Prediction of the Adult T-Cell Leukemia Inhibitory Activity of Blueberry Leaves/Stems Using Direct-Injection Electron Ionization-Mass Spectrometry Metabolomics
Abstract
:1. Introduction
2. Results
2.1. DI-EI-MS Profiling of Blueberry Leaves and Stems
2.2. Inhibition of ATL-Related Cell Growth
2.3. Prediction of ATL Inhibitory Activity Using DI-EI-MS Metabolomics
2.4. Analysis of PACs
2.5. Three Correlation Matrices for ATL Cell Inhibitory Activity and DI-EI-MS and PAC Analyses
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Extraction
4.3. DI-EI-MS
4.4. ATL Cell Proliferation Assay
4.5. PAC Analysis
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rowland, L.J.; Ogden, E.L.; Ehlenfeldt, M.K. EST-PCR markers developed for highbush blueberry are also useful for genetic fingerprinting and relationship studies in rabbiteye blueberry. Sci. Hortic. 2010, 125, 779–784. [Google Scholar] [CrossRef]
- Chavez, D.J.; Lyrene, P.M. Interspecific crosses and backcrosses between diploid Vaccinium darrowii and tetraploid southern highbush Blueberry. J. Am. Soc. Hortic. Sci. 2009, 134, 273–280. [Google Scholar] [CrossRef]
- Schuchovski, C.; Sant’Anna-Santos, B.F.; Marra, R.C.; Biasi, L.A. Morphological and anatomical insights into de novo shoot organogenesis of in vitro ‘Delite’ rabbiteye blueberries. Heliyon 2020, 6, e05468. [Google Scholar] [CrossRef] [PubMed]
- Ștefănescu, B.-E.; Călinoiu, L.F.; Ranga, F.; Fetea, F.; Mocan, A.; Vodnar, D.C.; Crișan, G. The Chemical and Biological Profiles of Leaves from Commercial Blueberry Varieties. Plants 2020, 9, 1193. [Google Scholar] [CrossRef]
- Zorzi, M.; Gai, F.; Medana, C.; Aigotti, R.; Morello, S.; Peiretti, P.G. Bioactive Compounds and Antioxidant Capacity of Small Berries. Foods 2020, 9, 623. [Google Scholar] [CrossRef]
- Sater, H.M.; Bizzio, L.N.; Tieman, D.M.; Muñoz, P.D. A Review of the Fruit Volatiles Found in Blueberry and Other Vaccinium Species. J. Agric. Food Chem. 2020, 68, 5777–5786. [Google Scholar] [CrossRef]
- Yamasaki, M.; Kiue, Y.; Fujii, K.; Sushida, M.; Yamasaki, Y.; Sugamoto, K.; Suzuki, Y.; Koga, Y.; Kunitake, H.; Kai, H.; et al. Vaccinium virgatum Aiton Leaves Extract Suppressed Lipid Accumulation and Uric Acid Production in 3T3-L1 Adipocytes. Plants 2021, 10, 2638. [Google Scholar] [CrossRef]
- Yamasaki, K.; Sugamoto, K.; Arakawa, T.; Nishiyama, K.; Yamasaki, M. Chronic intake of high-dose of blueberry leaf extract does not augment the harmful effects of ethanol in rats. PeerJ 2019, 7, e6989. [Google Scholar] [CrossRef]
- Takami, Y.; Uto, H.; Takeshita, M.; Kai, H.; Akamatsu, E.; Moriuchi, A.; Hasegawa, S.; Oketani, M.; Ido, A.; Kataoka, H.; et al. Proanthocyanidin derived from the leaves of Vaccinium virgatum suppresses platelet-derived growth factor-induced proliferation of the human hepatic stellate cell line LI90. Hepatol. Res. 2010, 40, 337–345. [Google Scholar] [CrossRef]
- Takeshita, M.; Ishida, Y.-I.; Akamatsu, E.; Ohmori, Y.; Sudoh, M.; Uto, H.; Tsubouchi, H.; Kataoka, H. Proanthocyanidin from blueberry leaves suppresses expression of subgenomic hepatitis C virus RNA. J. Biol. Chem. 2009, 284, 21165–21176. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, W.; Yokoyama, D.; Matsuura, Y.; Nozaki, M.; Hirozawa, N.; Kunitake, H.; Sakono, M.; Sakakibara, H. Subchronic toxicity evaluation of leaves from rabbiteye blueberry (Vaccinium virgatum Aiton) in rats. Toxicol. Rep. 2019, 6, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Kai, H.; Akamatsu, E.; Torii, E.; Kodama, H.; Yukizaki, C.; Sakakibara, Y.; Suiko, M.; Morishita, K.; Kataoka, H.; Matsuno, K. Inhibition of proliferation by agricultural plant extracts in seven human adult T-cell leukaemia (ATL)-related cell lines. J. Nat. Med. 2011, 65, 651–655. [Google Scholar] [CrossRef] [PubMed]
- Kai, H.; Fuse, T.; Kunitake, H.; Morishita, K.; Matsuno, K. Comparison of Cultivars and Seasonal Variation in Blueberry (Vaccinium Species) Leaf Extract on Adult T-Cell Leukemia Cell Line Growth Suppression. Medicines 2014, 1, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Hleihel, R.; Akkouche, A.; Skayneh, H.; Hermine, O.; Bazarbachi, A.; El Hajj, H. Adult T-Cell Leukemia: A Comprehensive Overview on Current and Promising Treatment Modalities. Curr. Oncol. Rep. 2021, 23, 141. [Google Scholar] [CrossRef] [PubMed]
- Tetsumura, T.; Kajiwara, Y.; Honsho, C.; Sato-Yamauchi, M.; Sugimoto, Y.; Kunitake, H. Effective Micropropagation of Rabbiteye Blueberries for Leaf Tea Production. Environ. Control Biol. 2012, 50, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Chai, Z.; Hutabarat, R.P.; Zeng, Q.; Niu, L.; Li, D.; Yu, H.; Huang, W. Blueberry leaves from 73 different cultivars in southeastern China as nutraceutical supplements rich in antioxidants. Food Res. Int. 2019, 122, 548–560. [Google Scholar] [CrossRef]
- Matsuo, Y.; Fujita, Y.; Ohnishi, S.; Tanaka, T.; Hirabaru, H.; Kai, T.; Sakaida, H.; Nishizono, S.; Kouno, I. Chemical constituents of the leaves of rabbiteye blueberry (Vaccinium ashei) and characterisation of polymeric proanthocyanidins containing phenylpropanoid units and A-type linkages. Food Chem. 2010, 121, 1073–1079. [Google Scholar] [CrossRef] [Green Version]
- Kai, H.; Sugamoto, K.; Toshima, S.; Goto, Y.; Nakayama, T.; Morishita, K.; Kunitake, H. Effective Utilization of Vaccinium virgatum Aiton Stems as Functional Materials: Major Constituent Analysis and Bioactivity Evaluation. Plants 2022, 11, 568. [Google Scholar] [CrossRef]
- Kai, H.; Uesawa, Y.; Kunitake, H.; Morishita, K.; Okada, Y.; Matsuno, K. Direct-Injection Electron Ionization-Mass Spectrometry Metabolomics Method for Analyzing Blueberry Leaf Metabolites That Inhibit Adult T-cell Leukemia Proliferation. Planta Med. 2019, 85, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Kai, H.; Kinoshita, K.; Harada, H.; Uesawa, Y.; Maeda, A.; Suzuki, R.; Okada, Y.; Takahashi, K.; Matsuno, K. Establishment of a Direct-Injection Electron Ionization-Mass Spectrometry Metabolomics Method and Its Application to Lichen Profiling. Anal. Chem. 2017, 89, 6408–6414. [Google Scholar] [CrossRef]
- Wu, C.; Wang, H.; Liu, Z.; Xu, B.; Li, Z.; Song, P.; Chao, Z. Untargeted Metabolomics Coupled with Chemometrics for Leaves and Stem Barks of Dioecious Morus alba L. Metabolites 2022, 12, 106. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-C.; Yashiki, S.; Sonoda, J.; Lou, H.; Ghosh, S.K.; Byrnes, J.J.; Lema, C.; Fujiyoshi, T.; Karasuyama, M.; Sonoda, S. Green Tea Polyphenols Induce Apoptosis in vitro in Peripheral Blood T Lymphocytes of Adult T-Cell Leukemia Patients. Jpn. J. Cancer Res. 2000, 91, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Thilakarathna, W.P.D.W.; Rupasinghe, H.P.V. Optimization of the Extraction of Proanthocyanidins from Grape Seeds Using Ultrasonication-Assisted Aqueous Ethanol and Evaluation of Anti-Steatosis Activity In Vitro. Molecules 2022, 27, 1363. [Google Scholar] [CrossRef] [PubMed]
- Symma, N.; Hensel, A. Advanced analysis of oligomeric proanthocyanidins: Latest approaches in liquid chromatography and mass spectrometry based analysis. Phytochem. Rev. 2021, 2. [Google Scholar] [CrossRef]
- Kashchenko, N.I.; Olennikov, D.N.; Chirikova, N.K. Metabolites of Siberian Raspberries: LC-MS Profile, Seasonal Variation, Antioxidant Activity and, Thermal Stability of Rubus matsumuranus Phenolome. Plants 2021, 10, 2317. [Google Scholar] [CrossRef]
- Barrientos, R.; Fernández-Galleguillos, C.; Pastene, E.; Simirgiotis, M.; Romero-Parra, J.; Ahmed, S.; Echeverría, J. Metabolomic Analysis, Fast Isolation of Phenolic Compounds, and Evaluation of Biological Activities of the Bark From Weinmannia trichosperma Cav. (Cunoniaceae). Front. Pharmacol. 2020, 11, 1–13. [Google Scholar] [CrossRef]
- Watanabe, M.; Nakahata, S.; Hamasaki, M.; Saito, Y.; Kawano, Y.; Hidaka, T.; Yamashita, K.; Umeki, K.; Taki, T.; Taniwaki, M.; et al. Downregulation of CDKN1A in adult T-cell leukemia/lymphoma despite overexpression of CDKN1A in human T-lymphotropic virus 1-infected cell lines. J. Virol. 2010, 84, 6966–6977. [Google Scholar] [CrossRef] [Green Version]
- Oki, T.; Sugawara, T.; Sato-Furukawa, M.; Suda, I. 4-Dimethylaminocinnamaldehyde (DMAC) Method for Determination of Total Proanthocyanidin Content in Grain Legumes. Nippon Shokuhin Kagaku Kogaku Kaishi 2013, 60, 301–309. [Google Scholar] [CrossRef] [Green Version]
Part | Voucher Specimen | Yield (g) |
---|---|---|
Leaves | KUHW2020BB-L1 | 1.30 |
KUHW2020BB-L2 | 1.40 | |
KUHW2020BB-L3 | 1.30 | |
KUHW2020BB-L4 | 1.50 | |
KUHW2020BB-L5 | 1.70 | |
KUHW2020BB-L6 | 2.60 | |
KUHW2020BB-L7 | 2.70 | |
KUHW2020BB-L8 | 3.10 | |
KUHW2020BB-L9 | 2.50 | |
KUHW2020BB-L10 | 1.90 | |
Stems | KUHW2020BB-S1 | 0.51 |
KUHW2020BB-S2 | 0.32 | |
KUHW2020BB-S3 | 0.46 | |
KUHW2020BB-S4 | 0.40 | |
KUHW2020BB-S5 | 0.45 | |
KUHW2020BB-S6 | 0.40 | |
KUHW2020BB-S7 | 0.43 | |
KUHW2020BB-S8 | 0.41 | |
KUHW2020BB-S9 | 0.40 | |
KUHW2020BB-S10 | 0.47 | |
Mixture | KUHW2020BB-M1 | 1.24 |
KUHW2020BB-M2 | 1.43 | |
KUHW2020BB-M3 | 1.29 | |
KUHW2020BB-M4 | 1.21 | |
KUHW2020BB-M5 | 0.87 | |
KUHW2020BB-M6 | 1.06 | |
KUHW2020BB-M7 | 1.56 | |
KUHW2020BB-M8 | 1.81 | |
KUHW2020BB-M9 | 1.98 | |
KUHW2020BB-M10 | 1.84 |
ATL Cell Line | ATL Assay Trial | R2 1st Place | R2 2nd Place | R2 3rd Place |
---|---|---|---|---|
ED | 1 | m/z 149 | m/z 383 | m/z 330 |
2 | m/z 149 | m/z 057 | m/z 085 | |
3 | m/z 149 | m/z 057 | m/z 131 | |
S1T | 1 | m/z 149 | m/z 290 | m/z 346 |
2 | m/z 149 | m/z 131 | m/z 346 | |
3 | m/z 149 | m/z 131 | m/z 330 | |
Su9T01 | 1 | m/z 401 | m/z 149 | m/z 429 |
2 | m/z 235 | m/z 298 | m/z 226 | |
3 | m/z 149 | m/z 131 | m/z 330 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kai, H.; Okada, Y.; Goto, Y.; Nakayama, T.; Sugamoto, K.; Ogawa, K.; Yamasaki, M.; Morishita, K.; Matsuno, K.; Kunitake, H. Prediction of the Adult T-Cell Leukemia Inhibitory Activity of Blueberry Leaves/Stems Using Direct-Injection Electron Ionization-Mass Spectrometry Metabolomics. Plants 2022, 11, 1343. https://doi.org/10.3390/plants11101343
Kai H, Okada Y, Goto Y, Nakayama T, Sugamoto K, Ogawa K, Yamasaki M, Morishita K, Matsuno K, Kunitake H. Prediction of the Adult T-Cell Leukemia Inhibitory Activity of Blueberry Leaves/Stems Using Direct-Injection Electron Ionization-Mass Spectrometry Metabolomics. Plants. 2022; 11(10):1343. https://doi.org/10.3390/plants11101343
Chicago/Turabian StyleKai, Hisahiro, Yoshihito Okada, Yo Goto, Takayuki Nakayama, Kazuhiro Sugamoto, Kenjirou Ogawa, Masao Yamasaki, Kazuhiro Morishita, Koji Matsuno, and Hisato Kunitake. 2022. "Prediction of the Adult T-Cell Leukemia Inhibitory Activity of Blueberry Leaves/Stems Using Direct-Injection Electron Ionization-Mass Spectrometry Metabolomics" Plants 11, no. 10: 1343. https://doi.org/10.3390/plants11101343
APA StyleKai, H., Okada, Y., Goto, Y., Nakayama, T., Sugamoto, K., Ogawa, K., Yamasaki, M., Morishita, K., Matsuno, K., & Kunitake, H. (2022). Prediction of the Adult T-Cell Leukemia Inhibitory Activity of Blueberry Leaves/Stems Using Direct-Injection Electron Ionization-Mass Spectrometry Metabolomics. Plants, 11(10), 1343. https://doi.org/10.3390/plants11101343