Phenotypic, Anatomical, and Diel Variation in Sugar Concentration Linked to Cell Wall Invertases in Common Bean Pod Racemes under Water Restriction
Abstract
:1. Introduction
2. Results
2.1. Substrate Moisture
2.2. Analysis of Senescence by Color Segmentation on Visible RGB Images
2.3. Morphological and Anatomical Analysis
2.4. Diel Variation in Soluble Sugars and Starch in the Pod Wall
2.5. Diel Variation in Invertase Activity in the Pod Wall
2.6. INVCW Isoforms within the P. vulgaris Genome
2.7. Analysis of Conserved Domains in the INVCW Sequences
2.8. Phylogenetic Analysis of PvINVs
2.9. Analysis of the Expression of Two P. vulgaris Invertases
3. Discussion
4. Materials and Methods
4.1. Plant Material and Growth Conditions
4.2. Phenotyping Analysis
4.3. Anatomical Analysis
4.4. Pod and Seed Production
4.5. Soluble Sugar and Starch Measurements
4.6. Invertase Activity Assay
4.7. Identification of PvINVCW Genes in P. vulgaris
4.7.1. Database Search
4.7.2. Phylogenetic Analysis
4.7.3. Bioinformatic Analysis
4.7.4. Reverse Transcription-Quantitative Polymerase Chain Reaction RT–qPCR
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berny Mier y Teran, J.C.; Konzen, E.R.; Palkovic, A.; Tsai, S.M.; Rao, I.M.; Beebe, S.; Gepts, P. Effect of drought stress on the genetic architecture of photosynthate allocation and remobilization in pods of common bean (Phaseolus vulgaris L.), a key species for food security. BMC Plant Biol. 2019, 19, 171. [Google Scholar] [CrossRef] [PubMed]
- Clavijo Michelangeli, J.A.; Bhakta, M.; Gezan, S.A.; Boote, K.J.; Vallejos, C.E. From flower to seed: Identifying phenological markers and reliable growth functions to model reproductive development in the common bean (Phaseolus vulgaris L.). Plant Cell Environ. 2013, 36, 2046–2058. [Google Scholar] [CrossRef] [PubMed]
- Martins, E.S.; Pinto Júnior, R.A.; Abreu, A.F.B.; Ramalho, M.A.P. Genetic control of number of flowers and pod set in common bean. Genet. Mol. Res. 2017, 16, 3. [Google Scholar] [CrossRef] [PubMed]
- Boyer, J.S.; McLaughlin, J.E. Functional reversion to identify controlling genes in multigenic responses: Analysis of floral abortion. J. Exp. Bot. 2006, 58, 267–277. [Google Scholar] [CrossRef] [Green Version]
- Barnabás, B.; Jäger, K.; Fehér, A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 2008, 31, 11–38. [Google Scholar] [CrossRef]
- Hageman, A.; Van Volkenburgh, E. Sink Strength Maintenance Underlies Drought Tolerance in Common Bean. Plants 2021, 10, 489. [Google Scholar] [CrossRef]
- Padilla-Chacón, D.; Martínez-Barajas, E.; García-Esteva, A.; Leal-Delgado, R.; Kohashi-Shibata, J.; Peña-Valdivia, C.B. Biomass remobilization in two common bean (Phaseolus vulgaris L.) cultivars under water restriction. S. Afr. J. Bot. 2017, 112, 79–88. [Google Scholar] [CrossRef]
- Assefa, T.; Beebe, S.E.; Rao, I.M.; Cuasquer, J.B.; Duque, M.C.; Rivera, M.; Battisti, A.; Lucchin, M. Pod harvest index as a selection criterion to improve drought resistance in white pea bean. Field Crops Res. 2013, 148, 24–33. [Google Scholar] [CrossRef]
- Bennett, E.J.; Roberts, J.A.; Wagstaff, C. The role of the pod in seed development: Strategies for manipulating yield. New Phytol. 2011, 190, 838–853. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Mao, P.; Li, Y.; Wang, M.; Xia, F.; Wang, H. Assessing of the contributions of pod photosynthesis to carbon acquisition of seed in alfalfa (Medicago sativa L.). Sci. Rep. 2017, 7, 42026. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhou, Q.; Mao, P. Ultrastructural and Photosynthetic Responses of Pod Walls in Alfalfa to Drought Stress. Int. J. Mol. Sci. 2020, 21, 4457. [Google Scholar] [CrossRef] [PubMed]
- Furbank, R.T.; White, R.; Palta, J.A.; Turner, N.C. Internal recycling of respiratory CO2 in pods of chickpea (Cicer arietinum L.): The role of pod wall, seed coat, and embryo. J. Exp. Bot. 2004, 55, 1687–1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sengupta, D.; Kariyat, D.; Marriboina, S.; Reddy, A.R. Pod-wall proteomics provide novel insights into soybean seed-filling process under chemical-induced terminal drought stress. J. Sci. Food Agric. 2018, 99, 2481–2493. [Google Scholar] [CrossRef]
- Chopra, J.; Kaur, N.; Gupta, A.K. Changes in the activities of carbon metabolizing enzymes with pod development in lentil (Lens culinaris L.). Acta Physiol. Plant. 2003, 25, 185–191. [Google Scholar] [CrossRef]
- Coello, P.; Martínez-Barajas, E. The activity of SnRK1 is increased in Phaseolus vulgaris seeds in response to a reduced nutrient supply. Front. Plant Sci. 2014, 5, 196. [Google Scholar] [CrossRef] [Green Version]
- Cuellar-Ortiz, S.M.; De La Paz Arrieta-Montiel, M.; Acosta-Gallegos, J.; Covarrubias, A.A. Relationship between carbohydrate partitioning and drought resistance in common bean. Plant Cell Environ. 2008, 31, 1399–1409. [Google Scholar] [CrossRef]
- Morales-Elias, N.C.; Martínez-Barajas, E.; Bernal-Gracida, L.A.; García-Esteva, A.; Peña-Valdivia, C.B.; Padilla-Chacón, D. 14C-Partitioning and biomass allocation in common bean (Phaseolus vulgaris L.) under different moisture levels during pod filling. J. Agron. Crop. Sci. 2021, 121, 1–8. [Google Scholar] [CrossRef]
- Sturm, A. Invertases. Primary Structures, Functions, and Roles in Plant Development and Sucrose Partitioning. Plant Physiol. 1999, 121, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Qian, W.; Yue, C.; Wang, Y.; Cao, H.; Li, N.; Wang, L.; Hao, X.; Wang, X.; Xiao, B.; Yang, Y. Identification of the invertase gene family (INVs) in tea plant and their expression analysis under abiotic stress. Plant Cell Rep. 2016, 35, 2269–2283. [Google Scholar] [CrossRef]
- Koch, K. Sucrose metabolism: Regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr. Opin. Plant Biol. 2004, 7, 235–246. [Google Scholar] [CrossRef]
- Van Breusegem, F.; Dat, J.F. Reactive Oxygen Species in Plant Cell Death. Plant Physiol. 2006, 141, 384–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.-H.; Offler, C.E.; Ruan, Y.L. Cell Wall Invertase Promotes Fruit Set under Heat Stress by Suppressing ROS-Independent Cell Death. Plant Physiol. 2016, 172, 163–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.-H.; Offler, C.; Ruan, Y.L. Regulation of fruit and seed response to heat and drought by sugars as nutrients and signals. Front. Plant Sci. 2013, 4, 282. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Foster, R.; Ma, S.; Liao, S.J.; Bliss, S.; Kartika, D.; Wang, L.; Wu, L.; Eamens, A.L.; Ruan, Y.L. Identification of transcription factors controlling cell wall invertase gene expression for reproductive development via bioinformatic and transgenic analyses. Plant J. 2021, 106, 1058–1074. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Sánchez, O.; Pérez-Rodríguez, P.; Delaye, L.; Tiessen, A. Plant Proteins Are Smaller Because They Are Encoded by Fewer Exons than Animal Proteins. Genom. Proteom. Bioinform. 2016, 14, 357–370. [Google Scholar] [CrossRef]
- Lemoine, R.; La Camera, S.; Atanassova, R.; Dédaldéchamp, F.; Allario, T.; Pourtau, N.; Bonnemain, J.-L.; Laloi, M.; Coutos-Thévenot, P.; Maurousset, L.; et al. Source-to-sink transport of sugar and regulation by environmental factors. Front. Plant Sci. 2013, 4, 272. [Google Scholar] [CrossRef] [Green Version]
- Subhadrabandhu, S.; Adams, M.; Reicosky, D. Abscission of Flowers and Fruits in Phaseolus vulgaris L. Cultivar Differences in Flowering Pattern and Abscission 1. Crop Sci. 1978, 18, 893–896. [Google Scholar] [CrossRef]
- Binnie, R.; Clifford, P. Flower and pod production in Phaseolus vulgaris. J. Agri. Sci. 1981, 97, 397–402. [Google Scholar] [CrossRef]
- Webster, B.D.; Tucker, C.; Lynch, S.P. A morphological study of the development of reproductive structures of Phaseolus vulgaris L. J. Amer. Soc. Hort. Sci. 1977, 102, 640–643. [Google Scholar]
- Sage, T.L.; Webster, B.D. Flowering and Fruiting Patterns of Phaseolus vulgaris L. Bot. Gaz. 1987, 148, 35–41. [Google Scholar] [CrossRef]
- Thomas, H.; Ougham, H. The stay-green trait. J. Exp. Bot. 2014, 65, 3889–3900. [Google Scholar] [CrossRef] [PubMed]
- Cayetano-Marcial, M.I.; Peña-Valdivia, C.B.; Esteva, A.G.; Galindo, J.C.J.; Escobedo, I.G.G.; Padilla-Chacón, D. Humidity Restriction, High Night Temperature and their Combination, during Post Flowering on Common Bean (Phaseolus vulgaris L.) Canopy and Pod Senescence. Legume Res. 2021, 44, 634–640. [Google Scholar] [CrossRef]
- Wang, H.; Hou, L.; Wang, M.; Mao, P. Contribution of the pod wall to seed grain filling in alfalfa. Sci. Rep. 2016, 6, 26586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, X.; Turner, N.C.; Yan, G.; Li, F.; Siddique, K.H. Flower numbers, pod production, pollen viability, and pistil function are reduced and flower and pod abortion increased in chickpea (Cicer arietinum L.) under terminal drought. J. Exp. Bot. 2010, 61, 335–345. [Google Scholar] [CrossRef] [Green Version]
- Singal, H.R.; Laura, J.S.; Singh, R. Photosynthetic carbon reduction cycle metabolites and enzymes of sucrose and starch biosynthesis in developing Brassica pods. Indian J. Biochem. Biophys. 1993, 30, 270–276. [Google Scholar]
- Sehgal, A.; Sita, K.; Siddique, K.H.M.; Kumar, R.; Bhogireddy, S.; Varshney, R.K.; HanumanthaRao, B.; Nair, R.M.; Prasad, P.V.V.; Nayyar, H. Drought or/and Heat-Stress Effects on Seed Filling in Food Crops: Impacts on Functional Biochemistry, Seed Yields, and Nutritional Quality. Front. Plant Sci. 2018, 9, 1705. [Google Scholar] [CrossRef] [Green Version]
- Belmont, R.; Bernal, L.; Padilla-Chacón, D.; Coello, P.; Martínez-Barajas, E. Starch accumulation in bean fruit pod wall is mediated by the differentiation of chloroplasts into amyloplasts. Plant Sci. 2022, 316, 111163. [Google Scholar] [CrossRef]
- Cho, Y.H.; Yoo, S.D. Signaling Role of Fructose Mediated by FINS1/FBP in Arabidopsis thaliana. PLoS Genet. 2011, 7, e1001263. [Google Scholar] [CrossRef] [Green Version]
- Kambal, A.E. Flower drop and fruit set in field beans, Vicia faba L. J. Agric. Sci. 2009, 72, 131–138. [Google Scholar] [CrossRef]
- Taliercio, E.; Scheffler, J.; Scheffler, B. Characterization of two cotton (Gossypium hirsutum L.) invertase genes. Mol. Biol. Rep. 2010, 37, 3915–3920. [Google Scholar] [CrossRef]
- McLaughlin, J.E.; Boyer, J.S. Sugar-responsive Gene Expression, Invertase Activity, and Senescence in Aborting Maize Ovaries at Low Water Potentials. Ann. Bot. 2004, 94, 675–689. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, J.R.; Kötting, O. Starch Biosynthesis and Degradation in Plants. In Els; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016; pp. 1–10. [Google Scholar] [CrossRef]
- Tang, G.-Q.; Lüscher, M.; Sturm, A. Antisense Repression of Vacuolar and Cell Wall Invertase in Transgenic Carrot Alters Early Plant Development and Sucrose Partitioning. Plant Cell 1999, 11, 177–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherson, S.M.; Alford, H.L.; Forbes, S.M.; Wallace, G.; Smith, S.M. Roles of cell-wall invertases and monosaccharide transporters in the growth and development of Arabidopsis. J. Exp. Bot. 2003, 54, 525–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geiger, D. Plant glucose transporter structure and function. Pflug. Arch. 2020, 472, 1111–1128. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-H.; Cao, J.-S.; Li, G.-J.; Wu, X.-H.; Wang, B.-G.; Xu, P.; Hu, T.-T.; Lu, Z.-F.; Patrick, J.W.; Ruan, Y.-L. Genotypic differences in pod wall and seed growth relate to invertase activities and assimilate transport pathways in asparagus bean. Ann. Bot. 2012, 109, 1277–1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortés-Romero, C.; Martínez-Hernández, A.; Mellado-Mojica, E.; López, M.G.; Simpson, J. Molecular and Functional Characterization of Novel Fructosyltransferases and Invertases from Agave tequilana. PLoS ONE 2012, 7, e35878. [Google Scholar] [CrossRef] [Green Version]
- Bournay, A.S.; Hedley, P.E.; Maddison, A.; Waugh, R.; Machray, G.C. Exon Skipping Induced by Cold Stress in a Potato Invertase Gene Transcript. Nucleic Acids Res. 1996, 24, 2347–2351. [Google Scholar] [CrossRef] [Green Version]
- Bernal, L.; Coello, P.; Martínez-Barajas, E. Possible role played by R1 protein in starch accumulation in bean (Phaseolus vulgaris) seedlings under phosphate deficiency. J. Plant Physiol. 2005, 162, 970–976. [Google Scholar] [CrossRef]
- Boehlein, S.K.; Shaw, J.R.; Boehlein, T.J.; Boehlein, E.C.; Hannah, L.C. Fundamental differences in starch synthesis in the maize leaf, embryo, ovary and endosperm. Plant J. 2018, 96, 595–606. [Google Scholar] [CrossRef] [Green Version]
- Vargas-Ortiz, E.; Espitia-Rangel, E.; Tiessen, A.; Délano-Frier, J.P. Grain Amaranths Are Defoliation Tolerant Crop Species Capable of Utilizing Stem and Root Carbohydrate Reserves to Sustain Vegetative and Reproductive Growth after Leaf Loss. PLoS ONE 2013, 8, e67879. [Google Scholar] [CrossRef]
- Juárez-Colunga, S.; López-González, C.; Morales-Elías, N.C.; Massange-Sánchez, J.A.; Trachsel, S.; Tiessen, A. Genome-wide analysis of the invertase gene family from maize. Plant Mol. Biol. 2018, 97, 385–406. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.M.; Raveendran, M.; Oane, R.; Ismail, A.; Lafitte, R.; Bruskiewich, R.; Cheng, S.H.; Bennett, J. Tissue-specific expression and drought responsiveness of cell-wall invertase genes of rice at flowering. Plant Mol. Biol. 2005, 59, 945–964. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Rudi, H.; Stockinger, E.J.; Cheng, H.; Cao, M.; Fox, S.E.; Mockler, T.C.; Westereng, B.; Fjellheim, S.; Rognli, O.; et al. Comparative analyses reveal potential uses of Brachypodium distachyon as a model for cold stress responses in temperate grasses. BMC Plant Biol. 2012, 12, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, X.; Wu, Z.; Li, J.; Mo, X.; Wu, S.; Chu, J.; Wu, P. AtCYT-INV1, a neutral invertase, is involved in osmotic stress-induced inhibition on lateral root growth in Arabidopsis. Plant Mol. Biol. 2007, 64, 575–587. [Google Scholar] [CrossRef]
- Zhou, L.; Paull, R.E. Sucrose Metabolism during Papaya (Carica papaya) Fruit Growth and Ripening. J. Amer. Soc. Hort. Sci. 2001, 126, 351–357. [Google Scholar] [CrossRef]
- Chen, Z.; Gao, K.; Su, X.; Rao, P.; An, X. Genome-Wide Identification of the Invertase Gene Family in Populus. PLoS ONE 2015, 10, e0138540. [Google Scholar] [CrossRef] [Green Version]
- Goodstein, D.M.; Shu, S.; Howson, R.; Neupane, R.; Hayes, R.D.; Fazo, J.; Mitros, T.; Dirks, W.; Hellsten, U.; Putnam, N.; et al. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Res. 2012, 40, D1178–D1186. [Google Scholar] [CrossRef]
- Guo, A.Y.; Zhu, Q.H.; Chen, X.; Luo, J.C. GSDS: A gene structure display server. Yi Chuan 2007, 29, 1023–1026. [Google Scholar] [CrossRef]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Garg, V.K.; Avashthi, H.; Tiwari, A.; Jain, P.A.; Ramkete, P.W.; Kayastha, A.M.; Singh, V.K. MFPPI—Multi FASTA ProtParam Interface. Bioinformation 2016, 12, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Zhang, H.; Wu, P.; Entwistle, S.; Li, X.; Yohe, T.; Yi, H.; Yang, Z.; Yin, Y. dbCAN-seq: A database of carbohydrate-active enzyme (CAZyme) sequence and annotation. Nucleic Acids Res. 2018, 46, D516–D521. [Google Scholar] [CrossRef]
- Garron, M.L.; Henrissat, B. The continuing expansion of CAZymes and their families. Curr. Opin. Chem. Biol. 2019, 53, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Chomzynski, P. Single-Step Method of RNA Isolation by Acid Guanidinium Thiocyanate–Phenol–Chloroform Extraction. Anal. Biochem. 1987, 162, 156–159. [Google Scholar] [CrossRef]
- Matz, M.V.; Wright, R.M.; Scott, J.G. No Control Genes Required: Bayesian Analysis of qRT-PCR Data. PLoS ONE 2013, 8, e71448. [Google Scholar] [CrossRef] [PubMed]
Name in This Work | Subcellular Location | DNA Length (bp) | mRNA Length (bp) | CDS Length (bp) | Protein Length a.a. | Molecular Weight (Kda) | pI |
---|---|---|---|---|---|---|---|
PvINVCW1 | Chr03:44577343..44581434 reverse | 4091 | 2448 | 1956 | 652 | 72.63 | 6.47 |
PvINVCW2 | Chr10:42023601..42028333 reverse | 4732 | 1823 | 1689 | 563 | 63.51 | 9.82 |
PvINVCW3 | Chr07:35070399..35075678 forward | 5279 | 1922 | 1764 | 588 | 58.65 | 9.47 |
PvINVCW4 | Chr01:3435432..3438180 reverse | 2748 | 1859 | 1686 | 562 | 64.12 | 5.05 |
PvINVCW5 | Chr01:45038437..45040759 forward | 2322 | 1850 | 1524 | 508 | 64.83 | 8.98 |
PvINVCW6 | Chr05:38694474..38697361 reverse | 2887 | 2007 | 1725 | 575 | 64.65 | 8.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chavez Mendoza, K.; Peña-Valdivia, C.B.; Hernández Rodríguez, M.; Vázquez Sánchez, M.; Morales Elías, N.C.; Jiménez Galindo, J.C.; García Esteva, A.; Padilla Chacón, D. Phenotypic, Anatomical, and Diel Variation in Sugar Concentration Linked to Cell Wall Invertases in Common Bean Pod Racemes under Water Restriction. Plants 2022, 11, 1622. https://doi.org/10.3390/plants11131622
Chavez Mendoza K, Peña-Valdivia CB, Hernández Rodríguez M, Vázquez Sánchez M, Morales Elías NC, Jiménez Galindo JC, García Esteva A, Padilla Chacón D. Phenotypic, Anatomical, and Diel Variation in Sugar Concentration Linked to Cell Wall Invertases in Common Bean Pod Racemes under Water Restriction. Plants. 2022; 11(13):1622. https://doi.org/10.3390/plants11131622
Chicago/Turabian StyleChavez Mendoza, Karla, Cecilia Beatriz Peña-Valdivia, Martha Hernández Rodríguez, Monserrat Vázquez Sánchez, Norma Cecilia Morales Elías, José Cruz Jiménez Galindo, Antonio García Esteva, and Daniel Padilla Chacón. 2022. "Phenotypic, Anatomical, and Diel Variation in Sugar Concentration Linked to Cell Wall Invertases in Common Bean Pod Racemes under Water Restriction" Plants 11, no. 13: 1622. https://doi.org/10.3390/plants11131622
APA StyleChavez Mendoza, K., Peña-Valdivia, C. B., Hernández Rodríguez, M., Vázquez Sánchez, M., Morales Elías, N. C., Jiménez Galindo, J. C., García Esteva, A., & Padilla Chacón, D. (2022). Phenotypic, Anatomical, and Diel Variation in Sugar Concentration Linked to Cell Wall Invertases in Common Bean Pod Racemes under Water Restriction. Plants, 11(13), 1622. https://doi.org/10.3390/plants11131622