The Medicinal Halophyte Frankenia laevis L. (Sea Heath) Has In Vitro Antioxidant Activity, α-Glucosidase Inhibition, and Cytotoxicity towards Hepatocarcinoma Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition
2.2. Biological Activities
2.2.1. Antioxidant Activity
2.2.2. Enzyme Inhibition
2.2.3. Cytotoxicity
3. Materials and Methods
3.1. Chemicals
3.2. Plant Material
3.3. Extraction
3.4. High-Performance Liquid Chromatography Coupled with Electrospray Ionization Mass Spectrometry (Hplc-Esi-MS/Ms)
3.5. Determination of the In Vitro Biological Activities
3.5.1. Determination of the Antioxidant Activity
RSA on DPPH and ABTS Radicals
FRAP
CCA and ICA
3.5.2. Determination of the Enzyme Inhibitory Activity
AChE and BuChE Inhibitory Activities
Tyrosinase Inhibitory Activity
α-Amylase and α-Glucosidase Inhibitory Activities
3.5.3. Determination of the Cytotoxic Activity
Cell Culture
Cellular Viability Assay
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balunas, M.J.; Kinghorn, A.D. Drug discovery from medicinal plants. Life Sci. 2005, 78, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, S.A.; Karkanis, A.; Martins, N.; Ferreira, I.C.F.R. Edible halophytes of the Mediterranean basin: Potential candidates for novel food products. Trends Food Sci. Technol. 2018, 74, 69–84. [Google Scholar] [CrossRef] [Green Version]
- Barreira, L.; Resek, E.; Rodrigues, M.J.; Rocha, M.I.; Pereira, H.; Bandarra, N.; da Silva, M.M.; Varela, J.; Custódio, L. Halophytes: Gourmet food with nutritional health benefits? J. Food Compos. Anal. 2017, 59, 35–42. [Google Scholar] [CrossRef]
- Presençadeluxo. 2022. Available online: https://presencadeluxo.pt/anti-queda-natural-solution-quinoa/ (accessed on 6 April 2022).
- Olas, B. The beneficial health aspects of sea buckthorn (Elaeagnus rhamnoides (L.) A.Nelson) oil. J. Ethnopharmacol. 2018, 213, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Evlash, V.; Murlykina, N.; Aksonova, O.; Hazzavi-Rogozina, L. Technology of a dietary supplement “SoleVit Mg” based on Salicornia Europaea L. for use in food technologies. In Proceedings of the BIO Web of Conferences, Belgorod, Russia, 27–28 May 2021; Volume 40, p. 02006. [Google Scholar]
- Optimah. 2022. Available online: https://optimah.com/collections/aloe-dent/products/aloedent%C2%AE-miswak-toothpaste (accessed on 6 April 2022).
- Paiskincare. 2022. Available online: https://www.paiskincare.us/products/instant-calm-redness-serum-sea-aster-wild-oat?variant=26367870855 (accessed on 6 April 2022).
- Lombardi, T.; Bertacchi, A.; Pistelli, L.; Pardossi, A.; Pecchia, S.; Toffanin, A.; Sanmartin, C. Biological and Agronomic Traits of the Main Halophytes Widespread in the Mediterranean Region as Potential New Vegetable Crops. Horticulturae 2022, 8, 195. [Google Scholar] [CrossRef]
- Torres Carro, R.; D’Almeida, R.E.; Isla, M.I.; Alberto, M.R. Antioxidant and anti-inflammatory activities of Frankenia triandra (J. Rémy) extracts. S. Afr. J. Bot. 2016, 104, 208–214. [Google Scholar] [CrossRef]
- Brightmore, D. Frankenia laevis L. J. Ecol. 1979, 67, 1097–1107. [Google Scholar] [CrossRef]
- Felter, H.W. The Eclectic Materia Medica, Pharmacology and Therapeutics; Valley Co.: Cincinnati, OH, USA, 1922. [Google Scholar]
- Saïdana, D.; Mahjoub, M.A.; Mighri, Z.; Chriaa, J.; Daamiand, M.; Helal, A.N. Studies of the essential oil composition, antibacterial and antifungal activity profiles of Frankenia laevis L. from Tunisia. J. Essent. Oil Res. 2010, 22, 349–353. [Google Scholar] [CrossRef]
- Lopes, A.; Rodrigues, M.J.; Pereira, C.; Oliveira, M.; Barreira, L.; Varela, J.; Trampetti, F.; Custódio, L. Natural products from extreme marine environments: Searching for potential industrial uses within extremophile plants. Ind. Crop. Prod. 2016, 94, 299–307. [Google Scholar] [CrossRef]
- Hussein, S.A. Phenolic sodium sulphates of Frankenia laevis L. Die Pharmazie Int. J. Pharm. Sci. 2004, 59, 304–308. [Google Scholar]
- Pereira, D.M.; Valentão, P.; Pereira, J.A.; Andrade, P.B. Phenolics: From Chemistry to Biology. Molecules 2009, 14, 2202–2211. [Google Scholar] [CrossRef]
- Mathesius, U. Flavonoid Functions in Plants and Their Interactions with Other Organisms. Plants 2018, 72, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ražná, K.; Nôžková, J.; Vargaová, A.; Harenčár, Ľ.; Bjelková, M. Biological functions of lignans in plants. Agriculture 2021, 67, 155–165. [Google Scholar] [CrossRef]
- Teles, Y.C.F.; Souza, M.S.R.; Souza, M.D.F.V.D. Sulphated Flavonoids: Biosynthesis, Structures, and Biological Activities. Molecules 2018, 23, 480. [Google Scholar] [CrossRef] [Green Version]
- Gupta, B.; Huang, B. Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. Int. J. Genom. 2014, 2014, 701596. [Google Scholar] [CrossRef]
- Ksouri Wided, M.; Feten, C.; Rawya, R.; Feten, M.; Yosr, Z.; Nejla, T.; Riadh, K.; Emira, N.; Chedly, A. Antioxidant and antimicrobial properties of Frankenia thymifolia Desf. fractions and their related biomolecules identification by gas chromatography/mass spectrometry (GC/MS) and high performance liquid chromatography (HPLC). J. Med. Plant Res. 2011, 5, 5754–5765. [Google Scholar]
- Ben Mansour, R.; Wided, M.K.; Cluzet, S.; Krisa, S.; Richard, T.; Ksouri, R. LC-MS identification and preparative HPLC isolation of Frankenia pulverulenta phenolics with antioxidant and neuroprotective capacities in PC12 cell line. Pharm. Biol. 2017, 55, 880–887. [Google Scholar] [CrossRef] [Green Version]
- Ilc, T.; Parage, C.; Boachon, B.; Navrot, N.; Werck-Reichhart, D. Monoterpenol Oxidative Metabolism: Role in Plant Adaptation and Potential Applications. Front. Plant Sci. 2016, 7, 509. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Song, L.; Gong, X.; Xu, J.; Li, M. Functions of Jasmonic Acid in Plant Regulation and Response to Abiotic Stress. Int. J. Mol. Sci. 2020, 21, 1446. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Zielińska-Błajet, M.; Feder-Kubis, J. Monoterpenes and Their Derivatives—Recent Development in Biological and Medical Applications. Int. J. Mol. Sci. 2020, 21, 7078. [Google Scholar] [CrossRef] [PubMed]
- Kontoghiorghes, G.; Kontoghiorghe, C. Iron and Chelation in Biochemistry and Medicine: New Approaches to Controlling Iron Metabolism and Treating Related Diseases. Cells 2020, 9, 1456. [Google Scholar] [CrossRef] [PubMed]
- Nalini, S.; Balasubramanian, K.A. Studies on iron binding by free fatty acids. Indian J. Biochem. Biophys. 1993, 30, 224–228. [Google Scholar]
- Nagy, K.; Tiuca, I. Importance of Fatty Acids in Physiopathology of Human Body. In Fatty Acids; IntechOpen: London, UK, 2017. [Google Scholar]
- Eggersdorfer, M.; Wyss, A. Carotenoids in human nutrition and health. Arch. Biochem. Biophys. 2018, 652, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef]
- Rodríguez-García, C.; Sánchez-Quesada, C.; Toledo, E.; Delgado-Rodríguez, M.; Gaforio, J.J. Naturally Lignan-Rich Foods: A Dietary Tool for Health Promotion? Molecules 2019, 24, 917. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, V.S.; Ferreira, F.S.; Cople, M.C.R.; Labre, T.D.S.; Augusta, I.M.; Gamallo, O.D.; Saldanha, T. Use of Natural Antioxidants in the Inhibition of Cholesterol Oxidation: A Review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1465–1483. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, S.; Moreira, E.; Grosso, C.; Andrade, P.B.; Valentão, P.; Romano, A. Phenolic profile, antioxidant activity and enzyme inhibitory activities of extracts from aromatic plants used in Mediterranean diet. J. Food Sci. Technol. 2017, 54, 219–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blahova, J.; Martiniakova, M.; Babikova, M.; Kovacova, V.; Mondockova, V.; Omelka, R. Pharmaceutical Drugs and Natural Therapeutic Products for the Treatment of Type 2 Diabetes Mellitus. Pharmaceuticals 2021, 14, 806. [Google Scholar]
- Su, C.H.; Hsu, C.H.; Ng, L.T. Inhibitory potential of fatty acids on key enzymes related to type 2 diabetes. BioFactors 2013, 39, 415–421. [Google Scholar] [CrossRef]
- Thissera, B.; Visvanathan, R.; Khanfar, M.A.; Qader, M.M.; Hassan, M.H.A.; Hassan, H.M.; Bawazeer, M.; Behery, F.A.; Yaseen, M.; Liyanage, R.; et al. Sesbania grandiflora L. Poir leaves: A dietary supplement to alleviate type 2 diabetes through metabolic enzymes inhibition. S. Afr. J. Bot. 2020, 130, 282–299. [Google Scholar] [CrossRef]
- Aleixandre, A.; Gil, J.V.; Sineiro, J.; Rosell, C.M. Understanding phenolic acids inhibition of α-amylase and α-glucosidase and influence of reaction conditions. Food Chem. 2022, 372, 131231. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.-X. Studies on chemical constituents and activities of lignans and terpenes from stem of Moringa oleifera. Chin. Trad. Herb. Drug 2019, 24, 5198–5205. [Google Scholar]
- Hong, H.C.; Li, S.L.; Zhang, X.Q.; Ye, W.C.; Zhang, Q.W. Flavonoids with α-glucosidase inhibitory activities and their contents in the leaves of Morus Atropurpurea. Chin. Med. 2013, 8, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res. 2010, 107, 1058–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asmat, U.; Abad, K.; Ismail, K. Diabetes mellitus and oxidative stress-A concise review. Saudi. Pharm. J. 2016, 24, 547–553. [Google Scholar] [CrossRef] [Green Version]
- Silvestre, L. Searching for Biocompounds in Algae and Seagrasses with Potential Use in the Treatment of Alzheimer’s Disease. Master’s Thesis, University of Algarve, Faro, Portugal, 2017. Available online: http://hdl.handle.net/10400.1/10712 (accessed on 5 April 2022).
- Balogh, J.; Victor, D.; Asham, E.H.; Burroughs, S.G.; Boktour, M.; Saharia, A.; Li, X.; Ghobrial, R.M.; Monsour, H.P. Hepatocellular carcinoma: A review. J. Hepatocell Carcinoma 2016, 3, 41–53. [Google Scholar] [CrossRef] [Green Version]
- Chang, M.C.; Wu, J.Y.; Liao, H.F.; Chen, Y.J.; Kuo, C.D. Comparative assessment of therapeutic safety of norcantharidin, N-farnesyloxy-norcantharimide, and N-farnesyl-norcantharimide against Jurkat T cells relative to human normal lymphoblast: A quantitative pilot study. Medicine 2016, 95, e4467. [Google Scholar] [CrossRef]
- Vizetto-Duarte, C.; Custódio, L.; Gangadhar, K.N.; Lago, J.H.G.; Dias, C.; Matos, A.M.; Neng, N.; Nogueira, J.M.F.; Barreira, L.; Albericio, F.; et al. Isololiolide, a carotenoid metabolite isolated from the brown alga Cystoseira tamariscifolia, is cytotoxic and able to induce apoptosis in hepatocarcinoma cells through caspase-3 activation, decreased Bcl-2 levels, increased p53 expression and PARP cleavage. Phytomedicine 2016, 23, 550–557. [Google Scholar]
- Gangadhar, K.N.; Rodrigues, M.J.; Pereira, H.; Gaspar, H.; Malcata, F.X.; Barreira, L.; Varela, J. Anti-Hepatocellular Carcinoma (HepG2) Activities of Monoterpene Hydroxy Lactones Isolated from the Marine Microalga Tisochrysis lutea. Mar. Drugs 2020, 18, 567. [Google Scholar] [CrossRef]
- Malek, S.N.A.; Shin, S.K.; Wahab, N.A.; Yaacob, H. Cytotoxic components of Pereskia bleo (kunth) DC. (Cactaceae) leaves. Molecules 2009, 14, 1713–1724. [Google Scholar] [CrossRef] [PubMed]
- El-Mekkawy, S.; Hassan, A.Z.; Abdelhafez, M.A.; Mahmoud, K.; Mahrous, K.F.; Meselhy, M.R.; Sendker, J.; Abdel-Sattar, E. Cytotoxicity, genotoxicity, and gene expression changes induced by methanolic extract of Moringa stenopetala leaf with LC-qTOF-MS metabolic profile. Toxicon 2021, 203, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Itoh, S.; Taketomi, A.; Harimoto, N.; Tsujita, E.; Rikimaru, T.; Shirabe, K.; Shimada, M.; Maehara, Y. Antineoplastic Effects of Gamma Linolenic Acid on Hepatocellular Carcinoma Cell Lines. J. Clin. Biochem. Nutr. 2010, 47, 81–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, H.; Han, F.; Zhang, L.; Wang, L.; Kumar, M. Gamma linolenic acid regulates PHD2 mediated hypoxia and mitochondrial apoptosis in DEN induced hepatocellular carcinoma. Drug Des. Dev. 2018, 12, 4241–4252. [Google Scholar]
- Alito, N.; Mezzadra, H.; Patel, P.; Koyuturk, M.; Altiok, S. A plant oxylipin, 12-oxo-phytodienoic acid, inhibits proliferation of human breast cancer cells by targeting cyclin D1. Breast Cancer Res. Treat. 2008, 109, 315–323. [Google Scholar]
- Rodrigues, M.J.; Soszynski, A.; Martins, A.; Rauter, A.P.; Neng, N.R.; Nogueira, J.M.F.; Varela, J.; Barreira, L.; Custódio, L. Unravelling the antioxidant potential and the phenolic composition of different anatomical organs of the marine halophyte Limonium algarvense. Ind. Crop. Prod. 2015, 77, 315–322. [Google Scholar] [CrossRef]
- Custódio, L.; Patarra, J.; Alberício, F.; Neng, N.R.; Nogueira, J.M.F.; Romano, A. Phenolic composition, antioxidant potential and in vitro inhibitory activity of leaves and acorns of Quercus suber on key enzymes relevant for hyperglycemia and Alzheimer’s disease. Ind. Crop. Prod. 2015, 64, 45–51. [Google Scholar] [CrossRef]
- Rodrigues, M.J.; Pereira, C.; Oliveira, M.; Neng, N.R.; Nogueira, J.M.F.; Zengin, G.; Mahomoodally, M.F.; Custódio, L. Sea rose (Armeria pungens (Link) Hoffmanns. & Link) as a potential source of innovative industrial products for anti-ageing applications. Ind. Crop. Prod. 2018, 121, 250–257. [Google Scholar]
- Rodrigues, M.J.; Custódio, L.; Lopes, A.; Oliveira, M.; Neng, N.R.; Nogueira, J.M.F.; Martins, A.; Rauter, A.P.; Varela, J.; Barreira, L. Unlocking the in vitro anti-inflammatory and antidiabetic potential of Polygonum maritimum. Pharm. Biol. 2017, 55, 1348–1357. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, M.J.; Gangadhar, K.N.; Vizetto-Duarte, C.; Wubshet, S.G.; Nyberg, N.T.; Barreira, L.; Varela, J.; Custódio, L. Maritime halophyte species from southern Portugal as sources of bioactive molecules. Mar. Drugs 2014, 12, 2228–2244. [Google Scholar] [CrossRef] [Green Version]
No. | Name | Formula | Rt | [M + H]+ | [M − H]− | Methanol | Dichloromethane |
---|---|---|---|---|---|---|---|
1 1 | Citric acid | C6H8O7 | 2.57 | 191.01918 | ++ | + | |
2 1 | Gallic acid (3,4,5-Trihydroxybenzoic acid) | C7H6O5 | 3.25 | 169.01370 | + | - | |
3 | Gallic acid sulfate | C7H6O8S | 3.55 | 248.97051 | + | - | |
4 2 | 3-O-Methylgallic acid-5-O-sulfate | C8H8O8S | 8.69 | 262.98616 | + | - | |
5 | Uralenneoside | C12H14O8 | 11.09 | 285.06105 | + | - | |
6 | (Trihydroxyphenyl)propanoic acid hexoside-O-sulfate | C15H20O13S | 11.80 | 439.05464 | + | - | |
7 | Benzylhexose sulfate | C13H18O9S | 11.95 | 349.05933 | + | - | |
8 | Dihydroxy-methoxybenzoic acid | C8H8O5 | 12.13 | 183.02935 | + | - | |
9 | Feruloylhexose sulfate | C16H20O12S | 12.50 | 435.05972 | + | - | |
10 | Caffeoylhexose sulfate | C15H18O12S | 12.79 | 421.04408 | + | - | |
11 | Caffeic acid sulfate | C9H8O7S | 13.89 | 258.99125 | + | - | |
12 | Coumaroylhexose sulfate | C15H18O11S | 13.92 | 405.04916 | + | - | |
13 | p-Coumaric acid 4-O-sulfate | C9H8O6S | 14.26 | 242.99634 | + | - | |
14 | Unidentified sulfate (Vanillin derivative) | C20H22O9S | 15.11 | 437.09063 | + | - | |
15 | Butenylpyrocatechol sulfate or isomer | C10H12O5S | 15.54 | 243.03272 | ++ | + | |
16 | Phenylethylhexose sulfate | C14H20O9S | 15.71 | 363.07498 | ++ | + | |
17 | 12-Hydroxyjasmonic acid sulfate or Tuberonic acid sulfate | C12H18O7S | 16.19 | 305.06950 | + | - | |
18 | Caffeoylpentose sulfate | C14H16O11S | 16.40 | 391.03351 | + | - | |
19 | Ferulic acid 4-O-sulfate | C10H10O7S | 16.51 | 273.00690 | + | - | |
20 | Butanoylpyrocatechol sulfate or isomer | C10H14O5S | 16.69 | 245.04837 | ++ | + | |
21 | Lyoniresinol sulfate | C22H28O11S | 17.59 | 499.12741 | + | - | |
22 | Lariciresinol or isomer sulfate | C20H24O9S | 18.21 | 439.10628 | + | - | |
23 | Isololiolide | C11H16O3 | 18.54 | 197.11777 | + | ++ | |
24 | Loliolide | C11H16O3 | 19.75 | 197.11777 | + | ++ | |
25 | 3-O-Methylellagic acid-4′-O-glucoside | C21H18O13 | 21.30 | 477.06692 | + | - | |
26 | 3,3′-Di-O-methylellagic acid-4-O-glucoside | C22H20O13 | 21.76 | 491.08257 | + | - | |
27 | Isorhamnetin-O-pentosylhexoside | C27H30O16 | 21.99 | 609.14556 | + | - | |
28 | N-cis-Feruloyltyramine | C18H19NO4 | 22.28 | 314.13924 | + | ++ | |
29 | Ellagic acid | C14H6O8 | 22.79 | 300.99845 | + | - | |
30 | 3-O-Methylellagic acid-4-O-sulfate | C15H8O11S | 24.10 | 394.97091 | + | - | |
31 | Kaempferol sulfate isomer 1 | C15H10O9S | 24.53 | 364.99673 | + | - | |
32 | N-trans-Feruloyltyramine | C18H19NO4 | 24.55 | 314.13924 | + | ++ | |
33 | 3,3′-Di-O-methylellagic acid-4-O-sulfate | C16H10O11S | 24.82 | 408.98656 | + | - | |
34 | 3-O-Methylellagic acid | C15H8O8 | 25.19 | 315.01410 | + | - | |
35 | N1,N5,N10-Tricoumaroylspermidine isomer 1 | C34H37N3O6 | 26.22 | 582.26042 | ++ | + | |
36 | Dihydroactinidiolide | C11H16O2 | 26.58 | 181.12286 | + | ++ | |
37 | Kaempferol sulfate isomer 2 | C15H10O9S | 26.60 | 364.99673 | + | - | |
38 | 3,3′,4-Tri-O-methylellagic acid-4′-O-sulfate | C17H12O11S | 26.99 | 423.00221 | ++ | + | |
39 | N1,N5,N10-Tricoumaroylspermidine isomer 2 | C34H37N3O6 | 27.25 | 582.26042 | + | - | |
40 | 3,3′-Di-O-methylellagic acid | C16H10O8 | 27.45 | 329.02975 | + | ++ | |
41 | N1,N5,N10-Tricoumaroylspermidine isomer 3 | C34H37N3O6 | 28.10 | 582.26042 | + | - | |
42 | N1,N5,N10-Tricoumaroylspermidine isomer 4 | C34H37N3O6 | 28.86 | 582.26042 | + | - | |
43 | 3,3′,4-Tri-O-methylellagic acid | C17H12O8 | 29.90 | 343.04540 | + | - | |
44 | Malyngic acid | C18H32O5 | 32.28 | 327.21715 | + | ++ | |
45 | Hydroxyoctadecatrienoic acid isomer 1 | C18H30O3 | 39.73 | 293.21167 | - | + | |
46 | Hydroxyoctadecatrienoic acid isomer 2 | C18H30O3 | 39.95 | 293.21167 | - | + | |
47 | Oxophytodienoic acid | C18H28O3 | 40.00 | 291.19603 | - | + | |
48 | Hexadecanedioic acid | C16H30O4 | 40.53 | 285.20659 | - | + | |
49 | Hydroxyoctadecatrienoic acid isomer 3 | C18H30O3 | 41.11 | 293.21167 | - | + | |
50 | Hydroxyoctadecadienoic acid | C18H32O3 | 41.16 | 295.22732 | - | + | |
51 | Pheophytin A | C55H74N4O5 | 62.57 | 871.57375 | + | ++ |
Assay | Methanol | Dichloromethane | Positive Control |
---|---|---|---|
RSA-DPPH | 0.25 ± 0.01 b | >1 mg/mL | 0.11 ± 0.00 a |
RSA-ABTS | 0.65 ± 0.02 b | >1 mg/mL | 0.06 ± 0.00 a |
FRAP | 0.51 ± 0.03 | >1 mg/mL | na |
CCA | 0.78 ± 0.01 b | >1 mg/mL | 0.17 ± 0.00 a |
ICA | >1 mg/mL | 0.76 ± 0.05 b | 0.06 ± 0.00 a |
Enzyme | Methanol | Dichloromethane | Positive Control |
---|---|---|---|
α-glucosidase | 1.02 ± 0.01 b | 0.52 ± 0.04 a | 3.14 ± 0.23 c |
α-amylase | >1 mg/mL | >1 mg/mL | 7.80 ± 0.17 |
AChE | >1 mg/mL | >1 mg/mL | 0.01 ± 0.00 |
BuChE | >1 mg/mL | >1 mg/mL | 0.32 ± 0.01 |
Tyrosinase | >1 mg/mL | >1 mg/mL | 0.17 ± 0.01 |
Cell Line | Methanol | Dichloromethane | Positive Control |
---|---|---|---|
HepG2 | >100 µg/mL | 52.1 ± 2.5 b (SI > 1.9) | 1.45 ± 0.15 a |
S17 | >100 µg/mL | >100 µg/mL | 7.86 ± 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, M.J.; Jekő, J.; Cziáky, Z.; Pereira, C.G.; Custódio, L. The Medicinal Halophyte Frankenia laevis L. (Sea Heath) Has In Vitro Antioxidant Activity, α-Glucosidase Inhibition, and Cytotoxicity towards Hepatocarcinoma Cells. Plants 2022, 11, 1353. https://doi.org/10.3390/plants11101353
Rodrigues MJ, Jekő J, Cziáky Z, Pereira CG, Custódio L. The Medicinal Halophyte Frankenia laevis L. (Sea Heath) Has In Vitro Antioxidant Activity, α-Glucosidase Inhibition, and Cytotoxicity towards Hepatocarcinoma Cells. Plants. 2022; 11(10):1353. https://doi.org/10.3390/plants11101353
Chicago/Turabian StyleRodrigues, Maria João, József Jekő, Zoltán Cziáky, Catarina G. Pereira, and Luísa Custódio. 2022. "The Medicinal Halophyte Frankenia laevis L. (Sea Heath) Has In Vitro Antioxidant Activity, α-Glucosidase Inhibition, and Cytotoxicity towards Hepatocarcinoma Cells" Plants 11, no. 10: 1353. https://doi.org/10.3390/plants11101353
APA StyleRodrigues, M. J., Jekő, J., Cziáky, Z., Pereira, C. G., & Custódio, L. (2022). The Medicinal Halophyte Frankenia laevis L. (Sea Heath) Has In Vitro Antioxidant Activity, α-Glucosidase Inhibition, and Cytotoxicity towards Hepatocarcinoma Cells. Plants, 11(10), 1353. https://doi.org/10.3390/plants11101353