromalla. Phytomedicine 2012, 19, 988–997. [Google Scholar] [CrossRef] [PubMed]
- Sajad, M.A.; Khan, M.S.; Bahadur, S.; Shuaib, M.; Naeem, A.; Zaman, W.; Ali, H. Nickel phytoremediation potential of some plant species of the Lower Dir, Khyber Pakhtunkhwa, Pakistan. Limnol. Rev. 2020, 20, 13–22. [Google Scholar] [CrossRef]
- Khatun, S. Antimicrobial activity of tuber extracts of the medicinal plant coleus forskohlii. Plant Cell Biotechnol. Mol. Biol. 2020, 21, 11–17. [Google Scholar]
- Gao, Q.; Yang, M.; Zuo, Z. Overview of the anti-inflammatory effects, pharmacokinetic properties and clinical efficacies of arctigenin and arctiin from Arctium lappa L. Acta Pharmacol. Sin. 2018, 39, 787–801. [Google Scholar] [CrossRef]
- Kang, H.S.; Lee, J.Y.; Kim, C.J. Anti-inflammatory activity of arctigenin from Forsythiae Fructus. J. Ethnopharmacol. 2008, 116, 305–312. [Google Scholar] [CrossRef]
- Hayashi, K.; Narutaki, K.; Nagaoka, Y.; Hayashi, T.; Uesato, S. Therapeutic effect of arctiin and arctigenin in immunocompetent and immunocompromised mice infected with influenza A virus. Biol. Pharm. Bull. 2010, 33, 1199–1205. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Zhong, F.; He, K.; Sun, S.; Chen, H.; Zhou, J. EHHM, a novel phenolic natural product from Livistona chinensis, induces autophagy-related apoptosis in hepatocellular carcinoma cells. Oncol. Lett. 2016, 12, 3739–3748. [Google Scholar] [CrossRef] [PubMed]
- Rathore, S.; Tiwari, J.K.; Malik, Z.A. Ethnomedicinal survey of herbaceous flora traditionally used in health care practices by inhabitants of dhundsir gad watershed of garhwal himalaya, india. Glob. J. Res. Med. Plants Indig. Med. 2015, 4, 65–78. [Google Scholar]
- Khare, C.P. (Ed.) Indian Medicinal Plants; Springer: New York, NY, USA, 2007; ISBN 978-0-387-70637-5. [Google Scholar]
- Kala, C.P. Medicinal plants of the high altitude cold desert in India: Diversity, distribution and traditional uses. Int. J. Biodivers. Sci. Manag. 2006, 2, 43–56. [Google Scholar] [CrossRef]
- Singh, A.; Lal, M.; Samant, S.S. Diversity, indigenous uses and conservation prioritization of medicinal plants in lahaul valley, proposed cold desert biosphere reserve, India. Int. J. Biodivers. Sci. Manag. 2009, 5, 132–154. [Google Scholar] [CrossRef]
- Wahid, M.; Saqib, F.; Ahmedah, H.T.; Gavris, C.M.; De Feo, V.; Hogea, M.; Moga, M.; Chicea, R. Cucumis sativus L. Seeds Ameliorate Muscular Spasm-Induced Gastrointestinal and Respiratory Disorders by Simultaneously Inhibiting Calcium Mediated Signaling Pathway. Pharmaceuticals 2021, 14, 1197. [Google Scholar] [CrossRef] [PubMed]
- Sirous, H.; Chemi, G.; Campiani, G.; Brogi, S. An integrated in silico screening strategy for identifying promising disruptors of p53-MDM2 interaction. Comput. Biol. Chem. 2019, 83, 107105. [Google Scholar] [CrossRef]
- Kuhn, B.; Kollman, P.A. Binding of a diverse set of ligands to avidin and streptavidin: An accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. J. Med. Chem. 2000, 43, 3786–3791. [Google Scholar] [CrossRef]
- Gilani, A.U.H.; Shah, A.J.; Yaeesh, S. Presence of cholinergic and calcium antagonist constituents in Saussurea lappa explains its use in constipation and spasm. Phyther. Res. 2007, 21, 541–544. [Google Scholar] [CrossRef]
- Chen, J.C.; Ho, T.Y.; Chang, Y.S.; Wu, S.L.; Hsiang, C.Y. Anti-diarrheal effect of Galla Chinensis on the Escherichia coli heat-labile enterotoxin and ganglioside interaction. J. Ethnopharmacol. 2006, 103, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Li, X.; Tse, H.F.; Rong, J. Gallic acid-L-leucine conjugate protects mice against LPS-induced inflammation and sepsis via correcting proinflammatory lipid mediator profiles and oxidative stress. Oxid. Med. Cell. Longev. 2018, 2018, 1081287. [Google Scholar] [CrossRef]
- Gilani, A.H.; Ghayur, M.N.; Saify, Z.S.; Ahmed, S.P.; Choudhary, M.I.; Khalid, A. Presence of cholinomimetic and acetylcholinesterase inhibitory constituents in betel nut. Life Sci. 2004, 75, 2377–2389. [Google Scholar] [CrossRef] [PubMed]
- Lanuzza, F.; Occhiuto, F.; Monforte, M.T.; Tripodo, M.M.; D’Angelo, V.; Galati, E.M. Antioxidant phytochemicals of Opuntia ficus-indica (L.) Mill. cladodes with potential anti-spasmodic activity. Pharmacogn. Mag. 2017, 13, S424–S429. [Google Scholar] [CrossRef]
- Ghayur, M.N.; Khan, H.; Gilani, A.H. Antispasmodic, bronchodilator and vasodilator activities of (+)-catechin, a naturally occurring flavonoid. Arch. Pharm. Res. 2007, 30, 970–975. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, C.; Shao, Q.; Yang, Z.; Zhang, X.; Xu, X.; Hassan, M. Determination of water content in corn stover silage using near-infrared spectroscopy. Int. J. Agric. Biol. Eng. 2019, 12, 143–148. [Google Scholar] [CrossRef]
- Saqib, F.; Janbaz, K.H. Rationalizing ethnopharmacological uses of Alternanthera sessilis: A folk medicinal plant of Pakistan to manage diarrhea, asthma and hypertension. J. Ethnopharmacol. 2016, 182, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Karaki, H.; Ozaki, H.; Hori, M.; Mitsui-Saito, M.; Amano, K.I.; Harada, K.I.; Miyamoto, S.; Nakazawa, H.; Won, K.J.; Sato, K. Calcium movements, distribution, and functions in smooth muscle. Pharmacol. Rev. 1997, 49, 157–230. [Google Scholar] [PubMed]
- Bolton, T.B. Mechanisms of action of transmitters and other substances on smooth muscle. Physiol. Rev. 1979, 59, 606–718. [Google Scholar] [CrossRef]
- Fleckenstein, A. Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Annu. Rev. Pharmacol. Toxicol. 1977, 17, 149–166. [Google Scholar] [CrossRef]
- Yakubu, M.T.; Salimon, S.S. Antidiarrhoeal activity of aqueous extract of Mangifera indica L. leaves in female albino rats. J. Ethnopharmacol. 2015, 163, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Janbaz, K.H.; Jan, A.; Qadir, M.I.; Gilani, A.H. Spasmolytic, bronchodilator and vasorelaxant activity of methanolic extract of tephrosia purpurea. Acta Pol. Pharm.-Drug Res. 2013, 70, 261–269. [Google Scholar]
- Janbaz, K.H.; Arif, J.; Saqib, F.; Imran, I.; Ashraf, M.; Zia-Ul-Haq, M.; Jaafar, H.Z.E.; De Feo, V. In-vitro and in-vivo validation of ethnopharmacological uses of methanol extract of Isodon rugosus Wall. ex Benth. (Lamiaceae). BMC Complement. Altern. Med. 2014, 14, 71. [Google Scholar] [CrossRef]
- Janbaz, K.H.; Nisa, M.; Saqib, F.; Imran, I.; Zia-Ul-Haq, M.; De Feo, V. Bronchodilator, vasodilator and spasmolytic activities of methanolic extract of Myrtus communis L. J. Physiol. Pharmacol. 2013, 64, 479–484. [Google Scholar]
- Ghayura, M.N.; Gilani, A.H. A-Adrenergic Receptor Mediated Hypertensive and Vasoconstrictor Effects of Dietary Radish Leaves Extract. J. Health Sci. 2007, 53, 151–155. [Google Scholar] [CrossRef]
- Gilani, A.H.; Jabeen, Q.; Ghayur, M.N.; Janbaz, K.H.; Akhtar, M.S. Studies on the antihypertensive, antispasmodic, bronchodilator and hepatoprotective activities of the Carum copticum seed extract. J. Ethnopharmacol. 2005, 98, 127–135. [Google Scholar] [CrossRef]
- Deliorman Orhan, D.; Hartevioǧlu, A.; Küpeli, E.; Yesilada, E. In vivo anti-inflammatory and antinociceptive activity of the crude extract and fractions from Rosa canina L. fruits. J. Ethnopharmacol. 2007, 112, 394–400. [Google Scholar] [CrossRef]
- VAN ROSSUM, J.M. Cumulative dose-response curves. II. Technique for the making of dose-response curves in isolated organs and the evaluation of drug parameters. Arch. Int. Pharmacodyn. Thér. 1963, 143, 299–330. [Google Scholar] [PubMed]
- Zarei, M.; Mohammadi, S.; Komaki, A. Antinociceptive activity of Inula britannica L. and patuletin: In vivo and possible mechanisms studies. J. Ethnopharmacol. 2018, 219, 351–358. [Google Scholar] [CrossRef]
Sr.No. | Compound | Retention Time (min) | Concentration (µg/g) |
---|---|---|---|
1. | Gallic Acid | 2.7 | 184.98 |
2. | Catechin | 3.3 | 160.37 |
3. | HB acid | 6.8 | 22.80 |
4. | Vanilic acid | 8.1 | 9.08 |
Name(PubChem ID) | Docking Score | ∆GBinding | Log Ki (µMolar) | ∆GCoulomb | ∆GCovalent | ∆GHbond | ∆GLipophilic | ∆GSolv GB | ∆GvdW | Residue-Ligand Interactions with Distance (Å) | |
---|---|---|---|---|---|---|---|---|---|---|---|
Hydrogen Bonds | Hydrophobic Bonds | ||||||||||
Arctiin (100528) | −11.63 | −60.79 | −23.17 | −16.29 | 10.56 | −1.22 | −42.47 | 47.40 | −55.32 | Asn513 (2.46), Leu225 (1.77), C-H Bond: Thr231 (2.58), Tyr529 (2.99), π-Donor Hydrogen Bond: Trp525 (2.71), Trp525 (2.66) | π-Sulfur Bond: Cys532 (5.42), π-π Stacked Bond: Trp503 (4.56), π-π T shaped Bond: Tyr148 (5.21), Alkyl Bond: Ile222 (4.69), Leu225 (4.41), Cys532 (3.20), π-Alkyl Bond: Tyr148 (3.64), Tyr506 (3.99), Tyr529 (4.91), Tyr529 (3.98), Leu225 (4.98) |
Arctigenin (64981) | −9.72 | −46.56 | −16.99 | −16.92 | 6.57 | −0.68 | −30.61 | 31.10 | −34.45 | Ala238 (1.64) C-H Bond: Thr234 (3.03), Ile222 (2.77), Leu225 (2.77), Leu225 (2.65), Tyr148 (2.40) | π-π T shaped Bond: Trp503 (5.58), Trp525 (5.37), π-Alkyl Bond: Tyr148 (4.40), Trp199 (4.19), Trp199 (4.18), Phe221 (4.72), Trp525 (3.99), Trp525 (4.05), Leu225 (5.49), Ala238 (4.30) |
Catechin (9064) | −7.59 | −52.22 | −19.45 | −29.22 | 2.89 | −2.92 | −13.93 | 27.23 | −34.12 | Tyr148 (2.05), Ile222 (2.39), Ile222 (3.03), Ser226 (1.92), Ser226 (1.80) | π-π T shaped Bond: Tyr506 (5.74) |
Chlorojanerin (182408) | −7.13 | −43.68 | −15.74 | −20.79 | 2.92 | −1.98 | −19.31 | 33.51 | −38.02 | Tyr127 (1.87), Tyr148 (2.30), Asn513 (3.02) Asn513 (3.03), Asn526 (2.03), Ser226 (2.60), C-H Bond: Leu225 (2.63), Leu225 (2.55), Ser226 (2.55) | Alkyl Bond: Lys522 (5.21), Lys522 (5.47), π-Alkyl Bond: Phe124 (4.85), Trp525 (4.93), Trp525 (5.15), Trp525 (3.59), Trp525 (4.43) |
Cynaropicrin (119093) | −6.76 | −48.69 | −17.92 | −19.54 | 1.54 | −1.63 | −18.37 | 26.11 | −36.81 | Tyr148 (3.00), Ile222 (2.49), Asn526 (1.77), Leu225 (1.92), Thr231 (2.64) | Alkyl Bond: Lys522 (5.30), π-Alkyl Bond: Phe124 (5.48), Tyr127 (4.81), Trp525 (3.49), Trp525 (4.36) |
Cyclooxygenase-2 (COX-2, PDB ID:5IKQ) | |||||||||||
Arctiin (100528) | −8.49 | −41.01 | −14.58 | −21.01 | 10.60 | −2.56 | −23.77 | 33.40 | −36.96 | Lys83 (1.88), Ser12 (3.00), Ser120 (1.73), Pro84 (1.67), C-H Bond: Ser120 (2.66) | π-π T shaped Bond: Tyr11 (5.32), Alkyl Bond: Ala112 (3.50), Val89 (4.95), Leu93 (4.90), Val117 (4.37), Leu109 (4.79), Ile113 (5.11), π-Alkyl Bond: Tyr116 (4.01), Val89 (3.76), Le113 (4.71) |
Arctigenin (64981) | −7.37 | −27.91 | −8.89 | −5.55 | 18.02 | 0.00 | −31.09 | 26.83 | −35.44 | C-H Bond: Ala528 (2.91), Ser120 (2.62), Ser531 (2.79) | π-σ Bond: Val117 (2.48), Alkyl Bond: Arg121 (4.83), Val350 (4.80), Leu353 (5.46), Val89 (4.59), Leu93 (5.01), π-Alkyl Bond: Val350 (5.15), Leu353 (4.99), Val524 (4.56) Ala528 (4.24) |
Cynaropicrin (119093) | −4.28 | −35.97 | −12.39 | −11.96 | 3.10 | −1.10 | −18.58 | 17.86 | −25.30 | Arg121(1.81), Arg121 (2.46), C-H Bond: Val117 (2.51) | Alkyl Bond: Pro84 (5.14), Val89 (5.04), Val89 (4.09), Pro84 (4.81), Val89 (4.45), Ile92 (5.00), Leu93 (3.76), π-Alkyl Bond: Tyr116 (5.22) |
Catechin (9064) | −2.84 | −11.87 | −1.93 | 2.05 | 4.15 | −0.61 | −11.82 | 15.82 | −18.71 | Arg121 (2.76), Tyr116 (2.79), C-H Bond: Pro84 (2.55), Tyr116 (2.29) | π-π T shaped Bond: Tyr116 (5.65), Tyr116 (4.80), Alkyl Bond: Val89 (4.00), π-Alkyl Bond: Tyr116 (5.27), Val89 (4.80), Pro84 (5.20) |
Lipoxygenase 5 (LOX-5, PDB ID: 6N2W) | |||||||||||
Arctiin (100528) | −5.76 | −30.76 | −10.13 | −14.19 | 6.04 | −2.11 | −16.17 | 44.56 | −46.53 | His372 (2.55), Glu417 (1.89), C-H Bond: Glu417 (3.00), Gln413 (2.62) | Electrostatic π-Anion Bond: Ile673 (4.46) π-π Stacked Bond: His372 (4.40), Alkyl Bond: Ala410 (3.62), Leu368 (4.59), Leu368 (4.40), π-Alkyl Bond: His367 (3.52), His372 (4.83), His372 (3.83), Ile406 (5.49), Ala410 (4.09) |
Catechin (9064) | −4.95 | −30.81 | −10.15 | −22.76 | 5.66 | −2.38 | −15.10 | 39.78 | −32.68 | Arg596 (2.34), His600 (1.80), π-Donor Hydrogen Bond: His372 (3.10) | π-π Stacked Bond: His367 (4.84), π-π T shaped Bond: His372 (5.54), Trp599 (5.02), Alkyl Bond: Leu607 (5.03), π-Alkyl Bond: Leu607 (5.21), Ala603 (4.88) |
Arctigenin (64981) | −4.84 | −42.94 | −15.42 | −28.08 | 3.66 | −3.06 | −18.99 | 34.43 | −29.61 | Arg596 (2.57), Arg596 (1.88), His600 (1.82) | Electrostatic π-Cation Bond: Arg596 (3.17), Alkyl Bond: Ala410 (3.75), Ala426 (3.63), π-Alkyl Bond: His367 (4.32), Trp599 (4.00), Leu607 (5.10), Ala426 (3.91) |
Cynaropicrin (119093) | −3.45 | −14.54 | −3.09 | −13.54 | 2.95 | −0.81 | −17.02 | 46.96 | −33.09 | His367 (2.76), Ile673 (1.84), C-H Bond: Ala410 (2.98) | Alkyl Bond: Ala603 (4.92), Ala603 (3.87), Leu607, (5.09), Leu607 (4.33) |
Chlorojanerin (182408) | −3.30 | −32.60 | −10.93 | −3.30 | 0.38 | −0.62 | −13.65 | 19.69 | −35.10 | Thr427 (2.78), Arg596 (1.77), His600 (2.15), C-H Bond: His367 (2.97), His600 (2.56), Pro569 (2.73) | π-π T shaped Bond: Trp599 (5.64), Alkyl Bond: Ala603 (3.39), Val604 (4.44), π-Alkyl Bond: His360 (5.21), His432 (4.65), Trp599 (4.91) His600 (4.18) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saqib, F.; Usman, F.; Malik, S.; Bano, N.; Ur-Rahman, N.; Riaz, M.; Marc, R.A.; Mureşan, C.C. Antidiarrheal and Cardio-Depressant Effects of Himalaiella heteromalla (D.Don) Raab-Straube: In Vitro, In Vivo, and In Silico Studies. Plants 2022, 11, 78. https://doi.org/10.3390/plants11010078
Saqib F, Usman F, Malik S, Bano N, Ur-Rahman N, Riaz M, Marc RA, Mureşan CC. Antidiarrheal and Cardio-Depressant Effects of Himalaiella heteromalla (D.Don) Raab-Straube: In Vitro, In Vivo, and In Silico Studies. Plants. 2022; 11(1):78. https://doi.org/10.3390/plants11010078
Chicago/Turabian StyleSaqib, Fatima, Faisal Usman, Shehneela Malik, Naheed Bano, Najm Ur-Rahman, Muhammad Riaz, Romina Alina Marc (Vlaic), and Crina Carmen Mureşan. 2022. "Antidiarrheal and Cardio-Depressant Effects of Himalaiella heteromalla (D.Don) Raab-Straube: In Vitro, In Vivo, and In Silico Studies" Plants 11, no. 1: 78. https://doi.org/10.3390/plants11010078
APA StyleSaqib, F., Usman, F., Malik, S., Bano, N., Ur-Rahman, N., Riaz, M., Marc, R. A., & Mureşan, C. C. (2022). Antidiarrheal and Cardio-Depressant Effects of Himalaiella heteromalla (D.Don) Raab-Straube: In Vitro, In Vivo, and In Silico Studies. Plants, 11(1), 78. https://doi.org/10.3390/plants11010078