Roadmapping 5.0 Technologies in Agriculture: A Technological Proposal for Developing the Coffee Plant Centered on Indigenous Producers’ Requirements from Mexico, via Knowledge Management
Abstract
:1. Introduction
- To explore coffee’s social, productive, and digital contexts in Oaxaca, Mexico;
- To determine technological routes through the expectations, current situation, and actions that could be implemented by indigenous producers in coffee cultivation in Oaxaca, Mexico;
- To propose digital technologies based on actions to be implemented by indigenous coffee producers from Oaxaca, Mexico, correlating social and productive contexts.
2. Materials and Methods
2.1. Information Gathering
- Regarding social information, it was asked: “As a coffee producer, what is your age, gender, length of time producing coffee, and the number of family members?”
- In relation to the productive context, it was asked: “As a coffee producer, which is your level of production, varieties of coffee, cultivated area, type of flora, pruning, frequency of pruning, type of fertilizer used, perception about its effectiveness, application period, the incidence of pest on the plant, additional crops managed in the coffee-growing area, and sale price?”
- Regarding expectations, it was asked: “As a coffee producer, how would you like the coffee crop to be in the region in the future?”
- Concerning the current situation, it was asked: “As a coffee producer, what is the current situation of the coffee crop in the region?”
- In relation to the strategies, it was asked: “As a coffee producer, which actions can be implemented in the coffee crop to meet the current situation’s expectations?”
- In relation to statistical correlations, the question was: “Is there a statistical correlation between social and productive information and actions to be implemented by indigenous coffee producers?”
- Regarding the technological proposal, the question was: “Based on statistical correlations and the availability of resources, what type of technologies of Industry 5.0 can be introduced by indigenous coffee producers that have been used in similar contexts?”
2.2. Information Analysis and Validity
3. Results
3.1. Social, Digital, and Productive Contexts of Indigenous Coffee Producers
3.2. Technology Routes of Indigenous Coffee Production
3.3. Statistical Analysis
3.4. Technological Proposal
- The production level and pest incidence can be controlled by monitoring coffee leaf rust. For this, the development and involvement of producers through a mobile application for early detection of the disease is registered as a feasible option, promoting data management and processing to boost the learning process [41]. This can become a reality through alliances of producers with the Early Warning System for Coffee promoted by IICA [94], since it is a public virtual space [95], which is an application that evaluates pest incidence, providing answers for proper management, and has already been implemented in many countries.
- 2.
- The type of soil compost is related to soil analysis. For this, sensors and computer tomography [104,105] can support measuring soil nutrients and provide images of the field properties in the coffee field. Invariably, a technological platform has to be used to collect data and develop recommendations for producers through an application on cell phones. From this, networked sensors and data processing are promoted for the learning process [41], to attend to the type of soil compost used for coffee, and for additional crops.
- 3.
- In relation to fertilizers/pesticides, the creation of organic fertilizers has a direct relationship. An option can be to reuse coffee pulp as a good source of compost. For this, a dome-shaped greenhouse to take advantage of solar radiation can be a simple technology since it does not require intervention for its management; it just needs the care of depositing and rotating the coffee pulp continuously to collect the black liquid that contains all the nutrients that it exudes after some time [116,117], which would improve work and safe activity within the sector.
- 4.
- Regarding varieties and their experimentation with the environment, due to the existence of coffee plants without rust, evaluation of the presence of phenolic compounds and proteins, following [121], is suggested. For this, spectrophotometric technology and sensors may be the best option to measure the presence of spores, aside from carbon, hydrogen, and oxygen, combined with the use of the technological platform to install in the context of the coffee plant.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. (Organización de las Naciones Unidas para la Agricultura y la Alimentación) Ecologia Y Enseñanza Rural Nociones Ambientales Básicas Para Profesores Rurales y Extensionistas; FAO: Rome, Italy, 2015. [Google Scholar]
- Susilawati, I.D.A.; Suryono, S.; Purwanto, P.; Burlakovs, J.; Yaro, A. Coffee protects cardiovascular health by maintaining the structure of coronary arterial wall intimal collagen. Coffee Sci. 2020, 15, e151637. [Google Scholar] [CrossRef]
- Susilawati, I.D.A.; Safaatin, A.; Burlakovs, J. Coffee reduced the production of neutrophil superoxide radical in vitro. In Proceedings of the 2nd International Conference on Natural Resources and Life Sciences (NRLS-2018), Ibis Styles Hotel, Surabaya, Indonesia, 23–24 August 2019. [Google Scholar] [CrossRef]
- Schaal, B. Plants and People: Our Shared History and Future. Plants People Planet 2019, 1, 14–19. [Google Scholar] [CrossRef]
- FAO. La Biodiversidad Crucial Para Nuestra Alimentación y Agricultura Desaparece de Día En Día. Available online: http://www.fao.org/news/story/es/item/1181470/icode/ (accessed on 25 October 2021).
- FAO. What Is Agrobiodiversity? In Builiding on Gender, Agrobiodiversity and Local Knowledge Training Manual; FAO: Rome, Italy, 2005; pp. 1–50. [Google Scholar]
- ICO. Datos Históricos. Available online: https://www.ico.org/es/new_historical_c.asp (accessed on 2 November 2021).
- FAO. Markets and Trade Coffee. Available online: http://www.fao.org/markets-and-trade/commodities/coffee/en/ (accessed on 2 November 2021).
- STATISTA. Global Leading Countries Based on Coffee Area Harvested in 2020. Available online: https://www.statista.com/statistics/279162/top-countries-worldwide-based-on-coffee-area-harvested/ (accessed on 4 November 2021).
- FAO. Tecnologías y Prácticas Para Pequeños Productores Agrícolas. Available online: https://teca.apps.fao.org/teca/en/about (accessed on 1 November 2021).
- ICO. Aspectos Botánicos. Available online: https://www.ico.org/es/botanical_c.asp (accessed on 6 November 2021).
- Canet Brenes, G.; Soto Víquez, C.; Ocampo Tomason, P.; Rivera Ramírez, J.; Navarro Hurtado, A.; Guatemala Morales, G.; Villanueva Rodríguez, S. La Situación y Tendencias de La Producción de Café En América Latina y El Caribe; IICA and CIATEJ: San José, Costa Rica, 2016; ISBN 9789292486518. [Google Scholar]
- Burdon, J.J.; Thrall, P.H.; Ericson, L. Plant Pathogens and Disease: Newly Emerging Diseases. In Encyclopedia of Microbiology; Elsevier: Oxford, UK, 2009; pp. 647–654. ISBN 9780123739445. [Google Scholar]
- Brandão, J.; Weiskerger, C.; Babič, M.N. Fungal Exposure and Relevant Recreational Settings. In Encyclopedia of Mycology; Elsevier: Amsterdam, The Netherlands, 2021; pp. 130–138. [Google Scholar]
- Vega, F.E.; Franqui, R.A.; Benavides, P. Scientific Note: The Presence of the Coffee Berry Borer, Hypothenemus Hampei, in Puerto Rico: Fact or Fiction? J. Insect Sci. 2002, 2, 1–4. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Nuevas Normas Para Frenar La Propagación Mundial de Las Plagas y Enfermedades de Las Plantas. Available online: http://www.fao.org/news/story/es/item/1188251/icode/ (accessed on 10 December 2021).
- FAO. Revisión Científica Del Impacto Del Cambio Climático En Las Plagas de Las Plantas; FAO: Rome, Italy, 2021; pp. 1–88. [Google Scholar]
- Romero, J.; Camilo, J. Manual de Producción Sostenible de Café; IICA: Santo Domingo, The Dominican Republic, 2019. [Google Scholar]
- Osorio, N. Technological Development in Coffee: Constraints Encountered by Producing Countries; International Coffee Organisation: London, UK, 2002; Volume 44. [Google Scholar]
- Aguilar Jiménez, C.E.; Alvarado Cruz1, I.; Martínez Aguilar, F.B.; Galdámez, J.G.; Gutierrez Martínez, A.; Morales Cabrera, J.A. Assessment of Three Organic Fertilizers on Coffee (Coffea Arabica L.) in Nursery Stage. Siembra 2016, 3, 11–20. [Google Scholar] [CrossRef]
- Velásquez, D.; Sánchez, A.; Sarmiento, S.; Toro, M.; Maiza, M.; Sierra, B. A Method for Detecting Coffee Leaf Rust through Wireless Sensor Networks, Remote Sensing, and Deep Learning: Case Study of the Caturra Variety in Colombia. Appl. Sci. 2020, 10, 697. [Google Scholar] [CrossRef] [Green Version]
- Osorio, N. Lessons from the World Coffee Crisis: A Serious Problem for Sustainable Development; UNCTAD XI: Sao Paolo, Brazil, 2004. [Google Scholar]
- Henderson, T.P. La Roya y El Futuro Del Café En Chiapas. Rev. Mex. Sociol. 2019, 81, 389–416. [Google Scholar]
- Croplife Roya del Cafeto. Available online: https://www.croplifela.org/es/plagas/listado-de-plagas/roya-del-cafeto (accessed on 16 December 2021).
- UNICEF. Human-Centred Design. Accelerating Results for Every Child by Design. 2016. Available online: https://www.unicef.org/innovation/media/5456/file (accessed on 10 December 2021).
- Soto, X.O. El Comercio Internacional Como Incentivo a La Sostenibilidad La Experiencia de La Red Latinoamericana y Del Caribe de La Huella Ambiental Del Café; CEPAL: Santiago, Chile, 2020; pp. 1–47. [Google Scholar]
- ICO. 1.2.3-World Coffee Trade-Coffee Producing Countries by ICO Quality Group. Available online: https://www.intracen.org/coffee-guide/world-coffee-trade/coffee-producing-countries-by-ICO-quality-group/ (accessed on 20 December 2021).
- ICO. Noticias. Available online: https://ico.org/ (accessed on 23 December 2021).
- UNDP. About Human Development. Available online: http://hdr.undp.org/en/humandev (accessed on 6 December 2021).
- Giacomin, J. What is Human Centred Design? Des. J. 2014, 17, 606–623. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Horizon 2020: Science with and for Society. Available online: https://ec.europa.eu/programmes/horizon2020/en/h2020-section/science-and-society (accessed on 5 November 2021).
- OECD. Connecting People with Good Jobs. Available online: http://www.oecd.org/els/emp/activation.htm (accessed on 5 November 2021).
- European Commission. Industry 5.0. What This Approach Is Focused on, How It Will Be Achieved and How It Is Already Being Implemented. Available online: https://ec.europa.eu/info/research-and-innovation/research-area/industrial-research-and-innovation/industry-50_en#what-is-industry-50 (accessed on 22 November 2021).
- De Nul, L.; Breque, M.; Petridis, A. Industry 5.0—Towards a Sustainable, Human-Centric and Resilient European Industry; European Commission: Brussels, Belgium, 2021; pp. 1–48. [Google Scholar]
- Xu, X.; Lu, Y.; Vogel-Heuser, B.; Wang, L. Industry 4.0 and Industry 5.0—Inception, Conception and Perception. J. Manuf. Syst. 2021, 61, 530–535. [Google Scholar] [CrossRef]
- Nahavandi, S. Industry 5.0—A Human-Centric Solution. Sustainability 2019, 11, 4371. [Google Scholar] [CrossRef] [Green Version]
- Ilboudo, J.; del Castello, R. Construir Puentes Para Cerrar La Brecha Digital Rural—Vincular La Radio Rural y Las NTICs En África. In Secreto a Voces; FAO: Rome, Italy, 2004; ISBN 92-5-304950-2. [Google Scholar]
- Luque Zúñiga, B.G.; Moreno Salazar Calderón, K.A.B.; Lanchipa Ale, T.M. Impactos Del COVID-19 En La Agricultura y La Seguridad Alimentaria. Cent. Agríc. 2021, 48, 72–82. [Google Scholar]
- ONU. Noticias ONU. Available online: https://news.un.org/es/story/2019/06/1457461 (accessed on 28 December 2021).
- Yin, Y.; Stecke, K.E.; Li, D. The Evolution of Production Systems from Industry 2.0 through Industry 4.0. Int. J. Prod. Res. 2018, 56, 848–861. [Google Scholar] [CrossRef] [Green Version]
- Müller, J.; European Commission. Directorate-General for Research and Innovation. In Enabling Technologies for Industry 5.0: Results of a Workshop with Europe’s Technology Leaders; Research and Innovation: Luxembourg, 2020; ISBN 9789276220480. [Google Scholar]
- Nag, P.K.; Gite, L.P. Human-Centered Agriculture; Springer: Singapore, 2020; ISBN 978-981-15-7268-5. [Google Scholar]
- UNESCO ARTeSCIENZA: Climate Change, Traditional Knowledge and New Technologies for Cultural Heritage Protection. Available online: https://en.unesco.org/news/artescienza-climate-change-traditional-knowledge-and-new-technologies-cultural-heritage (accessed on 15 December 2021).
- University of Melbourne. Digital Technology and Managing Indigenous Astronomical Knowledge. Available online: https://indigenousknowledge.unimelb.edu.au/curriculum/resources/digital-technology-and-managing-indigenous-astronomical-knowledge (accessed on 15 December 2021).
- Organización Internacional del Café. Sector del Café Sostenible de África; ICO: Milano, Italy, 2015. [Google Scholar]
- Ranjan Jena, P.; Grote, U. Fairtrade Certification and Livelihood Impacts on Small-scale Coffee Producers in a Tribal Community of India. Appl. Econ. Perspect. Policy 2017, 39, 87–110. [Google Scholar] [CrossRef]
- Akhtar, J. Coffee Leaf Rust: India’s Experience. 2014. Available online: http://www.ico.org/documents/cy2013-14/presentations/icc-india-march2014.pdf (accessed on 12 December 2021).
- García-Domínguez, J.U.; Villegas, Y.; Duran-Medina, E.; Carrillo-Rodríguez, J.C.; Sangerman-Jarquín, D.M.; Castañeda-Hidalgo, E. Descripción y Análisis de Productores de Café de La Región Mixe, Oaxaca. Rev. Mex. Cienc. Agríc. 2021, 12, 1235–1247. [Google Scholar] [CrossRef]
- Billings, C.E. Aviation Automation: The Search for a Human-Centered Approach; Taylor and Francis: New York, NY, USA, 2018; Volume 1, ISBN 0-8058-2126-0. [Google Scholar]
- Stankov, U.; Gretzel, U. Tourism 4.0 Technologies and Tourist Experiences: A Human-Centered Design Perspective. Inf. Technol. Tour. 2020, 22, 477–488. [Google Scholar] [CrossRef]
- Persson, J. A Review of the Design and Development Processes of Simulation for Training in Healthcare–A Technology-Centered versus a Human-Centered Perspective. Appl. Ergon. 2017, 58, 314–326. [Google Scholar] [CrossRef]
- Boy, G.A. The Handbook of Human-Machine Interaction: A Human-Centered Design Approach; Boy, G.A., Ed.; CRC Press: New York, NY, USA, 2017. [Google Scholar]
- Wyche, S.; Olson, J.; Karanu, M.N. Redesigning Agricultural Hand Tools in Western Kenya Redesigning Agricultural Hand Tools in Western Kenya: Considering Human-Centered Design in ICTD. Inf. Technol. Int. Dev. 2019, 15, 97–112. [Google Scholar]
- FAO. El Café Colombiano Tradicional... Con Un Toque Juvenil. Available online: https://www.fao.org/fao-stories/article/es/c/1311491/ (accessed on 5 November 2021).
- FAO. Pequeños Productores de Café Le Apuestan a Una Agricultura Orgánica Para Reducir Costos y Contribuir al Cuidado Del Medio Ambiente. Available online: https://www.fao.org/in-action/tropical-agriculture-platform/news-and-events/detail/fr/c/1271040/ (accessed on 5 November 2021).
- ICO. Technology Initiatives of Coffee Board of India. Available online: http://www.ico.org/documents/cy2017-18/Presentations/Technology_Initiatives_of_the_Coffee_Board_of_India_Dr_Raghuramulu.pdf (accessed on 5 November 2021).
- Sipe, B. Review—Design Thinking for the Greater Good: Innovation in the Social Sector. Found. Rev. 2018, 10, 1. [Google Scholar] [CrossRef]
- Manuel-Navarrete, D.; Charli-Joseph, L.; Eakin, H.; Siqueiros-García, J.M. Applying Technologies of the Self in Transformation Labs to Mobilize Collective Agency. Soc. Innov. J. 2021, 5, 1–10. [Google Scholar]
- Contreras-Medina, D.I.; Sánchez Osorio, E.; Olvera Vargas, L.A.; Romero, R.Y. Technology Roadmapping Architecture Based on Knowledge Management: Case Study for Improved Indigenous Coffee Production from Guerrero, Mexico. J. Sens. 2019, 2019, 1–17. [Google Scholar] [CrossRef]
- Flores Torres, C.L.; Olvera-Vargas, L.A.; Sánchez Gómez, J.; Contreras-Medina, D.I. Discovering Innovation Opportunities Based on SECI Model: Reconfiguring Knowledge Dynamics of the Agricultural Artisan Production of Agave-Mezcal, Using Emerging Technologies. J. Knowl. Manag. 2021, 25, 336–359. [Google Scholar] [CrossRef]
- Contreras-Medina, D.I.; Contreras-Medina, L.M.; Pardo-Nuñez, J.; Olvera-Vargas, L.A.; Rodriguez-Peralta, C.M. Roadmapping as a Driver for Knowledge Creation: A Proposal for Improving Sustainable Practices in the Coffee Supply Chain from Chiapas, Mexico, Using Emerging Technologies. Sustainability 2020, 12, 5817. [Google Scholar] [CrossRef]
- Contreras-Medina, D.I.; Medina-Cuéllar, S.E.; Sánchez-Gómez, J.; Rodríguez-Peralta, C.M. Innovation of Women Farmers: A Technological Proposal for Mezcalilleras’ Sustainability in Mexico, Based on Knowledge Management. Sustainability 2021, 13, 11706. [Google Scholar] [CrossRef]
- De García-Villegas, J.D.; García-Martínez, A.; Arriaga-Jordán, C.M.; Ruiz-Torres, M.E.; Rayas-Amor, A.A.; Dorward, P.; Martínez-García, C.G. Use of Information and Communication Technologies in Small-Scale Dairy Production Systems in Central Mexico. Exp. Agric. 2020, 56, 767–779. [Google Scholar] [CrossRef]
- Rodríguez Lemus, C.; Escamilla Santana, C.; del Ríos Castro, M.S.; López Bedolla, M.G.; López Ramírez, B.C. Competitividad y Asimilación de Tecnologías de La Información y La Comunicación (TIC) En Pequeños Productores de Agricultura Protegida En Guanajuato, México. Cienc. Tecnol. Agropecu. 2020, 21, 1–21. [Google Scholar] [CrossRef]
- De Luna–López, H.; Cruz–Cruz, M.; Saucedo–Estrada, E. Una Experiencia Exitosa de Competitividad de Los Pequeños Productores En Una Localidad Del Centro-Norte de México. Coop. Desarro. 2016, 24, 145–158. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Lemus, C.; Valencia-Pérez, L.R.; Peña-Aguilar, J.M. Aplicación de Las TI’s a La Cadena de Valor Agrícola Para Productores de Agricultura Protegida. Rev. Tecnol. Marcha 2018, 31, 181. [Google Scholar] [CrossRef] [Green Version]
- Hernández, H.U.B.; Mendez, R.M.; Beutelspacher, A.N.; Solís, J.D.Á.; Dosal, A.T.; Portugal, C.H. Factores Socioeconómicos y Tecnológicos En El Uso de Agroquímicos En Tres Sistemas Agrícolas En Los Altos de Chiapas, México. Imterciencia 2016, 41, 382–392. [Google Scholar]
- Worldbank. Digital Adoption Index. 2016. Available online: https://www.worldbank.org/en/publication/wdr2016/Digital-Adoption-Index (accessed on 27 December 2021).
- Secretaría de Economía. Crafting the Future: A Roadmap for Industry 4.0 in Mexico. 2016. Available online: https://amiti.org.mx/wp-content/uploads/2018/01/Crafting-the-future-10-agosto-2016.pdf (accessed on 15 December 2021).
- Secretaría de Agricultura y Desarrollo Rural Tecnología Para El Campo Mexicano. 2020. Available online: https://www.gob.mx/agricultura/articulos/tecnologia-para-el-campo-mexicano?idiom=es (accessed on 29 December 2021).
- Terán Bustamante, A.; Dávila Aragón, G.; Castañón Ibarra, R. Gestión de La Tecnología e Innovación: Un Modelo de Redes Bayesianas. Econ. Teor. Práct. 2019, 50, 63–100. [Google Scholar] [CrossRef]
- Lai, P. The Literature Review of Technology Adoption Models and Theories for the Novelty Technology. J. Inf. Syst. Technol. Manag. 2017, 14, 21–38. [Google Scholar] [CrossRef] [Green Version]
- Holden, R.J.; Karsh, B.-T. The Technology Acceptance Model: Its Past and Its Future in Health Care. J. Biomed. Inform. 2010, 43, 159–172. [Google Scholar] [CrossRef] [Green Version]
- Arechavala-Vargas, R.; Núñez-López, V.; Madrigal-Torres, B.E. Technology-Based Business Opportunity Identification in a Latin American Country. Acta Univ. 2019, 29, 1–14. [Google Scholar] [CrossRef]
- Phaal, R.; Muller, G. An Architectural Framework for Roadmapping: Towards Visual Strategy. Technol. Forecast. Soc. Chang. 2009, 76, 39–49. [Google Scholar] [CrossRef]
- Barrera, J.F. Una Mirada Sobre La Tecnología En La Cafeticultura Por Sus Frutos La Conocerás. Ecofronteras 2016, 20, 6–9. [Google Scholar]
- Sader Cultivo Del Café. Available online: https://sader.jalisco.gob.mx/fomento-agricola-hortofruticola-e-inocuidad/714 (accessed on 14 December 2021).
- SIAP. Anuario Estadístico de La Producción Agrícola. Available online: https://nube.siap.gob.mx/cierreagricola/ (accessed on 14 December 2021).
- Senasica Servicio Nacional De Sanidad, Inocuidad y Calidad Agroalimentaria. 2016. Available online: https://www.gob.mx/senasica/documentos/apoyos-2016?state=published (accessed on 4 January 2022).
- Gaitán-Cremaschi, D.; van Evert, F.; Jansen, D.; Meuwissen, M.; Oude Lansink, A. Assessing the Sustainability Performance of Coffee Farms in Vietnam: A Social Profit Inefficiency Approach. Sustainability 2018, 10, 4227. [Google Scholar] [CrossRef] [Green Version]
- Vicol, M.; Neilson, J.; Hartatri, D.F.S.; Cooper, P. Upgrading for Whom? Relationship Coffee, Value Chain Interventions and Rural Development in Indonesia. World Dev. 2018, 110, 26–37. [Google Scholar] [CrossRef]
- Wairegi, L.W.I.; Bennett, M.; Nziguheba, G.; Mawanda, A.; de los Rios, C.; Ampaire, E.; Jassogne, L.; Pali, P.; Mukasa, D.; van Asten, P.J.A. Sustainably Improving Kenya’s Coffee Production Needs More Participation of Younger Farmers with Diversified Income. J. Rural. Stud. 2018, 63, 190–199. [Google Scholar] [CrossRef]
- FAO. Tecnologías Digitales en la Agricultura y Las Zonas Rurales; FAO: Rome, Italy, 2019. [Google Scholar]
- Escamilla, F.M.; Ayala-Garay, A.V.; Flores-Trejo, A.; Oble-Vergara, E.; Almaguer-Vargas, G. Factors that influence tha adoption of innovations by orange producers in Álamo, Veracruz. Agric. Soc. Desarro. 2019, 16, 183–198. [Google Scholar]
- FAO. Evaluación y Selección de Tecnología. In Formulación y Análisis Detallado de Proyectos; FAO: Rome, Italy, 2005. [Google Scholar]
- Mohd Razali, N.; Bee Wah, Y. Power Comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling Tests. J. Stat. Modeling Anal. 2011, 2, 13–14. [Google Scholar]
- Pedroza, H.; Discovski, L. Sistema de Análisis Estadístico Con SPSS; IICA: San José, Costa Rica, 2007; ISBN 9789290397908. [Google Scholar]
- Nonaka, I.; Toyama, R.; Konno, N. SECI, Ba and Leadership: A Unified Model of Dynamic Knowledge Creation. Long Range Plan. 2000, 33, 5–34. [Google Scholar] [CrossRef]
- Vaisrub, N. Biostatistics: The Bare Essentials; B.C. Decker Inc: Toronto, ON, Canada, 2009; Volume 302. [Google Scholar]
- INEGI Población. Available online: https://www.inegi.org.mx/temas/estructura/ (accessed on 22 October 2021).
- México Pueblos de América Pueblos de México. Available online: https://mexico.pueblosamerica.com/ (accessed on 19 December 2021).
- CONEVAL. Medición de La Pobreza. 2020. Available online: https://www.coneval.org.mx/Medicion/Paginas/PobrezaInicio.aspx (accessed on 15 January 2022).
- Lee, C.F.; Lee, J.C.; Lee, A.C. Statistics for Business and Financial Economics, 3rd ed.; Springer: Berlin, Germany, 2013; ISBN 9781461458975. [Google Scholar]
- IICA. In Response to Coffee Rust: Promotion of Early Warning System in Central America Is Recommended. Available online: https://www.iica.int/en/press/news/response-coffee-rust-promotion-early-warning-system-central-america-recommended (accessed on 26 January 2022).
- FAO. Manual de Usuario SATCAFE Nivel Técnico; FAO: Rome, Italy, 2017. [Google Scholar]
- UE; IICA; CIRAD. Autodiagnóstico Del Sistema de Alerta Temprana Para La Roya Del Cafeto En Guatemala. Available online: http://repositorio.iica.int/bitstream/handle/11324/8017/4704-00.pdf?sequence=1&isAllowed=y (accessed on 22 January 2022).
- Gobierno de la República de Guatemala. Adaptation Fund—UNDP Diagnostico de la Cadena de Café “Identificación de Cadenas Ecoproductivas y su Potencial Acceso a Mercados, en la Zona del Proyecto pprcc”. 2016. Available online: https://www.undp.org/es/latin-america/publications/identificaci%C3%B3n-de-cadenas-ecoproductivas-y-su-potencial-acceso-mercados-en-la-zona-del-proyecto (accessed on 22 January 2022).
- Instituto Nacional de Estadística Guatemala. Available online: https://www.ine.gob.gt/ine/ (accessed on 21 February 2022).
- Ministerio de Desarrollo Social. OPHI Índice de Pobreza Multidimensional. Available online: https://mppn.org/wp-content/uploads/2019/10/Guatemala-Report-IPM-gt_29jul19-v1.1.pdf (accessed on 21 February 2022).
- INIDE. Anuario Estadístico 2019. Available online: https://www.inide.gob.ni/docs/Anuarios/Anuario19/Anuario_2019.pdf (accessed on 28 January 2022).
- INIDE. Municipio de Jalapa Barrios y Comarcas Pobreza Extrema. 2005. Available online: https://www.inide.gob.ni/docu/censos2005/CifrasMun/NSTPDF/JALAPA.pdf (accessed on 28 January 2022).
- Xie, H.; Huang, Y. Influencing Factors of Farmers’ Adoption of pro-Environmental Agricultural Technologies in China: Meta-Analysis. Land Use Policy 2021, 109, 105622. [Google Scholar] [CrossRef]
- Sott, M.K.; Furstenau, L.B.; Kipper, L.M.; Giraldo, F.D.; Lopez-Robles, J.R.; Cobo, M.J.; Zahid, A.; Abbasi, Q.H.; Imran, M.A. Precision Techniques and Agriculture 4.0 Technologies to Promote Sustainability in the Coffee Sector: State of the Art, Challenges and Future Trends. IEEE Access 2020, 8, 149854–149867. [Google Scholar] [CrossRef]
- Alves, G.M.; Cruvinel, P.E. Big Data Environment for Agricultural Soil Analysis from CT Digital Images. In Proceedings of the 2016 IEEE Tenth International Conference on Semantic Computing (ICSC), Laguna Hills, CA, USA, 4–6 February 2016; pp. 429–431. [Google Scholar]
- Singh, R.K.; Berkvens, R.; Weyn, M. AgriFusion: An Architecture for IoT and Emerging Technologies Based on a Precision Agriculture Survey. IEEE Access 2021, 9, 136253–136283. [Google Scholar] [CrossRef]
- Ruíz Martínez, W.; Díaz-Gutiérrez, Y.; Ferro-Escobar, R.; Pallares, L. Application of the Internet of Things through a Network of Wireless Sensors in a Coffee Crop for Monitoring and Control Its Environmental Variables. TecnoLógicas 2019, 22, 155–170. [Google Scholar] [CrossRef]
- Cloete, K.J.; Šmit, Ž.; Minnis-Ndimba, R.; Vavpetič, P.; du Plessis, A.; le Roux, S.G.; Pelicon, P. Physico-Elemental Analysis of Roasted Organic Coffee Beans from Ethiopia, Colombia, Honduras, and Mexico Using X-Ray Micro-Computed Tomography and External Beam Particle Induced X-Ray Emission. Food Chem. X 2019, 2, 100032. [Google Scholar] [CrossRef]
- Vadivambal, R.; Jayas, D.S. Applications of Thermal Imaging in Agriculture and Food Industry—A Review. Food Bioprocess Technol. 2011, 4, 186–199. [Google Scholar] [CrossRef]
- Cámara de Comercio de Bogotá Principales Resultados Del Indice de Pobreza Multidimensional y de La Encuesta de Calidad de Vida 2020. Available online: https://www.ccb.org.co/observatorio/Analisis-Economico/Analisis-Economico/Crecimiento-economico/Noticias/Principales-resultados-del-Indice-de-Pobreza-Multidimensional-y-de-la-Encuesta-de-Calidad-de-Vida-2020 (accessed on 21 February 2022).
- Barros Duarte, L.A.; Bueno, N.C. Acevedo Diferencias Regionales en los Retornos Sociales de la Educación en Colombia, 2015–2018. 2019. Available online: https://repository.unab.edu.co/bitstream/handle/20.500.12749/12313/2019_Tesis_Laura_Andrea_Barros_Duarte.pdf?isAllowed=y&sequence=1 (accessed on 22 February 2022).
- CIOH. Climatología de Los Principales Puertos Del Caribe Colombiano. 2010. Available online: https://www.cioh.org.co/index.php/es/climatologia-puertos-de-caribe-colombiano (accessed on 26 February 2022).
- DANE. Censo Nacional de Población y Vivienda 2018. Available online: https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-nacional-de-poblacion-y-vivenda-2018 (accessed on 21 February 2022).
- Alcaldía Municipal de ValleDupar Mi Municipio. Available online: https://www.valledupar-cesar.gov.co/MiMunicipio/Paginas/Informacion-del-Municipio.aspx#:~:text=Altitud%20de%20la%20cabecera%20municipal,altitud%20media%20de%20168%20m (accessed on 21 February 2022).
- Gobernación del Cauca. Pérfil Departamento Del Cauca. Available online: https://www.cauca.gov.co/Dependencias/OficinaAsesoradePlaneacion/InformacioneIndicadores/Perfil%20Departamento%20del%20Cauca.pdf (accessed on 23 February 2022).
- CIDIR Laboratorios. Available online: https://web.ciidiroaxaca.ipn.mx/?q=laboratorios (accessed on 22 February 2022).
- VijayaVenkataRaman, S.; Iniyan, S.; Goic, R. A Review of Solar Drying Technologies. Renew. Sustain. Energy Rev. 2012, 16, 2652–2670. [Google Scholar] [CrossRef]
- Rathinavelu, R.; Graziosi, G. Potential Alternative Uses of Coffee Wastes and By-Products. Coffee Organ. 2005, 942, 1–4. [Google Scholar]
- Briceño-Martínez, B.; Castillo-Calderón, J.; Carrión-Jaura, R.; Díaz-Sinche, D. Propuesta de Implantación de Invernadero de Secado de Café Con Cubierta Parabólica y Estructura Modular Adaptada. Ingenius 2020, 24, 36–48. [Google Scholar] [CrossRef]
- Municipio de Loja Vilcamba. Available online: https://www.loja.gob.ec/contenido/vilcabamba (accessed on 22 February 2022).
- Gobierno Autónomo Descentralizado de la Parroquia San Pedro Vilcamba. Plan de Desarrollo y Ordenamiento Territorial. 2015. Available online: http://app.sni.gob.ec/sni-link/sni/PORTAL_SNI/data_sigad_plus/sigadplusdocumentofinal/1160025150001_PDyOT%20San%20Pedro%20de%20Vilcabamba_18-05-2016_10-29-45.pdf (accessed on 23 February 2022).
- Luján-Hidalgo, M.C.; Jiménez-Aguilar, L.A.; Ruiz-Lau, N.; Reyes-Zambrano, S.J.; Gutiérrez-Miceli, F.A. Cambios Bioquímicos En Respuesta al Ataque de Roya En Plantaciones de Café. Polibotánica 2020, 49, 149–160. [Google Scholar] [CrossRef]
- Universidad Veracruzana MEMORIAS Foro Final de Seminario de Investigación Doctorado En Ciencias Agropecuarias. 2017. Available online: https://www.uv.mx/orizaba/dca/files/2018/07/5.-Memoria-del-Foro-del-Doctorado-en-Ciencias-Agropecuarias-Diciembre-2017.pdf (accessed on 23 February 2022).
- Aromdee, C.; Wichitchote, P.; Jantakun, N.; Sci, S.J. Spectrophotometric determination of total lactones in Andrographis paniculata Nees. Songklanakarin J. Sci. Technol. 2005, 27, 1227–1231. [Google Scholar]
- Van Maarschalkerweerd, M.; Husted, S. Recent Developments in Fast Spectroscopy for Plant Mineral Analysis. Front. Plant Sci. 2015, 6, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CCMSS. Con 95% de Su Producción Orgánica, la Organización de Cafeticultores Indígenas Unión Majomut Desarrolla Estrategia Para Vender Su Café en Ciudad de México. Available online: https://www.ccmss.org.mx/con-95-de-su-produccion-organica-la-organizacion-de-cafeticultores-indigenas-union-majomut-desarrolla-estrategia-para-vender-su-cafe-en-ciudad-de-mexico/ (accessed on 22 February 2022).
- Allou Alphonse, A.; Trejo-García, J.C.; Martínez-García, M.Á. Opción Climática Para la Producción de Café en México. Ens. Rev. Econ. 2018, 37, 135–154. [Google Scholar] [CrossRef] [Green Version]
- Gobierno de México. El Café Una Producción En Manos Sabias. Available online: https://www.gob.mx/agricultura/articulos/el-cafe-una-produccion-en-manos-sabias (accessed on 22 February 2022).
- Cardeña Basilio, I.; Ramírez-Valverde, B.; Sánchez, J.P.J.; de la Peña, A.H.; León, A.C. Campesinos y Sistema de Producción de Café Ante El Problema de La Roya En El Municipio de Hueytamalco, Puebla, México. Espac. Abierto 2019, 28, 57–70. [Google Scholar]
- Worldbank. Latinoamérica Indígena En El Siglo XXI. 2015. Available online: https://documents1.worldbank.org/curated/en/541651467999959129/pdf/Latinoam%C3%A9rica-ind%C3%ADgena-en-el-siglo-XXI-primera-d%C3%A9cada.pdf (accessed on 23 February 2022).
- Suárez, A.E.; Gutiérrez-Montes, I.; Ortiz-Morea, F.A.; Suárez, J.C.; di Rienzo, J.; Casanoves, F. Contribution of Livelihoods to the Well-Being of Coffee-Growing Households in Southern Colombia: A Structural Equation Modeling Approach. Sustainability 2022, 14, 743. [Google Scholar] [CrossRef]
- Villalobos, V.; García, M.; Ávila, F. Innovation to Achieve Competitive, Sustainable and Inclusive Agriculture Innovation to Achieve Competitive, Sustainable and Inclusive Agriculture; IICA: San José, Costa Rica, 2017; ISBN 9789292487225. [Google Scholar]
- Marenya, P.P.; Barrett, C.B. Household-Level Determinants of Adoption of Improved Natural Resources Management Practices among Smallholder Farmers in Western Kenya. Food Policy 2007, 32, 515–536. [Google Scholar] [CrossRef]
- Alvarado, M.E.G.; Zorrilla, G.O.D.; Castañeda Hidalgo, E.; Lozano Trejo, S.; Pérez León, M.I. Caracterización del Agroecosistema de Café Bajosombra en la Cuenca del Río Copalita. Rev. Mex. Agronegocios 2017, XXI, 635–648. [Google Scholar]
- Benítez-García, E.; Jaramillo-Villanueva, J.L.; Escobedo-Garrido, S.; Mora-Flores, S. Characterization of Coffee Production and Trade in the Municipality of Cuetzalan, Puebla. Agric. Soc. Desarro. 2015, 12, 181–198. [Google Scholar]
- Senasica Info Senasica. Available online: https://dj.senasica.gob.mx/infoSENASICA/septiembre2019/infosenasica-4.html#p=1 (accessed on 1 February 2022).
- Díaz Nieto, E.S. Estrategias de Competitividad y Contexto Actual de Caficultores y Comercializadores En Hidalgo. RICEA Rev. Iberoam. Contad. Econ. Adm. 2021, 10, 55–74. [Google Scholar] [CrossRef]
- Escalante, T.G. Los Pequeños Productores de Café en Chiapas y El Desarrollo de Capacidades Locales a Partir del Proceso de Integración al Comercio Justo. Ph.D. Thesis, Colegio de la Frontera Norte, Tijuana, Mexico, 2018. [Google Scholar]
- Sánchez Hernández, S.; Schwentesius Rindermann, R.E.; Elise, R. Diversidad Arbórea En Cafetales de San Vicente Yogondoy, Pochutla, Oaxaca. Geogr. Agrícola 2015, 54, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Rodríguez, R.F.; Castañeda-Hidalgo, E.; Robles, C.; Santiago-Martínez, G.M.; Pérez-León, M.I.; Lozano-Trejo, S. Efectividad de Biofungicidas Para El Control de La Roya En Plántulas de Café. Rev. Mex. Cienc. Agríc. 2020, 11, 1403–1412. [Google Scholar] [CrossRef]
- FAO. Opciones Orgánicas Para Combatir La Roya En Guatemala. Available online: https://www.fao.org/in-action/agronoticias/detail/es/c/511649/ (accessed on 1 February 2022).
- Álvarez-Palomino, L.; Vargas-Bayona, J.E.; García-Díaz, L.K. Abono Orgánico: Aprovechamiento de Los Residuos Orgánicos Agroindustriales. Spei Domus. 2018, 14, 1–10. [Google Scholar]
- Betancourt, D.; Rodríguez, C.; Benavides, O.L. Producción de un mejorador de suelos a partir de la transformación biológica de pulpa de café (Coffea arabica), cepa de plátano (Musa paradisiaca) y estiércol de cuy (cavia porcellus). Vitae 2016, 23 (Suppl. S1), 525. [Google Scholar]
- Gobierno de México. Composta Casera: Mejora Plantas y Suelos a Costos Económicos Con Materiales Accesibles. Available online: https://www.gob.mx/semarnat/articulos/composta-casera-mejora-plantas-y-suelos-a-costos-economicos-con-materiales-accesibles?idiom=es (accessed on 1 February 2022).
- Machado Vargas, M.M.; Ríos Osorio, L.A. Sostenibilidad En Agroecosistemas de Café de Pequeños Agricultores: Revisión Sistemática. Idesia 2016, 34, 15–23. [Google Scholar] [CrossRef] [Green Version]
- René Fernández Ojeda, P.; Acevedo, D.C.; Morales, A.V.; Uribe Gómez, M. State of the Essential Chemical Elements in the Soils of Natural, Agroforestry and Monoculture Systems. Rev. Mex. Cienc. For. 2016, 7, 65–77. [Google Scholar]
- ICO. Informe Del Mercado de Café. 2021. Available online: https://www.ico.org/documents/cy2020-21/cmr-0821-c.pdf (accessed on 22 December 2021).
- Viguera, B.; Alpízar, F.; Harvey, C.A.; Martínez-Rodríguez, M.R.; Saborío-Rodríguez, M.; Contreras, L. Percepciones de Cambio Climático y Respuestas Adaptativas de Pequeños Agricultores En Dos Paisajes Guatemaltecos. Agron. Mesoam. 2019, 30, 313–331. [Google Scholar] [CrossRef]
- Miguel, I.; Miranda, B. Origen de La Roya Las Variaciones Climáticas En El Incremento Inusual de La Roya Del Cafeto. Rev. Inf. 2013, 1–16. [Google Scholar]
- Higuera, I.; Rivera, J. Chiapas: Problemáticas Del Sector Cafetalero. CIATEJ Centro Geo. 2018, 1–72. [Google Scholar]
- Volsi, B.; Telles, T.S.; Caldarelli, C.E.; da Camara, M.R.G. The Dynamics of Coffee Production in Brazil. PLoS ONE 2019, 14, e0219742. [Google Scholar] [CrossRef] [Green Version]
- Gobernación del Huila Avanza Proceso de Renovación y Reconversión de La Caficultura Huilense. Available online: https://www.huila.gov.co/publicaciones/8384/avanza-proceso-de-renovacion-y-reconversion-de-la-caficultura-huilense/ (accessed on 24 February 2022).
- Gobierno de México. Fortalece SAGARPA Producción de Café En El Centro de Veracruz. Available online: https://www.gob.mx/agricultura%7Cveracruz/articulos/fortalece-sagarpa-produccion-de-cafe-en-el-centro-de-veracruz (accessed on 24 February 2022).
- PROMECAFE. Creando Las Bases Para Una Red Regional de Alerta Temprana Para Roya Del Café. 2019. Available online: https://www.fontagro.org/new/uploads/adjuntos/Promecafe.pdf (accessed on 25 February 2022).
- Divyashri, P.; Pinto, L.A.; Mary, L.; Manasa, P.; Dass, S. The Real-Time Mobile Application for Identification of Diseases in Coffee Leaves Using the CNN Model. In Proceedings of the 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 4–6 August 2021; pp. 1694–1700. [Google Scholar]
- Alejandro, J.; Buri, A.; Pablo, J.; Sigcha, F. Universidad Politécnica Salesiana sede Cuenca Carrera de Ingeniería Electrónica Trabajo de Titulación Previo a la Obtención del Título de Ingeniero Electrónico. 2018. Available online: https://dspace.ups.edu.ec/bitstream/123456789/16218/1/UPS-CT007877.pdf (accessed on 26 February 2022).
- FAO. Elaboración y Uso del Bocashi Ministerio de Agricultura y Ganadería Programa Especial Para la Seguridad a Limentaria Pesa en el Salvador-GCP/ELS/007/SPA. 2011. Available online: https://www.fao.org/3/at788s/at788s.pdf (accessed on 28 February 2022).
- Marín-Garza, T.; Gómez-Merino, F.C.; Aguilar-Rivera, N.; Murguía-González, J.; Trejo-Téllez, L.I.; Pastelín-Solano, M.C.; Castañeda-Castro, O. Variaciones en Área Foliar y Concentraciones de Clorofilas y Nutrimentos Esenciales en Hojas de Café Robusta (Coffea canephora P.) durante un Ciclo Anual. Agro Product. 2018, 11, 36–41. [Google Scholar]
References | Human Approach, Social and Productive Context | Methodology for Technological Detection | Technological Proposal | Goal |
---|---|---|---|---|
[61] | Small coffee producers; an age of 40–44 years old; a cultivated area of 0.1–5 ha; a production level of 500–1000 kg p/ha. | (1) Technology roadmapping; (2) Digital compass; (3) Statistical analysis. | Statistical control process and digital management. | To detect emerging technologies for improving the sustainability of the coffee supply chain. |
[62] | Mezcal producers; 44 years old; 27 years producing mezcal; a price of USD 14.6 per liter. | (1) Socialization, externalization, combination, and interiorization; (2) Evaluation and selection of technologies; (3) Statistical analysis. | Fiber optic refractometer, metal rooftop, horizontal distiller-fractionator, metal containers, digital platform, app and software for improving mezcal production. | To propose technologies for the sustainability of agave-mezcal production. |
[63] | Milk and cheese producers; an age of 52 years old on average; secondary school education (mostly); a farm size of 5 ha; a herd number of 15. | (1) Farmer characteristics; (2) Use of technologies; (3) Interest of farmers of four groups. | (1) Use of smartphone (groups 1, 2, and 3); (2) Use of messages (groups 1 and 4); (3) Use of television and radio (group 1). | To make evident technological differences among farmers, and to design particular strategies. |
[64] | Protected agriculture producers | (1) Competitiveness; (2) TIC assimilation; (3) Statistical analysis. | Assimilation and communication technologies. | To show the correlation between technology assimilation level and competitiveness. |
[65] | Pumpkin seed producers; 10 years producing; cultivated area of 5 ha; cooperative members. | Open questions | Technification of sowing and harvesting, storage centers, and business plan. | Direct market articulation by production cycle. |
[66] | Mexican vegetable producers | Theoretical revision. | Internet and apps to obtain information about weather, prices, pests, diseases, etc. | To propose that producers stay informed through cell phones; advice from extension services on internet portals; actions for assimilation of information technologies. |
[67] | Vegetable, flower, and maize producers; age between 14 and 83 years old; a cultivated area of 0.01–8.0 ha. | (1) Open and closed questions; (2) Statistical analysis. | Agrochemicals. | To identify factors that influence the use of agrochemicals for developing productive reconversion and reducing the impact on health and the environment. |
Santiago Lachiguiri and San Juan Guichicovi | |||||
---|---|---|---|---|---|
Social and Digital Contexts/Locality | El Pajarito | Llano Coyul | Ocotal | Guadalupe | Buenavista |
Total population | 66 | 146 | 288 | 555 | 873 |
m.a.s.l. | 1253 | 960 | 498 | 1022 | 1325 |
Formal education (years) | 6.04 men | 6.79 men | 5.05 men | 6.77 men | 5.92 men |
5.36 women | 5.03 women | 4.36 women | 5.28 women | 4.36 women | |
Computer, laptop, or tablet (household) | 0% | 4.5% | 3.3% | 8.7% | 2.4% |
Cell phone (household) | 52.6% | 65.9% | 32% | 48.09% | 56.1% |
Internet access (household) | 52.6% | 59.09% | 6.6% | 29.5% | 1.05% |
Poverty | Extreme | ||||
Language | Indigenous and Spanish |
Indigenous Coffee Producers’ Characteristics | Men | Women |
---|---|---|
Gender | 91.1% | 8.8% |
Age (average) | 63 | 52 |
Time producing (years on average) | 41.2 | 11.5 |
Family members | 3.6 |
Productive Context | Coffee Crop |
---|---|
Production level | 285 kg/ha |
Varieties | Catimor (47.2%), Oro Azteca (14.7%), Bourbon (14.7%), Geisha (11.7%), others (11.7%) |
Coffee tree age | Less than two years (32.4%), two to seven years (52.9%), more than seven years (14.7%) |
Cultivated area (average) | 3.3 ha |
Flora | Chalum (58.8%), Cuil (20.6%), other (20.6%) |
Pruning coffee tree | No (61.7%), Yes (38.3%) |
Pruning frequency | Every year (20.7%), two years (5.8%), three years (5.8%), four years (5.8%), do not prune it (61.9%) |
Fertilizers/pesticides against rust | Oxicloruro (52.9%), organic (11.7%), others (14.8%), do not fertilizer it (20.6%) |
Soil compost | No (20.6%), Yes (79.4%) |
Type of soil compost | Organic (38.2%), compost (26.4%), coffee shells (14.7%), no soil compost (20.7%) |
Additional crops | Nothing (47.1%), maize and bean (52.9%) |
Sale price | USD 1.94 |
Pest incidence perception | Nothing (61.8%), little (26.5%), a lot (11.7%) |
Technology Roadmapping | Indigenous Coffee Producers |
---|---|
Actions to be implemented | Monitoring and controlling coffee leaf rust (38.2%); soil analysis (26.5%); creation of organic fertilizers (17.6%); accompaniment in the growth of the plant (8.8%); coffee plant experimentation (8.8%). |
Social/Productive Variables | Statistical Correlations with Actions to be Implemented |
---|---|
Gender | 0.028 |
Age | −0.009 |
Time producing | −0.013 |
Family members | −0.063 |
Production level | 0.001 |
Varieties | 0.250 |
Coffee tree age | 0.162 |
Cultivated area | −0.112 |
Flora | −0.058 |
Pruning | 0.312 |
Pruning frequency | 0.305 |
Fertilizer | 0.320 |
Soil compost | −0.037 |
Type of soil compost | 0.121 |
Additional crops | 0.151 |
Pest incidence | 0.41 |
Variables | El Pajarito, Llano Coyul, Ocotal, Guadalupe, and Buenavista | Other Regions |
---|---|---|
Population | 66 to 873 indigenous inhabitants from Oaxaca, Mexico | 949 indigenous inhabitants from 35 communities in Chiapas, Mexico |
m.a.s.l. | 48 to 1325 | 1000 to 1300, low altitudes, and coast as ideal for coffee growth |
Formal education (years) | 5.05 to 6.79 for men 4.36 to 5.36 for women | 9 years |
Computer | 0% to 8.7% | 2% to 8% for indigenous regions in Nicaragua, Colombia, Venezuela Panama, and Ecuador |
Cell phone | 32.2% to 65.9% | 39% to 64% for indigenous regions in Chile, El Salvador, Panama, Ecuador, and Costa Rica |
Internet | 1.05% to 59.09% | 1% to 52% for indigenous regions in Venezuela, Bolivia, and Panama |
Poverty | Extreme | Extreme in Colombia |
Variables | El Pajarito, Llano Coyul, Ocotal, Guadalupe, and Buenavista | Other Regions |
---|---|---|
Gender | 91.1% men 8.8% women | 84% men and 16% women in Latin America |
Age | 63 men 52 women | 55 in Latin America |
Time producing (years) | 41.2 for men 11.5 for women | >30 for men and 15 for women in Copalita river basin in Oaxaca, Mexico |
Family members | 3.6 members | 3.8 members in Puebla, Mexico |
Production level | 285 kg/ha | 689 kg/ha in Guerrero, Mexico |
Varieties | Catimor, Oro Azteca, Bourbon, and Geisha | Catimor, Oro Azteca, Bourbon, and Geisha in Mexico |
Coffee tree age | 2–7 years | >30 years in Jalisco, Mexico |
Cultivated area | 3.27 ha | 3 ha in Hidalgo, Mexico |
Flora | Chalum and Cuil | Chalum and Cuil in Chiapas and Oaxaca, Mexico |
Pruning | Yes/No | Important, but has decreased |
Fertilizers/pesticides against rust | Organic and oxicloruro | Organic and oxicloruro in Oaxaca, Mexico, and Guatemala |
Soil compost | Yes/No | Applied before planting and during the first 3 years |
Type of soil compost | 9Organic, compost, and coffee shells | Organic, compost, and coffee shells in Mexico |
Additional crops | Maize and bean | Maize and bean in Veracruz, Mexico |
Sale price | USD 1.94/Kg | USD 1.7/pound |
Pest incidence | Nothing, little, a lot | A lot in Guatemala |
Variables | El Pajarito, Llano Coyul, Ocotal, Guadalupe, and Buenavista | Other Regions |
---|---|---|
Process | Seed supply; seed placement in seedlings; seedlings placement in the nursery; replanting of coffee plant in the field; cleaning and fertilizer; grain harvest; natural conditions; sale to the local organization. | Seed supply, preparation, and care of the nursery; cleaning; grain harvest; natural conditions in Chiapas, Mexico. |
Expectations; current situation; actions to be implemented (technological routes) | Effective actions against coffee leaf rust; high presence of coffee leaf rust; monitoring and control of coffee leaf rust. | Effective actions against coffee pests and diseases; presence of coffee leaf rust and coffee berry borers; knowledge and technology management networks and greenhouses. |
Statistical analysis | Positive correlations between gender, production level, varieties, coffee tree age, pruning and frequency, fertilizer, type of soil compost, additional crops, and pest incidence and monitoring and control of coffee leaf rust, soil analysis, creation of organic fertilizers, accompaniment in the growth of the coffee plant, and coffee plant experimentation. | Positive correlations between gender, production level, and additional crops in Chiapas, Mexico; varieties and technology in Brazil; coffee tree age and accompaniment in Colombia; pruning, fertilizer, soil compost, and technological packages in Mexico; pest incidence and strategies and actions to mitigate the incidence of rust in Latin America. |
Technological proposal | Mobile application for monitoring and controlling rust and accompaniment in the development of coffee plant; sensors and computer for soil analysis; a dome-shaped greenhouse for the creation of organic fertilizers; spectrophotometric technology for experimentation with the environment. | Real-time mobile application for identification of diseases in India; sensors and processors for soil analysis in South America; roof and cement floor for the preparation of fertilizers; spectrophotometric technology for the experimentation with varieties and their environment. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contreras-Medina, D.I.; Medina-Cuéllar, S.E.; Rodríguez-García, J.M. Roadmapping 5.0 Technologies in Agriculture: A Technological Proposal for Developing the Coffee Plant Centered on Indigenous Producers’ Requirements from Mexico, via Knowledge Management. Plants 2022, 11, 1502. https://doi.org/10.3390/plants11111502
Contreras-Medina DI, Medina-Cuéllar SE, Rodríguez-García JM. Roadmapping 5.0 Technologies in Agriculture: A Technological Proposal for Developing the Coffee Plant Centered on Indigenous Producers’ Requirements from Mexico, via Knowledge Management. Plants. 2022; 11(11):1502. https://doi.org/10.3390/plants11111502
Chicago/Turabian StyleContreras-Medina, David Israel, Sergio Ernesto Medina-Cuéllar, and Juan Manuel Rodríguez-García. 2022. "Roadmapping 5.0 Technologies in Agriculture: A Technological Proposal for Developing the Coffee Plant Centered on Indigenous Producers’ Requirements from Mexico, via Knowledge Management" Plants 11, no. 11: 1502. https://doi.org/10.3390/plants11111502
APA StyleContreras-Medina, D. I., Medina-Cuéllar, S. E., & Rodríguez-García, J. M. (2022). Roadmapping 5.0 Technologies in Agriculture: A Technological Proposal for Developing the Coffee Plant Centered on Indigenous Producers’ Requirements from Mexico, via Knowledge Management. Plants, 11(11), 1502. https://doi.org/10.3390/plants11111502