Documenting Greek Indigenous Germplasm of Cornelian Cherry (Cornus mas L.) for Sustainable Utilization: Molecular Authentication, Asexual Propagation, and Phytochemical Evaluation
Abstract
:1. Introduction
2. Results
2.1. Molecular Authentication of Greek Native Cornus mas Genotypes
2.2. Phytochemical Evaluation of the Greek Native Cornelian Cherries
2.3. Propagation of Greek Native Cornus mas Genotypes with Cuttings
2.4. Multifaceted Evaluation of Greek Native Cornus mas Genotypes
3. Discussion
3.1. Molecular Authentication of Greek Native Genotypes of Cornus mas
3.2. Nutraceutical Potential of Greek Native Genotypes of Cornus mas
3.3. Propagation Potential of Greek Native Genotypes of Cornus mas
4. Materials and Methods
4.1. Collection and Documentation of Plant Material
4.2. DNA Isolation
4.3. Polymerase Chain Reaction (Pcr) Amplification and Sequence Analysis
4.4. Molecular Data Analysis
4.5. Phylogenetic Relationships
4.6. Propagation Trials
4.7. Phytochemical Analysis of Cornus mas Fruits
4.8. Experimental Design and Statistical Analysis of Propagation and Phytochemical Data
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Krigas, N.; Tsoktouridis, G.; Anestis, I.; Khabbach, A.; Libiad, M.; Megdiche-Ksouri, W.; Ghrabi-Gammar, Z.; Lamchouri, F.; Tsiripidis, I.; Tsiafouli, M.A.; et al. Exploring the potential of neglected local endemic plants of three Mediterranean regions in the ornamental sector: Value chain feasibility and readiness timescale for their sustainable exploitation. Sustainability 2021, 13, 2539. [Google Scholar] [CrossRef]
- Ercisli, S. A short review of the fruit germplasm resources of Turkey. Genet. Resour. 2004, 51, 419–435. [Google Scholar] [CrossRef]
- Verma, N.; Mohanty, A.; Lal, A. Pomegranate genetic resources and germplasm conservation: A Review. Fruit Veg. Cereal Sci. Biotechnol. 2010, 4, 120–125. [Google Scholar]
- Botu, M.; Botu, I.; Achim, G.; Preda, S.; Scutelnicu, A.; Giura, S. Conservation of fruit tree genetic resources and their use in the breeding process. Ann. Valahia Univ. Targoviste 2017, 11, 66–69. [Google Scholar] [CrossRef] [Green Version]
- Manco, R.; Basile, B.; Capuozzo, C.; Scognamiglio, P.; Forlani, M.; Rao, R.; Corrado, G. Molecular and phenotypic diversity of traditional European plum (Prunus domestica L.) germplasm of Southern Italy. Sustainability 2019, 11, 4112. [Google Scholar] [CrossRef] [Green Version]
- Karapatzak, E.; Dichala, O.; Ganopoulos, I.; Karydas, A.; Papanastasi, K.; Kyrkas, D.; Yfanti, P.; Nikisianis, N.; Fotakis, D.; Patakioutas, G.; et al. Molecular authentication, propagation trials and field establishment of Greek native genotypes of Sambucus nigra L. (Caprifoliaceae): Setting the basis for domestication and sustainable utilization. Agron. J. 2022, 12, 114. [Google Scholar] [CrossRef]
- Cosmulescu, S.; Trandafir, I.; Nour, V. Phenolic acids and flavonoids profiles of extracts from edible wild fruits and their antioxidant properties. Int. J. Food Prop. 2017, 20, 3124–3134. [Google Scholar] [CrossRef] [Green Version]
- Che, C.T.; Zhang, H. Plant natural products for human health. Int. J. Mol. 2019, 20, 830. [Google Scholar] [CrossRef] [Green Version]
- Durazzo, A.; Lucarini, M.; Souto, E.B.; Cicala, C.; Caiazzo, E.; Izzo, A.A.; Novellino, E.; Santini, A. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother. Res. 2019, 33, 2221–2243. [Google Scholar] [CrossRef] [Green Version]
- Maloupa, E.; Karapatzak, E.; Ganopoulos, I.; Karydas, A.; Papanastasi, K.; Kyrkas, D.; Yfanti, P.; Nikisianis, N.; Zahariadis, A.; Kosma, I.S.; et al. Molecular authentication, phytochemical evaluation and asexual propagation of wild-growing Rosa canina L. (Rosaceae) genotypes of Northern Greece for sustainable exploitation. Plants 2021, 10, 2634. [Google Scholar] [CrossRef]
- Da Ronch, F.; Caudullo, G.; Houston Durrant, T.; de Rigo, D. Cornus mas in Europe: Distribution, habitat, usage and threats. In The European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publication Office of the European Union: Luxembourg, 2016; p. e01ddab+. ISBN 978-92-79-36740-3. [Google Scholar]
- Baumann, H. The Greek Plant World in Myth, Art and Literature; Timber Press, Incorporated: Portland, OR, USA, 1993; ISBN 978-0881922318. [Google Scholar]
- Tural, S.; Koca, I. Physico-chemical and antioxidant properties of Cornelian cherry fruits (Cornus mas L.) grown in Turkey. Sci. Hortic. 2008, 116, 362–366. [Google Scholar] [CrossRef]
- Rop, O.; Mlcek, J.; Kramarova, D.; Jurikova, T. Selected cultivars of Cornelian cherry (Cornus mas L.) as a new food source for human nutrition. Afr. J. Biotechnol. 2010, 9, 1205–1210. [Google Scholar] [CrossRef] [Green Version]
- Bijelić, S.M.; Gološin, B.R.; Ninić Todorović, J.I.; Cerović, S.B.; Popović, B.M. Physicochemical fruit characteristics of Cornelian cherry (Cornus mas L.) genotypes from Serbia. HortScience 2011, 46, 849–853. [Google Scholar] [CrossRef] [Green Version]
- Szczepaniak, O.Μ.; Kobus-Cisowska, J.; Kusek, W.; Przeor, M. Functional properties of Cornelian cherry (Cornus mas L.): A comprehensive review. Eur. Food Res. Technol. 2019, 245, 2071–2087. [Google Scholar] [CrossRef] [Green Version]
- Tiptiri-Kourpeti, A.; Fitsiou, E.; Spyridopoulou, K.; Vasileiadis, S.; Iliopoulos, C.; Galanis, A.; Vekiari, S.; Pappa, A.; Chlichlia, K. Evaluation of antioxidant and antiproliferative properties of Cornus mas L. fruit juice. Antioxidants 2019, 8, 377. [Google Scholar] [CrossRef] [Green Version]
- Moldovan, B.; Filip, A.; Clichici, S.; Suharoschi, R.; Bolfa, P.; David, L. Antioxidant activity of Cornelian cherry (Cornus mas L.) fruits extract and the in vivo evaluation of its anti-inflammatory effects. J. Funct. Foods 2016, 26, 77–87. [Google Scholar] [CrossRef]
- Bayram, H.M.; Ozturkcan, S.A. Bioactive components and biological properties of Cornelian cherry (Cornus mas L.): A comprehensive review. J. Funct. Foods 2020, 75, 104252. [Google Scholar] [CrossRef]
- Radbeh, Z.; Asefi, N.; Hamishehkar, H.; Roufegarinejad, L.; Pezeshki, A. Novel carriers ensuring enhanced anti-cancer activity of Cornus mas (Cornelian cherry) bioactive compounds. Biomed. Pharmacother. 2020, 125, 109906. [Google Scholar] [CrossRef]
- Przybylska, D.; Kucharska, A.Z.; Cybulska, I.; Sozański, T.; Piórecki, N.; Fecka, I. Cornus mas L. stones: A valuable by-product as an ellagitannin source with high antioxidant potential. Molecules 2020, 25, 4646. [Google Scholar] [CrossRef]
- Klymenko, S.; Kucharska, A.Z.; Sokół-Łętowska, A.; Piórecki, N.; Przybylska, D.; Grygorieva, O. Iridoids, flavonoids, and antioxidant capacity of Cornus mas, C. officinalis, and C. mas × C. officinalis fruits. Biomolecules 2021, 11, 776. [Google Scholar] [CrossRef]
- Brindza, P.; Brindza, J.; Tóth, D.; Klimenko, S.V.; Grigorieva, O. Slovakian Cornelian cherry (Cornus mas L.): Potential for cultivation. Acta Hortic. 2007, 760, 433–437. [Google Scholar] [CrossRef]
- Bijelić, S.M.; Gološin, B.; Todorović, J.N.; Cerović, S. Morphological characteristics of best Cornelian cherry (Cornus mas L.) genotypes selected in Serbia. Genet. Resour. Crop Evol. 2011, 58, 689–695. [Google Scholar] [CrossRef]
- Yilmaz, K.U.; Ercisli, S.; Zengin, Y.; Sengul, M.; Kafkas, E. Preliminary characterisation of cornelian cherry (Cornus mas L.) genotypes for their physico-chemical properties. Food Chem. 2009, 114, 408–412. [Google Scholar] [CrossRef]
- Hamid, H.; Hamidoghli, Y.; Hajilo, J.; Adlipour, M. Antioxidant capacity and phytochemical properties of cornelian cherry (Cornus mas L.) genotypes in Iran. Sci. Hortic. 2011, 129, 459–463. [Google Scholar] [CrossRef]
- Moradi, Y.; Khadivi, A.; Salehi-Arjmand, H. Morphological and pomological characterizations of Cornelian cherry (Cornus mas L.) to select the superior accessions. Sci. Hortic. 2019, 249, 208–218. [Google Scholar] [CrossRef]
- Jaćimović, V.; Božović, D.; Ercisli, S.; Bosančić, B.; Necas, T. Sustainable Cornelian cherry production in Montenegro: Importance of local genetic resources. Sustainability 2020, 12, 8651. [Google Scholar] [CrossRef]
- Martinović, A.; Cavoski, I. The exploitation of cornelian cherry (Cornus mas L.) cultivars and genotypes from Montenegro as a source of natural bioactive compounds. Food Chem. 2020, 318, 126549. [Google Scholar] [CrossRef]
- Hebert, P.D.; Cywinska, A.; Ball, S.L.; de Waard, J.R. Biological identifications through DNA barcodes. Proc. Royal Soc. B 2003, 270, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Tsoktouridis, G.; Krigas, N.; Sarropoulou, V.; Kampouropoulou, S.; Papanastasi, K.; Grigoriadou, K.; Menexes, G.; Maloupa, E. Micropropagation and molecular characterization of Thymus sibthorpii Benth. (Lamiaceae), an aromatic-medicinal thyme with ornamental value and conservation concern. In Vitro Cell. Dev. Biol.-Plant 2019, 55, 647–658. [Google Scholar] [CrossRef]
- Yu, J.; Wu, X.; Liu, C.; Newmaster, S.; Ragupathy, S.; Kress, W.J. Progress in the use of DNA barcodes in the identification and classification of medicinal plants. Ecotoxicol. Environ. Saf. 2021, 208, 111691. [Google Scholar] [CrossRef]
- Pipinis, E.; Hatzilazarou, S.; Kostas, S.; Bourgou, S.; Megdiche-Ksouri, W.; Ghrabi-Gammar, Z.; Libiad, M.; Khabbach, A.; El Haissoufi, M.; Lamchouri, F.; et al. Facilitating conservation and bridging gaps for the sustainable exploitation of the Tunisian local endemic plant Marrubium aschersonii (Lamiaceae). Sustainability 2022, 14, 1637. [Google Scholar] [CrossRef]
- Hatzilazarou, S.; El Haissoufi, M.; Pipinis, E.; Kostas, S.; Libiad, M.; Khabbach, A.; Lamchouri, F.; Bourgou, S.; Megdiche-Ksouri, W.; Ghrabi-Gammar, Z.; et al. GIS-facilitated seed germination and multifaceted evaluation of the Endangered Abies marocana Trab. (Pinaceae) Enabling conservation and sustainable exploitation. Plants 2021, 10, 2606. [Google Scholar] [CrossRef]
- Kostas, S.; Hatzilazarou, S.; Pipinis, E.; Bourgou, S.; Ben Haj Jilani, I.; Ben Othman, W.; Megdiche-Ksouri, W.; Ghrabi-Gammar, Z.; Libiad, M.; Khabbach, A.; et al. DNA barcoding, GIS-facilitated seed germination and pilot cultivation of Teucrium luteum subsp. gabesianum (Lamiaceae), a Tunisian local endemic with potential medicinal and ornamental value. Biology 2022, 11, 462. [Google Scholar] [CrossRef]
- Gismondi, A.; Rolfo, M.F.; Leonardi, D.; Rickards, O.; Canini, A. Identification of ancient Olea europaea L. and Cornus mas L. seeds by DNA barcoding. Comptes Rendus Biol. 2012, 335, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Pirlak, L. Effects of different cutting times and IBA doses on the rooting rate of hardwood cuttings of cornelian cherry (Cornus mas L.). Anadolu J. Aegean Agric. Res. Inst. 2000, 10, 122–134. [Google Scholar]
- Marković, M.; Grbić, M.; Djukić, M. Effects of cutting type and a method of IBA application on rooting of softwood cuttings from elite tree of cornelian cherry (Cornus mas L.) from Belgrade area. Silva Balc. 2014, 15, 30–37. [Google Scholar] [CrossRef]
- Kosina, J.; Baudyšová, M. Propagation of less known fruit crops by cuttings. Ved. Pr. Ovocn. 2011, 22, 223–229. [Google Scholar]
- Hassanpour, H.; Ali Shiri, M. Propagation of Iranian Cornelian cherry (Cornus mas L.) by rooted stem cuttings. Not. Sci. Biol. 2014, 6, 192–195. [Google Scholar] [CrossRef] [Green Version]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of polyphenols in human health and food systems: A mini-review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef] [Green Version]
- Cosmulescu, S.; Trandafir, I.; Cornescu, F. Antioxidant capacity, total phenols, total flavonoids and color component of Cornelian cherry (Cornus mas L.) wild genotypes. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 47, 390–394. [Google Scholar] [CrossRef] [Green Version]
- Cosmulescu, S.; Cornescu, F. Variability in physical and chemical characteristics of Cornelian cherry fruits (Cornus mas L.) from Romanian Oltenia region’s spontaneous flora and role of the climatic conditions. Braz. J. Bot. 2020, 43, 677–682. [Google Scholar] [CrossRef]
- De Biaggi, M.; Donno, D.; Mellano, M.G.; Riondato, I.; Rakotoniaina, E.N.; Beccaro, G.L. Cornus mas (L.) fruit as a potential source of natural health-promoting compounds: Physico-chemical characterisation of bioactive components. Plant Foods Hum. Nutr. 2018, 73, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Prasanna, V.; Prabha, T.N.; Tharanathan, R.N. Fruit ripening phenomena–An overview. Crit. Rev. Food Sci. Nutr. 2007, 47, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Moretti, C.L.; Mattos, L.M.; Calbo, A.G.; Sargent, S.A. Climate changes and potential impacts on postharvest quality of fruit and vegetable crops: A review. Food Res. Int. 2010, 43, 1824–1832. [Google Scholar] [CrossRef]
- Hartmann, H.J.; Kester, D.E.; Davies, F.I.; Geneve, R.L. Plant Propagation: Principles and Practices, 7th ed.; Prentice Hall: Old Tappan, NJ, USA, 2001; ISBN 9780136792352. [Google Scholar]
- Balta, M.F.; Erol, I.U.; Özrenk, K.; Karakaya, O.; Uzun, S. Investigation on propagation with softwood cuttings of Cornelian cherry (Cornus mas L.) genotypes. Türkiye Tarımsal Araştırmalar Derg. 2019, 6, 136–141. [Google Scholar] [CrossRef] [Green Version]
- Costa, J.M.; Heuvelink, E.; van de Pol, P. Propagation by Cuttings. In the Reference Module in Life Sciences (Online); Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Pacholczak, A.; Jędrzejuk, A.; Sobczak, M. Shading and natural rooting biostimulator enhance potential for vegetative propagation of dogwood plants (Cornus alba L.) via stem cuttings. S. Afr. J. Bot. 2017, 109, 34–41. [Google Scholar] [CrossRef]
- Noor Camellia, N.A.; Thohirah, L.A.; Abdullah, N.A.P.; Mohd Khidir, O. Improvement on Rooting Quality of Jatropha curcas using Indole Butyric Acid (IBA). Res. J. Agric. Biol. Sci. 2009, 5, 338–343. [Google Scholar]
- Guo, X.F.; Fu, X.L.; Zang, D.K.; Ma, Y. Effect of auxin treatments, cuttings’ collection date and initial characteristics on Paeonia ‘Yang Fei Chu Yu’ cutting propagation. Sci. Hortic. 2009, 119, 177–181. [Google Scholar] [CrossRef]
- Kumar, R.; Ahmed, N.; Sharma, O.C.; Lal, S. Influence of auxins on rooting efficacy in carnation (Dianthus caryophyllus L.) cuttings. J. Hortic. Sci. 2014, 9, 157–160. [Google Scholar]
- Bijelić, S.M.; Gološin, B.R.; Cerović, S.B.; Bogdanović, B.V. A comparison of grafting methods for the production of quality planting material of promising Cornelian cherry selections (Cornus mas L.) in Serbia. J. Agric. Sci. Technol. 2016, 18, 223–231. [Google Scholar]
- Cornescu, F.; Achim, G.; Cosmulescu, S. Vegetative propagation of Cornelian cherry (Cornus mas L.) selections. Not. Sci. Biol. 2020, 12, 836–841. [Google Scholar] [CrossRef]
- Strid, A. Atlas of the Aegean Flora, Part 1: Text & Plates; Part 2: Maps; Englera, Volume 33; Botanic Garden and Botanical Museum Berlin, Freie Universität Berlin: Berlin, Germany, 2016; ISBN 978-3-921800-97-3; 978-3-921800-98-0. [Google Scholar]
- Madesis, P.; Ganopoulos, I.; Ralli, P.; Tsaftaris, A. Barcoding the major Mediterranean leguminous crops by combining universal chloroplast and nuclear DNA sequence targets. Genet. Mol. Res. 2012, 11, 2548–2558. [Google Scholar] [CrossRef]
- Chen, S.; Yao, H.; Han, J.; Liu, C.; Song, J.; Shi, L.; Zhu, Y.; Ma, X.; Gao, T.; Pang, X.; et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE 2010, 5, e8613. [Google Scholar] [CrossRef] [PubMed]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [PubMed]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Tamura, K.; Nei, M.; Kumar, S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Nat. Acad. Sci. USA 2004, 101, 11030–11035. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Bryant, P.H.; Trueman, S.J. Stem anatomy and adventitious root formation in cuttings of Angophora, Corymbia and Eucalyptus. Forests 2015, 6, 1227–1238. [Google Scholar] [CrossRef]
- Vavoura, M.V.; Badeka, A.V.; Kontakos, S.; Kontominas, M.G. Characterization of four popular sweet cherry cultivars grown in Greece by volatile compound and physicochemical data analysis and sensory evaluation. Molecules 2015, 20, 1922–1940. [Google Scholar] [CrossRef] [Green Version]
- Roman, I.; Stanila, A.; Stanila, S. Bioactive compounds and antioxidant activity of Rosa canina L. biotypes from spontaneous flora of Transylvania. Chem. Cent. J. 2013, 7, 73. [Google Scholar] [CrossRef] [Green Version]
- Fattahi, S.; Jamei, R.; Hosseini Sarghein, S. Antioxidant and antiradical activities of Rosa canina and Rosa pimpinellifolia fruits from West Azerbaijan. Iran. J. Plant Physiol. 2012, 2, 523–529. [Google Scholar] [CrossRef]
- Lee, H.S.; Coates, G.A. Vitamin C in frozen, fresh squeezed, unpasteurized, polyethylene-bottled orange juice: A storage study. Food Chem. 1999, 65, 165–168. [Google Scholar] [CrossRef]
- Lambeth, C.C. Juvenile-Mature correlations in Pinaceae and implications for early selection. For. Sci. 1980, 26, 571–580. [Google Scholar] [CrossRef]
- Atay, A.N. Deciphering morpho-agronomic determinants of the juvenile-mature phase change in apple progenies. Sci. Hortic. 2020, 259, 108847. [Google Scholar] [CrossRef]
Population Sample | AA (%RSA) | TPC (mgGAE/100 g) | Vitamin C (mgAAE/100 g) | TF (mgCE/100 g) |
---|---|---|---|---|
GR-1-BBGK-19,72 | 90.99 ± 0.15 g | 54.21 ± 0.1 e | 1.03 ± 0.01 a | 0.19 ± 0.01 ab |
GR-1-BBGK-19,190A | 80.48 ± 3.08 d | 304.73 ± 6.56 i | 21.22 ± 0.05 c | 0.73 ± 0.12 de |
GR-1-BBGK-19,190B | 84.07 ± 0.01 e | 49.29 ± 0.01 cd | 33.48 ± 0.01 f | 0.22 ± 0.1 ab |
GR-1-BBGK-19,195 | 86.56 ± 0.01 ef | 49.43 ± 0.01 cde | 32.73 ± 0.01 f | 0.15 ± 0.01 a |
GR-1-BBGK-19,590 | 94.72 ± 0.15 hi | 82.74 ± 0.31 g | 1.31 ± 0.01 a | 0.44 ± 0.01 bc |
GR-1-BBGK-19,632 | 85.84 ± 0.01 ef | 47.58 ± 0.01 c | 28.13 ± 0.01 e | 0.19 ± 0.01 ab |
GR-1-BBGK-19,633A | 95.52 ± 0.01 hi | 52.31 ± 0.01 cde | 44.69 ± 0.06 j | 0.49 ± 0.01 cd |
GR-1-BBGK-19,633B | 90.5 ± 1.28 g | 195.2 ± 0.0 h | 37.18 ± 0.91 g | 0.28 ± 0.06 abc |
GR-1-BBGK-19,638A | 55.46 ± 0.01 a | 29.93 ± 0.01 a | 52.33 ± 0.71 k | 0.44 ± 0.01 bc |
GR-1-BBGK-19,638B | 94.01 ± 0.48 hi | 337.14 ± 0.0 j | 58.97 ± 0.9 l | 0.44 ± 0.09 bc |
GR-1-BBGK-19,641 | 95.64 ± 0.1 i | 80.43 ± 0.14 g | 41.33 ± 0.03 i | 0.49 ± 0.03 cd |
GR-1-BBGK-19,669 | 87.52 ± 0.1 f | 355.46 ± 0.01 k | 23.27 ± 0.26 d | 0.86 ± 0.09 e |
GR-1-BBGK-19,753 | 70.11 ± 0.05 c | 40.56 ± 0.15 b | 1.26 ± 0.02 a | 0.19 ± 0.02 ab |
GR-1-BBGK-19,844 | 95.94 ± 0.01 i | 52.63 ± 0.01 de | 40.05 ± 1.51 hi | 0.17 ± 0.1 a |
GR-1-BBGK-19,847 | 65.07 ± 0.01 d | 40.69 ± 0.05 b | 0.95 ± 0.1 a | 0.11 ± 0.1 a |
GR-1-BBGK-19,848 | 57.9 ± 0.02 a | 38.82 ± 0.05 b | 39.13 ± 0.1 h | 0.17 ± 0.1 a |
GR-1-BBGK-19,926 | 94.43 ± 0.02 hi | 73.61 ± 0.02 f | 15.96 ± 0.2 b | 0.21 ± 0.2 ab |
Altitude | TDS | MI | AA | TPC | Vit C | TF | |
---|---|---|---|---|---|---|---|
Altitude | −0.052 (0.861) | −0.375 (0.187) | −0.019 (0.949) | 0.241 (0.406) | 0.080 (0.787) | 0.223 (0.444) | |
TDS | 0.475 (0.086) | 0.095 (0.746) | 0.132 (0.654) | 0.600 * (0.023) | 0.172 (0.556) | ||
MI | 0.238 (0.413) | −0.184 (0.529) | 0.326 (0.255) | 0.060 (0.838) | |||
AA | 0.091 (0.758) | −0.295 (0.307) | 0.021 (0.944) | ||||
TPC | −0.082 (0.781) | 0.843 ** (0.000) | |||||
Vit C | 0.188 (0.521) | ||||||
TF |
Genotype (Accession Number) | Season | Cutting Type | Hormone Treatment (ppm IBA) | Rooting (%) |
---|---|---|---|---|
GR-1-BBGK-19,72 | Summer | Softwood | 4000 | 33.30 ‡ |
GR-1-BBGK-19,190 | Winter | Hardwood | 10,000 | 13.29 † |
GR-1-BBGK-19,195 | Winter | Hardwood | 10,000 | 1.39 |
GR-1-BBGK-19,196 | Winter | Hardwood | 10,000 | 8.33 |
GR-1-BBGK-19,197 | Winter | Hardwood | 10,000 | 2.86 |
GR-1-BBGK-19,198 | Winter | Hardwood | 10,000 | 20.93 † |
GR-1-BBGK-19,502 | Summer | Softwood | 4000 | 18.60 |
GR-1-BBGK-19,590 | Early autumn | Softwood | 4000 | 16.67 |
GR-1-BBGK-19,632 | Summer | Softwood | 5000 | 20.41 |
GR-1-BBGK-19,633 | Summer | Softwood | 5000 | 2.27 |
GR-1-BBGK-19,638 | Late summer | Softwood | 10,000 | 69.33 ‡ |
GR-1-BBGK-19,641 | Late summer | Softwood | 6000 | 1.19 |
GR-1-BBGK-19,669 | Summer | Softwood | 2000 | 28.60 |
GR-1-BBGK-19,753 | Late summer | Softwood | 4000 | 58.33 ‡ |
GR-1-BBGK-19,844 | Early autumn | Softwood | 4000 | 33.33 ‡ |
GR-1-BBGK-19,847 | Early autumn | Softwood | 4000 | 31.94 |
GR-1-BBGK-19,848 | Autumn | Hardwood | 6000 | 8.33 |
GR-1-BBGK-19,926 | Autumn | Hardwood | 4000 | 10.34 |
IPEN Accession Number | DNA Barcoding | Phytochemical Potential | Propagation Potential | ||
---|---|---|---|---|---|
AA (%RSA) | TPC (mg GAE/100 g) | Vitamin C (mg AAE/100 g) | |||
GR-1-BBGK-19,72 | Effective | Very high | Average | Low | Average |
GR-1-BBGK-19,190 | Effective | High | Very high | Average | Low |
GR-1-BBGK-19,195 | Effective | High | Low | Average | Very low |
GR-1-BBGK-19,196 | Effective | - | - | - | Very low |
GR-1-BBGK-19,197 | Effective | - | - | - | Very low |
GR-1-BBGK-19,198 | Effective | - | - | - | Low |
GR-1-BBGK-19,502 | Effective | - | - | - | Low |
GR-1-BBGK-19,590 | Easy | Very high | Average | Low | Low |
GR-1-BBGK-19,632 | Easy | High | Low | Low | Low |
GR-1-BBGK-19,633 | Easy | Very high | High | Average | Very low |
GR-1-BBGK-19,638 | Easy | Very high | Very high | High | High |
GR-1-BBGK-19,641 | Easy | Very high | Average | Average | Very low |
GR-1-BBGK-19,669 | Easy | High | Very high | Low | Low |
GR-1-BBGK-19,753 | Easy | High | Low | Low | High |
GR-1-BBGK-19,844 | Easy | Very high | Average | Average | Average |
GR-1-BBGK-19,847 | Easy | Average | Low | Low | Average |
GR-1-BBGK-19,848 | Easy | Average | Low | Average | Very low |
GR-1-BBGK-19,926 | Easy | Very high | Average | Low | Low |
No | IPEN Accession Number | Greek Prefecture | Area | Coordinates (HGRS87/EGSA87) (Lat, Lon) | Altitude (m) | 1st Sampling (Winter 2018) | 2nd Sampling (Spring–Late Summer 2019) | 3rd Sampling (Autumn 2019) |
---|---|---|---|---|---|---|---|---|
1 | GR-1-BBGK-19,72 | Central Macedonia | Pella, Aridea | 40.919338, 21.900725 | 882 | HWSC | SWSC, LS | RFS |
2 | GR-1-BBGK-19,190 | Epirus | Preveza, Kranea | 39.248017, 20.742179 | 513 | HWSC | LS | RFS |
3 | GR-1-BBGK-19,195 | Epirus | Ioannina, Dafni | 39.43568, 21.015093 | 447 | HWSC | LS | RFS |
4 | GR-1-BBGK-19,196 | Epirus | Ioannina, Xirovouni | 39.461535, 21.008474 | 1070 | HWSC | SWSC, LS | |
5 | GR-1-BBGK-19,197 | Epirus | Ioannina, Xirovouni | 39.461535, 21.008474 | 1070 | HWSC | LS | |
6 | GR-1-BBGK-19,198 | Epirus | Ioannina, Xirovouni | 39.461535, 21.008474 | 1070 | HWSC | LS | |
7 | GR-1-BBGK-19,502 | Central Macedonia | Kilkis, Goumenissa | 40.92079, 22.45934 | 170 | SWSC, LS | ||
8 | GR-1-BBGK-19,590 | Central Macedonia | Pieria, Elatochori | 40.32734, 22.26310 | 780 | SWSC | SWSC, RFS | |
9 | GR-1-BBGK-19,632 | Epirus | Ioannina, Dodoni | 39.49421, 20.68520 | 500 | SWSC, RFS | ||
10 | GR-1-BBGK-19,633 | Epirus | Ioannina, Dodoni | 39.49421, 20.68520 | 550 | SWSC, RFS | ||
11 | GR-1-BBGK-19,638 | Epirus | Ioannina, Zagori | 39.86281, 20.72305 | 960 | SWSC, RFS | ||
12 | GR-1-BBGK-19,641 | Central Macedonia | Kilkis, Pontokerasia | 41.08850, 23.117975 | 648 | SWSC, RFS | ||
13 | GR-1-BBGK-19,669 | West Macedonia | Kastoria, Mt Grammos | 40.34888, 20.92475 | 1165 | SWSC, RFS | ||
14 | GR-1-BBGK-19,753 | East Macedonia | Drama, Ahladomelea | 41.41379, 24.00165 | 590 | SWSC, RFS | ||
15 | GR-1-BBGK-19,844 | Epirus | Preveza, Anaogeio | 39.37108, 20.93397 | 1100 | SWSC, RFS | ||
16 | GR-1-BBGK-19,847 | Thrace | Xanthi, Ano kalyva | 41.29185, 24.62509 | 620 | SWSC, RFS | ||
17 | GR-1-BBGK-19,848 | East Macedonia | Drama, Silli | 41.35046, 24.52971 | 750 | SWSC, RFS | ||
18 | GR-1-BBGK-19,926 | Central Macedonia | Pella, Notia | 41.11128, 22.20423 | 880 | SWSC, RFS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karapatzak, E.; Krigas, N.; Ganopoulos, I.; Papanastasi, K.; Kyrkas, D.; Yfanti, P.; Nikisianis, N.; Karydas, A.; Manthos, I.; Kosma, I.S.; et al. Documenting Greek Indigenous Germplasm of Cornelian Cherry (Cornus mas L.) for Sustainable Utilization: Molecular Authentication, Asexual Propagation, and Phytochemical Evaluation. Plants 2022, 11, 1345. https://doi.org/10.3390/plants11101345
Karapatzak E, Krigas N, Ganopoulos I, Papanastasi K, Kyrkas D, Yfanti P, Nikisianis N, Karydas A, Manthos I, Kosma IS, et al. Documenting Greek Indigenous Germplasm of Cornelian Cherry (Cornus mas L.) for Sustainable Utilization: Molecular Authentication, Asexual Propagation, and Phytochemical Evaluation. Plants. 2022; 11(10):1345. https://doi.org/10.3390/plants11101345
Chicago/Turabian StyleKarapatzak, Eleftherios, Nikos Krigas, Ioannis Ganopoulos, Katerina Papanastasi, Dimitris Kyrkas, Paraskevi Yfanti, Nikos Nikisianis, Antonis Karydas, Ioannis Manthos, Ioanna S. Kosma, and et al. 2022. "Documenting Greek Indigenous Germplasm of Cornelian Cherry (Cornus mas L.) for Sustainable Utilization: Molecular Authentication, Asexual Propagation, and Phytochemical Evaluation" Plants 11, no. 10: 1345. https://doi.org/10.3390/plants11101345
APA StyleKarapatzak, E., Krigas, N., Ganopoulos, I., Papanastasi, K., Kyrkas, D., Yfanti, P., Nikisianis, N., Karydas, A., Manthos, I., Kosma, I. S., Badeka, A. V., Fotakis, D., Maloupa, E., & Patakioutas, G. (2022). Documenting Greek Indigenous Germplasm of Cornelian Cherry (Cornus mas L.) for Sustainable Utilization: Molecular Authentication, Asexual Propagation, and Phytochemical Evaluation. Plants, 11(10), 1345. https://doi.org/10.3390/plants11101345