Intelligent Classification of Japonica Rice Growth Duration (GD) Based on CapsNets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Material
2.2. Measurement of Spectral Data
2.3. Preprocessing of Spectral Data
2.4. Selection of Effective Crest Information
2.5. Evaluation Indices of CapsNets Model
3. Results and Discussion
3.1. Analysis of Spectral Data Preprocessing
3.2. Analysis of Selection of Effective Crest Information
3.3. Performance Analysis of CapsNets Model
3.4. Discussion of the Description Results
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, L.J. Study on Nitrogen Nutrition Diagnosis for Cold-Terra Rice Based on Airborne Multispectral Imager and SPAD; Shenyang Agricultural University: Shenyang, China, 2020. [Google Scholar] [CrossRef]
- Wang, X.P. Effects of Drought Stress at Booting Stage on Carbon Metabolism and Yield Formation of Japonica Rice in Cold Region; Northeast Agricultural University: Harbin, China, 2020. [Google Scholar] [CrossRef]
- Han, G.Q. China Japonica Rice; China Agriculture Press: Beijing, China, 2011. [Google Scholar]
- Lin, T.; Liu, G.; Chen, D.L.; Duan, X.W. Impact of Clinate Change on Crop Yields in Heilongjiang Province. J. Nat. Resour. 2008, 23, 307–318. [Google Scholar]
- Zhang, Z.; Wang, P.; Chen, Y.; Song, X.; Wei, X.; Shi, P.J. Global warming over 1960-2009 did increase heat stress and reduce cold stress in the major rice planting areas across China. Eur. J. Agron. 2014, 59, 49–56. [Google Scholar] [CrossRef]
- Sun, W.; Huang, Y. Global warming over the period 1961-2008 did not increase high-temperature stress but did reduce low-temperature stress in irrigated rice across China. Agric. For. Meteorol. 2011, 151, 1193–1201. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, Z.; Song, X.; Chen, Y.; Wei, X.; Shi, P.J.; Yao, F.L. Temperature variations and rice yields in China: Historical contributions and future trends. Clim. Change 2014, 124, 777–789. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, X.; Wang, P.; Shuai, J.B.; Chen, Y.; Song, X.; Tao, F.L. The heat deficit index depicts the responses of rice yield to climate change in the northeastern three provinces of China. Reg. Environ. Change 2014, 14, 27–38. [Google Scholar] [CrossRef]
- National Bureau of Statistics. China Statistical Yearbook. 2021. Available online: http://www.gov.cn/gongbao/content/2021/content_5581075.htm (accessed on 25 March 2022).
- Wang, X.Y.; Yang, X.G.; Lv, S.; Chen, F. The Possible Effects of Climate Warming on Geographical Shift in Safe Planting Area of Rice in Cold Areas and the Risk Analysis of Chilling Damage. Sci. Agric. Sin. 2016, 49, 1859–1871. [Google Scholar] [CrossRef]
- Feng, Y.J. Effect of Water and Nitrogen Coupling on Growth and Nutrient Absorption of Japonica Rice in Cold Region; Shenyang Agricultural University: Shenyang, China, 2017. [Google Scholar]
- Zhang, Z.Y. Characteristics and high-yield cultivation techniques of japonica rice. Henan Agric. 2017, 52. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, Y.; Hussain, S.H.; Liu, Y.H.; Shao, X.Y.; Yang, S.; Chen, Y.L.; Wei, H.H.; Dai, Q.G. Identification of Salt-tolerant Rice Cultivars in the Growth Period under Hydroponic Conditions. J. Plant Genet. Resour. 2021, 22, 1567–1581. [Google Scholar] [CrossRef]
- Yang, L.K.; Yang, Z.M.; Ceng, L. Screening Test of the New Varieties of National Hybrid Rice Consortium. Anhui Agric. Sci. 2022, 50, 39–42. [Google Scholar] [CrossRef]
- Wang, Q. Comparative experiment of early rice varieties in xuanzhou District in 2020. Anhui Agric. Sci. 2021, 27, 94–95. [Google Scholar] [CrossRef]
- Liu, D. Comparative Test of New Mid Early Maturing Rice Varieties in Xixiu District of Anshun City in 2018. Tillage Cultiv. 2020, 40, 69–71. [Google Scholar] [CrossRef]
- Zhan, X.D.; Yu, P.; Lin, Z.C.; Chen, D.B.; Shen, X.H.; Zhang, Y.X.; Fu, J.L.; Chen, S.H.; Cao, L.Y. QTL Mapping of Heading Date and Yield-related Traits in Rice Using a Recombination Inbred Lines (RILs) Population Derived from BG1/XLJ. China Rice Sci. 2014, 28, 570–580. [Google Scholar]
- Li, S.G.; Ma, Y.Q.; He, P.; Wang, Y.P.; Zhou, K.D.; Zhu, L.H. Comparative Mapping of Quantitative Trait Loci for Heading Date and Plant Height in Cultivated Rice (Oryza sativa L.) across Environments. Acta Agron. Sin. 2002, 04, 546–550. [Google Scholar]
- Tan, X.L.; Huang, Z.L.; Vanavichit, A.; Trangoonrung, S. Molecular Markers and QTL Analysis of Growth Duration of Rice. Jiangsu J. Agric. Sci. 2000, 04, 249–250. [Google Scholar]
- Li, S.G.; Ma, Y.Q.; Wang, W.M.; Liu, G.Q.; Zhou, K.D.; Zhu, L.H. Molecular Tagging of a New Recessive Gene for Late Heading in a Rice Cultivar. Acta Genet. Sin. 2000, 02, 133–138. [Google Scholar]
- Hibben, J.H.; Teller, E. The Raman effect and its chemical aplications and physical research. Industrial and Engineering Chemistry. News Ed. 1939, 17, 556. [Google Scholar]
- Farber, C.; Islam, A.S.M.; Thomson, M.J.; Kurouski, D. Non-Invasive Identification of Nutrient Components in Grain. Molecules 2021, 26, 3124. [Google Scholar] [CrossRef]
- Zhu, L.; Sun, J.; Wu, G.C.; Wang, Y.N.; Zhang, H.; Wang, L.; Qian, H.F.; Qi, X.G. Identification of rice varieties and determination of their geographical origin in China using Raman spectroscopy. J. Cereal Sci. 2018, 82, 175–182. [Google Scholar] [CrossRef]
- Tian, F.M.; Tan, F.; Li, H. A rapid nondestructive testing method for distinguishing rice producing areas based on Raman spectroscopy and support vector machine. Vib. Spectrosc. 2020, 107, 103017. [Google Scholar] [CrossRef]
- Pezzotti, G.; Zhu, W.L.; Chikaguchi, H.; Marin, E.; Masumura, T.; Sato, Y.; Nakazaki, T. Raman spectroscopic analysis of polysaccharides in popular Japanese rice cultivars. Food Chem. 2021, 354, 129434. [Google Scholar] [CrossRef]
- Chung, C.; Lin, C.J. Training nu-support vector regression: Theory and algorithms. Neural Comput. 2002, 14, 8. [Google Scholar]
- Schol, K.F.; William, S.; Bart, L. New support vector algorithms. Neural Comput. 2000, 12, 1207–1245. [Google Scholar]
- Leo, B. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Glenn, D.; Fabricius, K.E. Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology 2000, 81, 11. [Google Scholar] [CrossRef]
- Rekha, G.; Sandeep, V.; Freek, A.; Siva, U. Review of multidimensional data processing approaches for Raman and infrared spectroscopy. EPJ Tech. Instrum. 2015, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Thissen, U.; Pepers, M.; Üstün, B.; Melssen, W.J.; Buydens, L. Comparing support vector machines to PLS for spectral regression applications. Chemom. Intell. Lab. Syst. 2004, 73, 2. [Google Scholar] [CrossRef]
- Widjaja, E.; Zheng, W.; Huang, Z.W. Classification of colonic tissues using near-infrared Raman spectroscopy and support vector machines. Int. J. Oncol. 2008, 32, 3. [Google Scholar] [CrossRef] [Green Version]
- Seng, K.T.; Zheng, W.; Ho, K.Y.; Ming, T.; Yeoh, K.G.; Huang, Z. Diagnosis of gastric cancer using near-infrared Raman spectroscopy and classification and regression tree techniques. J. Biomed. Opt. 2008, 13, 3. [Google Scholar] [CrossRef]
- Hoehse, M.; Paul, A.; Gornushkin, I.; Panne, U. Multivariate classification of pigments and inks using combined Raman spectroscopy and LIBS. Anal. Bioanal. Chem. 2011, 402, 4. [Google Scholar] [CrossRef]
- Woo, Y.A.; Kim, H.J.; Chung, H. Classification of cultivation area of ginseng radix with NIR and Raman spectroscopy. Anal. Anal. J. R. Soc. Chem. A Mon. Int. Publ. Deal. All Branches Anal. Chem. 1999, 124, 8. [Google Scholar] [CrossRef]
- Curtis, F.; Scheinberg, K. Optimization Methods for Supervised Machine Learning: From Linear Models to Deep Learning. In Leading Developments from INFORMS Communities; INFORMS: Holland, MI, USA, 2017. [Google Scholar] [CrossRef] [Green Version]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006, 313, 5786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Y.P.; Li, G.Y.; Li, Y. Survey of Application of Deep Learning in Image Recognition. Comput. Eng. Appl. 2019, 55, 20–36. [Google Scholar] [CrossRef]
- Sun, Z.J.; Xue, L.; Xu, Y.M.; Wang, Z. Overview of deep learning. Appl. Res. Comput. 2012, 29, 2806–2810. [Google Scholar] [CrossRef]
- Yang, M.-D.; Tseng, H.-H.; Hsu, Y.-C.; Tsai, H.P. Semantic Segmentation Using Deep Learning with Vegetation Indices for Rice Lodging Identification in Multi-date UAV Visible Images. Remote Sens. 2020, 12, 633. [Google Scholar] [CrossRef] [Green Version]
- Alex, K.; Ilya, S.; Geoffrey, E. Hinton. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 6. [Google Scholar] [CrossRef]
- Bouguettaya, A.; Zarzour, H.; Kechida, A.; Taberkit, A.M. Deep learning techniques to classify agricultural crops through UAV imagery: A review. Neural Comput. Appl. 2022. prepublish. [Google Scholar] [CrossRef]
- Afshar, P.; Mohammadi, A.; Plataniotis, K.N. Brain Tumor Type Classification via Capsule Networks; IEEE: Athens, Greece, 2018. [Google Scholar] [CrossRef] [Green Version]
- Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic Routing Between Capsules. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Yang, Y.C.; Han, S.J.; Mao, L.; Dai, X.Z.; Chen, Y.R. Review of capsule network. J. Shandong Univ. (Eng. Sci.) 2019, 49, 1–10. [Google Scholar] [CrossRef]
- Gustafsson, F. Determining the initial states in forward-backward filtering. In IEEE Transactions on Signal Processing: A Publication of the IEEE Signal Processing Society; IEEE: Piscataway, NJ, USA, 1996; pp. 988–992. Available online: https://ieeexplore.ieee.org/document/492552/citations#citations (accessed on 25 March 2022).
- Available online: https://scipy.github.io/devdocs/reference/generated/scipy.signal.filtfilt (accessed on 25 March 2022).
- Tian, F.M. Identification of Rice Based on Analysis of Raman Spectrum and Organic Ingredients; Jilin University: Jilin, China, 2018. [Google Scholar]
- Yin, H.; Li, F.; Yang, H.B.; Li, Y. Estimation of canopy chlorophyll in potato based on UAV hyperspectral images. J. Plant Nutr. Fertil. 2021, 27, 2184–2195. [Google Scholar]
- Available online: https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html#matplotlib.axes.Axes.imshow (accessed on 25 March 2022).
- Wu, R.B.; Qiao, H.; Jia, Y.F.; Liu, S.L.; Zhang, Z.C.; Liu, Y. Sentiment Analysis of Mid-length Microblog Based on Capsule Network. J. Signal Process. 2022, 06, 1–13. Available online: http://kns.cnki.net/kcms/detail/11.2406.TN.20220318.1639.013.html (accessed on 14 June 2022).
- Xie, L.; Wang, F.M.; Zhang, Y.; Huang, J.F.; Hu, J.H.; Wang, F.L.; Yao, X.P. Monitoring of amylose content in rice based on spectral variables at the multiple growth stages. Trans. Chin. Soc. Agric. Eng. 2020, 36, 165–173. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, B.J.; Zhang, C.M.; Zhao, B.H.; Xu, J.; Shao, S.M.; Gu, J.F.; Liu, L.J.; Wang, Z.Q.; Yang, J.C. Effects of alternate wetting and drying irrigation during whole growing season on quality and starch properties of rice. J. Yangzhou Univesity (Agric. Life Sci. Ed.) 2020, 41, 1–8. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, M.; Xiao, Z.L.; Ren, L.Z.; Wang, L. Study on Rapid Discrimination of Fresh and Stale Rice Based on Raman Spectroscopy. Spectrosc. Spectr. Anal. 2016, 36, 303–304. [Google Scholar]
- Sun, J.; Zhang, H.; Wang, L.; Qian, H.F.; Qi, X.G. Method for rapid discrimination of varieties rice by using Raman spectroscopy. OOD Mach. 2016, 32, 41–45. [Google Scholar] [CrossRef]
- Almeida, M.R.; Alves, R.S.; Nascimbem, L.B.; Stephani, R.; Poppi, R.J.; Oliveira, L.F. Determination of amylose cetent in starch using Raman spectroscopy and multivariate calibration analysis. Aanlytical Bioanal. Chem. 2010, 397, 2693–2701. [Google Scholar] [CrossRef] [PubMed]
- Li, Q. Effects of Irrigation Practices on Carbohydrate Accumulation and Translocation and Grain Filling in Rice; Yang Zhou University: Yang Zhou, China, 2020. [Google Scholar] [CrossRef]
- Ma, B.; Liu, C.; Hu, J.; Liu, K.; Zhao, F.; Wang, J.; Zhao, X.; Guo, Z.; Song, L.; Lai, Y.; et al. Intelligent Identification and Features Attribution of Saline–Alkali-Tolerant Rice Varieties Based on Raman Spectroscopy. Plants 2022, 11, 1210. [Google Scholar] [CrossRef]
- Tan, F. Research on the Spectral Characteristics and Early Detection Mechanism of Rice Blast in Cold Area; Heilongjiang Bayi Agricultural University: Daqing, China, 2012. [Google Scholar]
- Samuel, M.J. Capsule Network Algorithm for Performance Optimization of Text Classification. J. Soft Comput. Paradig. 2021, 3, 1–9. [Google Scholar] [CrossRef]
- Zhang, X.M.; Dou, Q.S.; Chen, S.Z.; Tang, H.L. Adaptive capsule network for few-shot relation extraction. Appl. Res. Comput. 2022, 06, 1–7. [Google Scholar] [CrossRef]
- Chen, C. Deep Image Classification for Few Shot and Weak Supervision; University of Chinese Academy of Sciences: Beijing, China, 2020. [Google Scholar] [CrossRef]
- Shrivastava, N.; Tyagi, V. Content based image retrieval based on relative locations of multiple regions of interest using selective regions matching. Inf. Sci. 2014, 259, 212–224. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, L.Q. Content-Based Image Retrieval Using Iterative Search. Neural Processing Lett. 2018, 47, 3. [Google Scholar] [CrossRef]
- Xie, L.Y.; Xia, Z.J.; Zhu, S.; Zhang, D.Q.; Zhao, F.K. Analysis and Research of Overfitting of Image Recognition Based on Convolutional Neural Networks. Softw. Eng. 2019, 22, 27–29+26. [Google Scholar] [CrossRef]
Serial Number | Name of Sample | ATZH | Number of Samples |
---|---|---|---|
1 | QJ1 | The first | 35 |
2 | SJ13 | The second | 35 |
3 | HJ313 | The second | 35 |
4 | LJ47 | The third | 35 |
5 | KY131 | The third | 35 |
6 | LJ11 | The third | 35 |
7 | HH311 | The third | 35 |
Name of Sample | Label of Sample | Sample | Subtotal | |
---|---|---|---|---|
Training Set | Test Set | |||
LJ47 | 0 | 24 | 8 | 32 |
KY131 | 0 | 26 | 8 | 34 |
LJ11 | 0 | 24 | 8 | 32 |
HH311 | 0 | 26 | 8 | 34 |
QJ1 | 1 | 26 | 8 | 34 |
SJ13 | 2 | 26 | 8 | 34 |
HJ313 | 2 | 25 | 8 | 33 |
Total | 177 | 56 | 233 |
Serial Number | Training Epochs | Value of Loss Function | Accuracy of Training Datasets | Accuracy of Test Datasets |
---|---|---|---|---|
1 | 110 | 0.1148 | 84 | 91 |
2 | 112 | 0.1239 | 84 | 91 |
3 | 126 | 0.1111 | 86 | 91 |
4 | 133 | 0.1181 | 86 | 93 |
5 | 137 | 0.1194 | 85 | 91 |
6 | 139 | 0.1157 | 86 | 91 |
7 | 149 | 0.1076 | 88 | 91 |
8 | 150 | 0.1074 | 88 | 93 |
9 | 155 | 0.1101 | 88 | 91 |
10 | 160 | 0.1014 | 89 | 91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Zhang, J.; Yang, J.; Ma, B.; Liu, R.; Hu, J. Intelligent Classification of Japonica Rice Growth Duration (GD) Based on CapsNets. Plants 2022, 11, 1573. https://doi.org/10.3390/plants11121573
Zhao X, Zhang J, Yang J, Ma B, Liu R, Hu J. Intelligent Classification of Japonica Rice Growth Duration (GD) Based on CapsNets. Plants. 2022; 11(12):1573. https://doi.org/10.3390/plants11121573
Chicago/Turabian StyleZhao, Xin, Jianpei Zhang, Jing Yang, Bo Ma, Rui Liu, and Jifang Hu. 2022. "Intelligent Classification of Japonica Rice Growth Duration (GD) Based on CapsNets" Plants 11, no. 12: 1573. https://doi.org/10.3390/plants11121573
APA StyleZhao, X., Zhang, J., Yang, J., Ma, B., Liu, R., & Hu, J. (2022). Intelligent Classification of Japonica Rice Growth Duration (GD) Based on CapsNets. Plants, 11(12), 1573. https://doi.org/10.3390/plants11121573