Biotechnological Research Progress in Jatropha, a Biodiesel-Yielding Plant
Abstract
:1. Introduction
2. Regeneration Studies
2.1. Direct Organogenesis
2.2. Micropropagation/Multiplication from Preformed Meristems
Explant | Shooting Media | Response Percentage | No. of Shoots | Rooting Media | Percentage of Acclimatization | Reference |
---|---|---|---|---|---|---|
Leaf | MS + 2.22 µM BAP + 4.9 µM IBA | 45 | 50 | Full Strength MS medium | More than 80% | [14] |
Leaf | MS + 8.88 µM BAP | - | 8.3 | - | - | [32] |
Leaf | MS + 22.2 µM BAP + 4.9 µM IBA Subculture medium: 8.9 µM BAP + 2.5 µM IBA | 90 | - | MS + 5.4 µM NAA | - | [15] |
Leaf | Shoot induction medium: Liq. MS + 2.0 mg/L KN. Proliferation medium: Liq. MS + 1.5 mg/L BAP + 0.5 mg/L IAA + 0.2 mg/L KN | 92.1 ± 3.1% | - | Ex-vitro rooting (76.4% rooting efficiency) | More than 90% | [33] |
Leaf | Induction medium: MS + 1.0 mg/L TDZ + 0.5 mg/L KN + 0.5 mg/L GA3. Proliferation medium: MS + 0.3 mg/L BAP + 0.01 mg/L IBA. | Shoot bud induction rate: 81.48 ± 3.21%. Shoot elongation rate: 75.72 ± 3.85% | 3.51 ± 0.78 | ½ MS + 2.0 mg/L IBA | - | [34] |
Leaf | Shoot induction medium: MS + 0.5 mg/L CPPU. Shoot proliferation medium: 0.5 mg/L BAP + 1.0 mg/L IAA + 0.5 GA3 | 68.1% | More than 25 buds per explant | Ex-vitro rooting | - | [19] |
Petiole | Shoot induction medium: MS + 2.27 µM TDZ. Proliferation medium: MS + 10 µM KN + 4.5 µM BAP + 5.5 µM NAA. Shoot elongation medium: MS + 2.25 µM BAP + 8.5 µM IAA. | 51.19% | 9.75 buds per explant | ½ MS + 5 µM IBA + 5.7 µM IAA + 11 µM NAA | More than 90% | [16] |
Petiole | Initiation medium: MS + 2.27 µM TDZ. Proliferation medium: MS+ 10 µM KN + 4.5 µM BAP + 5.5 µM NAA. Shoot elongation medium: MS + 2.25 µM BAP + 8.5 µM IAA. | 57.61% | 4.98 shoot buds per explant | ½ MS + 15 µM IBA + 11.4 µM IAA + 5.5 µM NAA. | More than 90% | [35] |
Petiole | Initiation medium: 20.0 mg/L TDZ solution for 20 min, later inoculated on Basal MS medium. Elongation medium: MS + 0.4 mg/L GA3. | 65.78% | 6.77 shoot buds per explant | 0.3 mg/L IBA + 16.0 mg/L L-glutamine (gln). | - | [17] |
Petiole | Initiation medium: 20.0 mg/L TDZ solution for 20 min, later inoculated on Basal MS medium. Multiplication medium: Shoots were grafted on seedling stocks and cultured on MS + 0.1 mg/L IBA + 2.0 mg/L sodium nitroprusside. | 87.35% | 10.48 ± 0.42 buds per explant | ½ MS + 2.0 mg/L sodium nitroprusside | - | [18] |
Cotyledons | ½ MS + 4.4 µM BAP + 2.8 µM IAA | - | 4.8 | - | - | [21] |
Cotyledonary petiole | Initiation medium: 20.0 mg/L TDZ solution for 20 min, later inoculated on basal MS medium. Elongation medium: MS + 7.5 mg/L arginine. | 88.42% | 12.67 | ½ MS + 0.1 mg/L IBA. | - | [22] |
In-vitro cotyledonary leaf | Initiation medium: MS + 9.08 µM TDZ. Proliferation medium: 10.0 µM KN + 4.5 µM BAP + 5.5 µM NAA. Shoot elongation medium: MS + 2.25 µM BAP + 8.5 µM IAA. | 81.07 ± 8.26% | 20.17 | ½ MS + 1 5.0 µM IBA + 5.7 µM IAA + 5.5 µM NAA | More than 90% | [23] |
Cotyledons | MS + 1.0 mg/L BAP + 0.1 mg/L IBA + 0.5 mg/L TDZ | 78.42 ± 10.28% | - | ½ MS + 0.2 mg/L IBA | - | [20] |
Hypocotyl | Initiation medium: MS + 1.0 mg/L TDZ. Elongation medium: MS + 2.0 mg/L KN + 1.0 mg/L BAP. Proliferation medium: 1.5 mg/L IAA + 0.5 mg/L BAP. | 92.9 ± 2.10% | - | ½ MS + 3.0 mg/L IBA + 1.0 mg/L IAA + 1.0 mg/L NAA | ~90% | [24] |
Shoot tip | MS + 0.5 mg/L IAA. | 90% | 3.44 ± 0.17 | ½ MS + 3.0 mg/L IBA | 60–70% | [36] |
Shoot tip | MS + 1.0 mg/L BAP + 0.5 mg/L IAA | - | 3.45 ± 0.73 | - | - | [25] |
Shoot tip | Induction medium: MS + 13.32 µM BAP + 4.92 µM IBA. Multiplication medium: MS + 13.32 µM BAP + 4.92 µM IBA. | 93.33% | 6.7 | ½ MS + 14.76 µM IBA (4.93 roots per culture) | - | [26] |
Apical shoot | MS + 4.44 µM BAP | - | 3.9 ± 0.27 | ½ MS + 4.90 µM IBA (85.71% rooting) | 82% | [37] |
Meristem | MS + 0.5 mg/L 2-iP | 90 ± 0.06% | - | - | - | [27] |
Node | MS + 4.5 µM TDZ + 8.9 µM IBA | - | 12.3 ± 1.7 | ½ MS + 5.4 µM NAA | - | [15] |
Node | MS + 3.0 mg/L BAP + 1.0 mg/L IBA + 25 mg/L adenine sulphate + 50.0 mg/L glutamine + 15.0 mg/L L-arginine + 25.0 mg/L citric acid. | - | 10.0 + 1.30 | ½ MS + 3.0 mg/L IBA | 100% | [28] |
Node | MS + 0.5 mg/L BAP + 0.1 mg/L IBA + 10.0 mg/L adenine sulphate + 15.0 mg/L L-glutamine and L-arginine + 50.0 mg/L Augmentin + 15.0 mg/L coconut water. | - | 5 | ½ strength of same shooting medium + 0.5 mg/L IBA (85% response for rooting) | 100% | [38] |
Node | MS + 3.0 mg/L BAP + 1.0 mg/L IBA. | - | 5 to 6 | ½ MS + 3.0 mg/L IBA | 95% | [39] |
Node | MS + 8.0 µM BAP + 2.0 µM IBA + 45 µM Adenine sulphate (AdS) + 15.0 µM glutamine + 10 µM proline. | - | 9.8 ± 0.84 | ½ MS + 2.0 µM IBA | 80% | [40] |
Node | Shoot induction medium: 0.5 mg/L BAP + 0.5 mg/L IBA. | 86–90% | 6.00 ± 0.31 | MS + 0.25 mg/L IBA | 66.67–86.67% | [29] |
Nodal segments | Induction medium: 2.0 mg/L BAP + 1 mg/L IAA. Multiplication medium: 0.5 mg/L BAP + 0.5 mg/L IAA. | 96.67 ± 3.33% | 1.73 ± 0.07 shoot buds on initiation medium, 9.33 ± 0.09 shoot buds on multiplication medium | ½ MS + 3.0 mg/L IBA (73.33 ± 3.33% rooting) | More than 80% | [41] |
Axillary node | MS + 2.8 µM IAA + 13.93 µM KN. | 83 ± 0.6% | - | MS + 14.7 µM IBA | - | [30] |
Axillary bud derived shoots | MS + 2.22 µM BAP + 0.049 µM IBA | - | 5.9 ± 0.93 | MS + 4.90 µM IBA | 82% | [37] |
Axillary bud | Shoot induction medium: MS + 2.0 mg/L BAP + 1.0 mg/L KN + 0.10 mg/L GA3. Multiplication medium: MS + 2.0 mg/L BAP + 1.0 mg/L KN + 0.05 mg/L GA3. | 91.65 ± 0.31% | 10.24 ± 0.07 | MS + 1.50 mg/L IBA + 0.10.0 mg/L NAA | 80% | [31] |
2.3. Indirect Organogenesis
2.4. Somatic Embryogenesis
3. Acclimatization of Plantlets
4. Genetic Transformation Studies of Jatropha curcas L.
5. Haploid and Double Haploid Production of Jatropha
6. Clonal Fidelity Analysis of Jatropha Using Molecular Markers
7. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nithiyanantham, S.; Siddhuraju, P.; Francis, G. Potential of Jatropha curcasas: A biofuel, animal feed and health products. J. Am. Oil Chem. Soc. 2012, 89, 961–972. [Google Scholar] [CrossRef]
- Abdelgadir, H.A.; Van Staden, J. Ethnobotany, ethnopharmacology and toxicity of Jatropha curcas L. (Euphorbiaceae): A review. S. Afr. J. Bot. 2013, 88, 204–218. [Google Scholar] [CrossRef] [Green Version]
- Heller, J. Physic Nut, Jatropha curcas L.; Bioversity International: Rome, Italy, 1996. [Google Scholar]
- Dehgan, B.; Webster, G.L. Morphology and Infrageneric Relationships of the Genus Jatropha (Euphorbiaceae); University of California Press: Oakland, CA, USA, 1979. [Google Scholar]
- Neuwinger, H.D. African Ethnobotany: Poisons and Drugs: Chemistry, Pharmacology, Toxicology; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Raju, A.S.; Ezradanam, V. Pollination ecology and fruiting behaviour in a monoecious species, Jatropha curcas L. (Euphorbiaceae). Curr. Sci. 2002, 10, 1395–1398. Available online: http://www.jstor.org/stable/24106968 (accessed on 24 March 2022).
- Datta, M.M.; Mukherjee, P.; Ghosh, B.; Jha, T.B. In vitro clonal propagation of biodiesel plant (Jatropha curcas L.). Curr. Sci. 2007, 25, 1438–1442. Available online: https://www.jstor.org/stable/24099357 (accessed on 24 April 2022).
- Campbell, C.J.; Doré, A.G.; Vining, B.A. The meaning of oil depletion and its consequences. In Geological Society, London, Petroleum Geology Conference Series; Geological Society of London: London, UK, 2005; Volume 6, pp. 11–19. [Google Scholar] [CrossRef]
- Kywe, T.T.; Oo, M.M. Production of biodiesel from Jatropha oil (Jatropha curcas) in pilot plant. Proc. World Acad. Sci. Eng. Technol. 2009, 38, 481–487. [Google Scholar]
- Gübitz, G.M.; Mittelbach, M.; Trabi, M. Exploitation of the tropical oil seed plant Jatropha curcas L. Bioresour. Technol. 1999, 67, 73–82. [Google Scholar] [CrossRef]
- Gadir, W.A.; Onsa, T.O.; Ali, W.E.; El Badwi, S.M.; Adam, S.E. Comparative toxicity of Croton macrostachys, Jatropha curcas and Piper abyssinica seeds in Nubian goats. Small Rumin. Res. 2003, 48, 61–67. [Google Scholar] [CrossRef]
- Makkar, H.P.; Aderibigbe, A.O.; Becker, K. Comparative evaluation of non-toxic and toxic varieties of Jatropha curcas for chemical composition, digestibility, protein degradability and toxic factors. Food Chem. 1998, 62, 207–215. [Google Scholar] [CrossRef]
- Visser, E.M.; Oliveira Filho, D.; Martins, M.A.; Steward, B.L. Bioethanol production potential from Brazilian biodiesel co-products. Biomass Bioenergy 2011, 35, 489–494. [Google Scholar] [CrossRef]
- Sujatha, M.; Mukta, N. Morphogenesis and plant regeneration from tissue cultures of Jatropha curcas. Plant Cell Tissue Organ Cult. 1996, 44, 135–141. [Google Scholar] [CrossRef]
- Sujatha, M.; Makkar, H.P.; Becker, K. Shoot bud proliferation from axillary nodes and leaf sections of non-toxic Jatropha curcas L. Plant Growth Regul. 2005, 47, 83–90. [Google Scholar] [CrossRef]
- Kumar, N.; Reddy, M.P. Thidiazuron (TDZ) induced plant regeneration from cotyledonary petiole explants of elite genotypes of Jatropha curcas: A candidate biodiesel plant. Ind. Crop. Prod. 2012, 39, 62–68. [Google Scholar] [CrossRef]
- Liu, Y.; Tong, X.; Hui, W.; Liu, T.; Chen, X.; Li, J.; Zhuang, C.; Yang, Y.; Liu, Z. Efficient culture protocol for plant regeneration from petiole explants of physiologically mature trees of Jatropha curcas L. Biotechnol. Biotechnol. Equip. 2015, 29, 479–488. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liu, G.; Yang, Y.; Niu, S.; Yang, F.; Yang, S.; Tang, J.; Chen, J. Establishment of an efficient plant regeneration culture protocol and achievement of successful genetic transformation in Jatropha curcas L. Acta Biol. Hung. 2017, 68, 428–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A. N-(2-chloro-4-pyridyl)-N-phenylurea enhanced regeneration of Jatropha curcas leaf explants by high mineral acquisition. Biologia 2017, 72, 300–304. [Google Scholar] [CrossRef]
- Khemkladngoen, N.; Cartagena, J.; Shibagaki, N.; Fukui, K. Adventitious shoot regeneration from juvenile cotyledons of a biodiesel producing plant, Jatropha curcas L. J. Biosci. Bioeng. 2011, 111, 67–70. [Google Scholar] [CrossRef]
- Nunes, C.F.; dos Santo, D.N.; Pasqual, M.; Valente, T.C.; de Oliveira, A.C.; Alves, E.; Setotaw, T.A. Morphogenesis and regeneration of adventitious shoots in “Jatropha curcas” L. Aust. J. Crop Sci. 2013, 7, 1511–1519. [Google Scholar]
- Liu, Y.; Lu, J.; Zhu, H.; Li, L.; Shi, Y.; Yin, X. Efficient culture protocol for plant regeneration from cotyledonary petiole explants of Jatropha curcas L. Biotechnol. Biotechnol. Equip. 2016, 30, 907–914. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Vijay Anand, K.G.; Reddy, M.P. Plant regeneration of non-toxic Jatropha curcas—Impacts of plant growth regulators, source and type of explants. J. Plant Biochem. Biotechnol. 2011, 20, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Kumar, N.; Reddy, M.P. Regeneration in Jatropha curcas: Factors affecting the efficiency of in vitro regeneration. Ind. Crop. Prod. 2011, 34, 943–951. [Google Scholar] [CrossRef]
- Shamsiah, A.; Awal, A.; Nurathrah, S.; Khairul-Azmir, M.; Norrizah, J.S. Effects of BAP concentration on in vitro shoot multiplication and callus induction of Jatropha curcas. In Proceedings of the XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): International Symposium on Micro and Macro Technologies for Plant Propagation and Breeding in Horticulture, Lisbon, Portugal, 31 December 2011; pp. 203–208. [Google Scholar] [CrossRef]
- Imtiaz, M.; Khattak, A.M.; Ara, N.; Iqbal, A.; Rahman, H.U. Micropropagation of Jatropha curcas L. through shoot tip explants using different concentrations of phytohormones. J. Anim. Plant Sci. 2014, 24, 229–233. [Google Scholar]
- Danso, K.E.; Afful, N.T.; Annor, C.; Amoatey, H.M. In vitro regeneration of Ricinus communis L. and Jatropha curcas L. for biofuel production. Biotechnology 2011, 10, 400–407. [Google Scholar] [CrossRef]
- Shrivastava, S.; Banerjee, M. In vitro clonal propagation of physic nut (Jatropha curcas L.): Influence of additives. Int. J. Integr. Biol. 2008, 3, 73–79. [Google Scholar]
- Hundessa, F.; Meseret, T.; Jiregna, D. In vitro regeneration protocol through direct organogenesis for Jatropha curcas L. (Euphorbiaceae) accessions in Ethiopia. Afr. J. Biotechnol. 2019, 18, 991–1003. [Google Scholar] [CrossRef] [Green Version]
- Leela, T.; Naresh, B.; Reddy, M.S.; Madhusudhan, N.C.; Cherku, P.D. Morphological, physico-chemical and micropropagation studies in Jatropha curcas L. and RAPD analysis of the regenerants. Appl. Energy 2011, 88, 2071–2079. [Google Scholar] [CrossRef]
- Mishra, S. In-vitro direct shoot organogenesis in Jatropha curcas L. J. Pharmacogn. Phytochem. 2018, 7, 1777–1780. [Google Scholar]
- Sarathum, S.; Hegele, M.; Wünsche, J.N. Micropropagation of Jatropha curcas L. In Proceedings of the XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): International Symposium on Micro and Macro Technologies for Plant Propagation and Breeding in Horticulture, Lisbon, Portugal, 31 December 2011; Volume 22, pp. 65–72. [Google Scholar]
- Singh, A. Efficient micropropagation protocol for Jatropha curcas using liquid culture medium. J. Crop Sci. Biotechnol. 2018, 21, 89–94. [Google Scholar] [CrossRef]
- Zhang, C.; Fu, S.; Tang, G.; Hu, X.; Guo, J. Factors influencing direct shoot regeneration from mature leaves of Jatropha curcas, an important biofuel plant. Vitr. Cell. Dev. Biol. Plant 2013, 49, 529–540. [Google Scholar] [CrossRef]
- Kumar, N.; Anand, K.V.; Reddy, M.P. In vitro regeneration from petiole explants of non-toxic Jatropha curcas. Ind. Crop. Prod. 2011, 33, 146–151. [Google Scholar] [CrossRef]
- Rajore, S.; Batra, A. Efficient plant regeneration via shoot tip explant in Jatropha curcas L. J. Plant Biochem. Biotechnol. 2005, 14, 73–75. [Google Scholar] [CrossRef]
- Thepsamran, N.; Thepsithar, C.; Thongpukdee, A. In vitro induction of shoots and roots from Jatropha curcas L. explants. J. Hortic. Sci. Biotechnol. 2008, 83, 106–112. [Google Scholar] [CrossRef]
- Toppo, D.D.; Singh, G.; Purshottam, D.K.; Misra, P. Improved in vitro rooting and acclimatization of Jatropha curcas plantlets. Biomass Bioenergy 2012, 44, 42–46. [Google Scholar] [CrossRef]
- Ram, G.D.; Chauhan, S.S.; Verma, D.K. In vitro propagation of Jatropha curcas from embryo and nodal explants. Bioscan 2012, 7, 251–254. [Google Scholar]
- Maharana, S.B.; Mahato, V.; Behera, M.; Mishra, R.R.; Panigrahi, J. In vitro regeneration from node and leaf explants of Jatropha curcas L. and evaluation of genetic fidelity through RAPD markers. Indian J. Biotechnol. 2012, 11, 280–287. [Google Scholar]
- Rathore, M.S.; Yadav, S.; Yadav, P.; Kheni, J.; Jha, B. Micropropagation of elite genotype of Jatropha curcas L. through enhanced axillary bud proliferation and ex vitro rooting. Biomass Bioenergy 2015, 83, 501–510. [Google Scholar] [CrossRef]
- Shilpa, R.; Amla, B. An alternative source for regenerable organogenic callus induction in Jatropha curcas L. Indian J. Biotechnol. 2007, 6, 545–548. [Google Scholar]
- Verma, K.C.; Verma, S.K.; Bains, K. Biophysicochemical evaluation and micropropagation study of Jatropha curcas and Ricinus communis for biodiesel production. Energy Sources Part A Recover. Util. Environ. Eff. 2016, 38, 797–804. [Google Scholar] [CrossRef]
- Boonyanan, P.; Ketudat-Cairns, M. A simple and ecologically friendly method for Jatropha curcas tissue culture. Thai J. Agric. Sci. 2021, 54, 125–134. [Google Scholar]
- Hegazi, G.A.; El-Hanafy, N.A.; Mohamed, A.M.; Abu-Elkheir, Z.A. In vitro regeneration of the biofuel crop Jatropha curcas. Plant Arch. 2020, 20, 2122–2127. [Google Scholar]
- Shukla, P.; Makwana, V.; Bhatt, D.; Robin, P. Efficient method for direct and indirect organogenesis in biofuel crop Jatropha curcas. Int. J. Pharm. Bio. Sci. 2013, 4, 673–682. [Google Scholar]
- Verma, K.C.; Juneja, N. Biophysicochemical evaluation and micropropagation study of Jatropha curcas L. collections for biodiesel production. Int. J. Sustain. Energy 2014, 33, 946–953. [Google Scholar] [CrossRef]
- Singh, A.; Jani, K.; Sagervanshi, A.; Agrawal, P.K. High-frequency regeneration by Abscisic Acid (ABA) from petiole callus of Jatropha curcas. In Vitr. Cell. Dev. Biol. Plant 2014, 50, 638–645. [Google Scholar] [CrossRef]
- Subroto, A.P.; Utomo, C.; Darmawan, C.; Hendroko, R.; Liwang, T. Tissue culture media optimization and genetic transformation of Jatropha curcas genotype Jatromas cotyledon explants. Energy Procedia 2014, 47, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Loyola-Vargas, V.M.; De-La-Peña, C.; Galaz-Avalos, R.M.; Quiroz-Figueroa, F.R. Plant tissue culture. In Molecular Biomethods Handbook; Humana Press: Totowa, NJ, USA, 2008; pp. 875–904. [Google Scholar]
- Loyola-Vargas, V.M.; Ochoa-Alejo, N. Somatic embryogenesis. An overview. In Somatic Embryogenesis: Fundamental Aspects and Applications; Springer: Belin, Germany, 2016; pp. 1–506. [Google Scholar]
- Medipally, S.R.; Naresh, B.; Manoj Kumar, S.; Yusoff, F.M.; Devi, P. Somatic embryogenesis from leaf and shoot tip explants of Jatropha curcas L. Indian J. Sci. Technol. 2014, 7, 1842–1846. [Google Scholar] [CrossRef]
- Mukherjee, P.; Datta, M.M. Somatic embryogenesis in Jatropha curcas Linn., an important biofuel plant. Plant Biotechnol. Rep. 2007, 1, 135–140. [Google Scholar] [CrossRef]
- Cai, L.; Fu, L.; Ji, L. Regeneration of Jatropha curcas through efficient somatic embryogenesis and suspension culture. GM Crop. 2011, 2, 110–117. [Google Scholar] [CrossRef]
- Mendoza-Peña, C.N.; Hvoslef-Eide, A.K. A novel genotype-independent technique for successful induction of somatic embryogenesis of adult plants of Jatropha curcas L. using petiole transverse Thin Cell Layer (TCL). Afr. J. Biotechnol. 2021, 20, 85–91. [Google Scholar]
- Kalimuthu, K.; Paulsamy, S.; Senthilkumar, R.; Sathya, M. In vitro propagation of the biodiesel plant Jatropha curcas L. Plant Tissue Cult. Biotechnol. 2007, 17, 137–147. [Google Scholar] [CrossRef]
- Nindita, A.; Purwoko, B.S.; Efendi, D.; Dewi, I.S. Somatic embryogenesis media optimization study of physic nut (Jatropha curcas) as biodiesel feedstock. Energy Procedia 2014, 47, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Saxena, S.; Sharma, A.; Sardana, J.; Sharma, M.M.; Batra, A. Somatic embryogenesis in Jatropha curcus L. using cotyledonary leaves. Indian J. Biotechnol. 2012, 11, 348–351. [Google Scholar]
- Galaz-Ávalos, R.M.; Martínez-Sánchez, H.G.; Loyola-Vargas, V.M. Induction of somatic embryogenesis in Jatropha curcas. In Plant Cell Culture Protocols; Humana Press: New York, NY, USA, 2018; pp. 207–214. [Google Scholar]
- Hazarika, B.N. Acclimatization of tissue-cultured plants. Curr. Sci. 2003, 25, 1704–1712. [Google Scholar] [CrossRef]
- Sutter, E.G.; Hutzell, M. Use of humidity tents and antitranspirants in the acclimatization of tissue-cultured plants to the greenhouse. Sci. Hortic. 1984, 23, 303–312. [Google Scholar] [CrossRef]
- Purkayastha, J.; Sugla, T.; Paul, A.; Solleti, S.K.; Mazumdar, P.; Basu, A.; Mohommad, A.; Ahmed, Z.; Sahoo, L. Efficient in vitro plant regeneration from shoot apices and gene transfer by particle bombardment in Jatropha curcas. Biol. Plant. 2010, 54, 13–20. [Google Scholar] [CrossRef]
- Varshney, A.; Johnson, T.S. Efficient plant regeneration from immature embryo cultures of Jatropha curcas, a biodiesel plant. Plant Biotechnol. Rep. 2010, 4, 139–148. [Google Scholar] [CrossRef]
- Keshavareddy, G.; Kumar, A.R.; Ramu, V.S. Methods of plant transformation—A review. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2656–2668. [Google Scholar] [CrossRef]
- Sujatha, M.; Nithianantham, S.; Reddy, M.P. Plant regeneration and genetic transformation in Jatropha. In Biotechnology of Neglected and Underutilized Crops; Springer: Dordrecht, The Netherlands, 2013; pp. 319–342. [Google Scholar]
- King, A.J.; He, W.; Cuevas, J.A.; Freudenberger, M.; Ramiaramanana, D.; Graham, I.A. Potential of Jatropha curcas as a source of renewable oil and animal feed. J. Exp. Bot. 2009, 60, 2897–2905. [Google Scholar] [CrossRef] [Green Version]
- Chacuttayapong, W.; Enoki, H.; Nabetani, Y.; Matsui, M.; Oguchi, T.; Motohashi, R. Transformation of Jatropha curcas L. for production of larger seeds and increased amount of biodiesel. Plant Biotechnol. J. 2021, 38, 247–256. [Google Scholar] [CrossRef]
- Zhang, X.; Pan, B.-Z.; Chen, M.; Chen, W.; Li, J.; Xu, Z.-F.; Liu, C. JCDB: A comprehensive knowledge base for Jatropha curcas, an emerging model for woody energy plants. BMC Genom. 2019, 20, 958. [Google Scholar] [CrossRef] [Green Version]
- Ha, J.; Shim, S.; Lee, T.; Kang, Y.J.; Hwang, W.J.; Jeong, H.; Laosatit, K.; Lee, J.; Kim, S.K.; Satyawan, D.; et al. Genome sequence of Jatropha curcas L., a non-edible biodiesel plant, provides a resource to improve seed-related traits. Plant Biotechnol. J. 2019, 17, 517–530. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Li, H.; Jiang, H.; Pan, X.; Wu, G. Establishment of an Agrobacteriuim-mediated cotyledon disc transformation method for Jatropha curcas. Plant Cell Tissue Organ Cult. 2008, 92, 173–181. [Google Scholar] [CrossRef]
- Kumar, N.; Anand, K.V.; Pamidimarri, D.S.; Sarkar, T.; Reddy, M.P.; Radhakrishnan, T.; Kaul, T.; Reddy, M.K.; Sopori, S.K. Stable genetic transformation of Jatropha curcas via Agrobacterium tumefaciens-mediated gene transfer using leaf explants. Ind. Crop. Prod. 2010, 32, 41–47. [Google Scholar] [CrossRef]
- Jha, B.; Mishra, A.; Jha, A.; Joshi, M. Developing transgenic Jatropha using the SbNHX1 gene from an extreme halophyte for cultivation in saline wasteland. PLoS ONE 2013, 8, e71136. [Google Scholar] [CrossRef]
- Ming, X.; Tao, Y.-B.; Fu, Q.; Tang, M.; He, H.; Chen, M.-S.; Pan, B.-Z.; Xu, Z.-F. Flower-specific overproduction of cytokinins altered flower development and sex expression in the perennial woody plant Jatropha curcas L. Int. J. Mol. Sci. 2020, 21, 640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maravi, D.K.; Kumar, S.; Sharma, P.K.; Kobayashi, Y.; Goud, V.V.; Sakurai, N.; Koyama, H.; Sahoo, L. Ectopic expression of AtDGAT1, encoding diacylglycerol O-acyltransferase exclusively committed to TAG biosynthesis, enhances oil accumulation in seeds and leaves of Jatropha. Biotechnol. Biofuels 2016, 9, 226. [Google Scholar] [CrossRef] [Green Version]
- Arockiasamy, S.; Kumpatla, J.; Hadole, S.; Yepuri, V.; Patil, M.; Shrivastava, V.; Rao, C.; Kancharla, N.; Jalali, S.; Varshney, A.; et al. Breeding and biotechnological efforts in Jatropha curcas L. for sustainable yields. Oil Crop Sci. 2021, 6, 180–191. [Google Scholar] [CrossRef]
- Madan, N.S.; Arockiasamy, S.; Narasimham, J.V.; Patil, M.; Yepuri, V.; Sarkar, P. Anther culture for the production of haploid and doubled haploids in Jatropha curcas L. and its hybrids. Plant Cell Tissue Organ Cult. 2019, 138, 181–192. [Google Scholar] [CrossRef]
- Shrivastava, V.; Savarimuthu, A.; Patil, M.; Sarkar, P.; Hadole, S.; Dasgupta, S. Gametic embryogenesis and callogenesis in isolated microspore culture of Jatropha curcas L. a recalcitrant bioenergy crop. Plant Cell Tissue Organ Cult. 2021, 144, 359–370. [Google Scholar] [CrossRef]
- Lopez-Puc, G.; Herrera-Cool, G.J.; Alberto, U.V.; Ramos-Díaz, A.; Góngora-Canul, C.C.; Aguilera-Cauich, E.A.; Martínez-Sebastián, G. In vitro gynogenesis of Jatropha curcas L. var. ALJC01. Trop. Subtrop. Agroecosyst. 2021, 27, 24. [Google Scholar]
- Mukherjee, P.; Varshney, A.; Johnson, T.S.; Jha, T.B. Jatropha curcas: A review on biotechnological status and challenges. Plant Biotechnol. Rep. 2011, 5, 197–215. [Google Scholar] [CrossRef]
- El-Sayed, M.; Aly, U.I.; Mohamed, M.S.; Rady, M.R. In vitro regeneration and molecular characterization of Jatropha curcas plant. Bull. Natl. Res. Cent. 2020, 44, 70. [Google Scholar] [CrossRef]
- Rathore, M.S.; Yadav, P.; Mastan, S.G.; Prakash, C.R.; Singh, A.; Agarwal, P.K. Evaluation of genetic homogeneity in tissue culture regenerates of Jatropha curcas L. using flow cytometer and DNA-based molecular markers. Appl. Biochem. Biotechnol. 2014, 172, 298–310. [Google Scholar] [CrossRef] [PubMed]
- Sudheer Pamidimarri, D.V.; Singh, S.; Mastan, S.G.; Patel, J.; Reddy, M.P. Molecular characterization and identification of markers for toxic and non-toxic varieties of Jatropha curcas L. using RAPD, AFLP and SSR markers. Mol. Biol. Rep. 2009, 36, 1357–1364. [Google Scholar] [CrossRef] [PubMed]
Explant | Callusing Media | Callusing Response | Shooting Media | Shooting Response/No. of Shoots | Rooting Media | Rooting Response/No. of Roots | Percentage of Acclimatization | Reference |
---|---|---|---|---|---|---|---|---|
Leaf | MS + 2.22 µM BAP + 4.9 µM IBA | 100% | MS + 2.22 µM BAP + 2.46 µM IBA | 67% /10.7 shoots | Full strength MS medium | 88% | More than 80% | [14] |
Leaf | MS + 1.0 mg/L NAA + 5.0 mg/L BAP (compact green) | - | MS + 1.5 mg/L BAP + 0.5 mg/L IBA | 12.62 ± 0.24 buds | MS + 3.0 mg/L IBA | - | - | [42] |
Leaf | MS + 3–5 µM IBA + 27.0 µM BAP | - | MS + 27.0 µM BAP + 3.0 µM IBA | 10 ± 2.35 buds | Basal MS medium | - | - | [46] |
Leaf | MS + 1.0 mg/L BAP + 0.50 mg/L NAA | 80% | MS + 2.0 mg/L BAP + 0.5 mg/L NAA | 60%/4 shoots | Basal MS medium | 90% | 70% | [47] |
Leaf | MS + 0.25 mg/L BAP + 0.25 mg/L NAA or MS + 0.50 mg/L BAP + 0.50 mg/L NAA | 90% | MS + 2.5 mg/L BAP + 0.5 mg/L NAA | 70%/5 shoots | Basal MS medium | 95% | 70% | [43] |
Leaf | MS + 2.0 mg/L BAP + 1.0 mg/L IBA | 90.5% | MS + 2.0 mg/L BAP | 43.7%/20.00 ± 1.23 shoots | 1/2 MS + 0.5 mg/L IBA + 100 mg/L phloroglucinol | - | - | [44] |
Petiole | MS + 4.44 µM BAP + 2.45 µM IBA | 95.9 ± 1.79% | MS + 2.22 µM BAP + 8.56 µM IAA | 10–13 shoots | MS + 2.45 µM IBA + 0.54 µM NAA | More than 72% | More than 98% | [48] |
Petiole segments | MS + 2.22 µM BAP + 4.90 µM IBA | - | MS + 4.44 µM BAP + 2.46 µM IBA | 5.4 ± 1.4 shoots | Basal MS medium | 85.71% | 82% | [37] |
Cotyledonary leaves | MS + 0.45 µM TDZ | 100% | MS + 0.45 µM TDZ. Proliferation medium: MS + 8.88 µM BAP + 54.3 µM AdS. | 82.67%/11.9 shoots | ½ MS + 1.47 µM IBA | 61.66%/8.6 roots | - | [45] |
Cotyledon | MS + 1.5 mg/L BAP + 0.10 mg/L IBA | - | MS + 2.0 mg/L BAP + 0.05 mg/L IBA + 0.5 GA3 | 45.78% | - | - | - | [49] |
Embryo | MS + 1.5 mg/L BAP + 1.0 mg/L IBA | - | Same as callusing medium. | 5 to 6 shoots | ½ MS + 3.0 mg/L IBA | 4–5 roots | 95% | [39] |
Node | MS + 8.0 µM BAP + 2.0 µM IBA | - | Same as callusing medium. | 7.2 ± 0.84 | ½ MS + 2.0 µM IBA | 5.6 ± 0.55 roots | 80% | [40] |
Explant | Media and Plant Growth Regulators | Response | Percentage of Embryogenesis | No. of Embryos | Percentage of Acclimatization | Reference |
---|---|---|---|---|---|---|
Leaf | MS + 2.3 µM KN + 1.0 µM IBA + 13.6 µM AdS | Globular somatic embryo development | 80% | 58.5 ± 12.7 | 90% | [53] |
Cotyledonary leaves | Initiation medium: MS + 0.2 mg/L IAA. Subculture medium: MS + 0.2 mg/L IAA + 1.5 mg/L BAP | Embryo callus transformed to heart, torpedo shaped embryos | 84.6 ± 1.5% | - | 50% | [58] |
Leaf and shoot tip | Embryogenesis induction medium: MS + 0.5 mg/L 2,4-D + 5.0 mg/L BAP + 684.2 µM glutamine + 520.5 µM citric acid. Embryo to plant conversion medium: MS + 2.0 mg/L BAP + 684.2 µM glutamine + 520.5 µM citric acid. | Green embryogenic callus | - | Plant conversion rate is 51 ± 0.9 for leaf and 54 ± 0.6 for shoot tip explant | 25 to 30% | [52] |
Cotyledon and embryo axis | MS + 1.0 mg/L picloram | Somatic embryos development | 65% and 45% | - | - | [57] |
Immature zygotic embryos | Direct somatic embryogenesis: MS + 0.1–0.2 mg/L 2,4-D. Indirect somatic embryogenesis: B5 vitamins rich medium. | - | 57.3 ± 8.7% | - | 95% | [54] |
Foliar leaves | Embryogenesis Induction medium: MS + 5.0 µM BAP. Embryo maturation medium: MS + 8.87 µM BA | Direct somatic embryogenesis from leaf margins | - | - | - | [59] |
Petiole | Embryogenic callus induction medium: Y3 medium + 0.5 mg/L 2,4-D + 0.5 mg/L BAP Somatic embryos induction medium: Y3 medium + 0.05 mg/L 2,4-D +2.0 mg/L BAP. Embryos maturation: ½ MS + 2.0 mg/L BAP | Somatic embryos were differentiated and matured in auxin free medium | 100% | - | - | [55] |
Cotyledon | MS + 2.0 mg/L BAP | Globular somatic embryo development | 90% | 40 embryos per explant | - | [56] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Khayri, J.M.; Sudheer, W.N.; Preetha, T.R.; Nagella, P.; Rezk, A.A.; Shehata, W.F. Biotechnological Research Progress in Jatropha, a Biodiesel-Yielding Plant. Plants 2022, 11, 1292. https://doi.org/10.3390/plants11101292
Al-Khayri JM, Sudheer WN, Preetha TR, Nagella P, Rezk AA, Shehata WF. Biotechnological Research Progress in Jatropha, a Biodiesel-Yielding Plant. Plants. 2022; 11(10):1292. https://doi.org/10.3390/plants11101292
Chicago/Turabian StyleAl-Khayri, Jameel M., Wudali N. Sudheer, Thenmozhi R. Preetha, Praveen Nagella, Adel A. Rezk, and Wael F. Shehata. 2022. "Biotechnological Research Progress in Jatropha, a Biodiesel-Yielding Plant" Plants 11, no. 10: 1292. https://doi.org/10.3390/plants11101292
APA StyleAl-Khayri, J. M., Sudheer, W. N., Preetha, T. R., Nagella, P., Rezk, A. A., & Shehata, W. F. (2022). Biotechnological Research Progress in Jatropha, a Biodiesel-Yielding Plant. Plants, 11(10), 1292. https://doi.org/10.3390/plants11101292