The Polyphenolic Profile and Antioxidant Activity of Five Vegetal Extracts with Hepatoprotective Potential
Abstract
:1. Introduction
2. Results
2.1. Preparation of Vegetal Extracts
2.2. Quantitative and Qualitative Chemical Analysis
2.3. UHPLC–HRMS/MS Analysis
2.4. Antioxidant Activity
2.5. Molecular Docking
3. Discussion
4. Materials and Methods
4.1. Formulation of Vegetal Extracts
4.1.1. Plant Materials, Reagents, and Equipment
4.1.2. Determination of the Quality of Plant Extracts
- Determination of total flavonoid content (TF)
- 2.
- Determination of total phenolic acid content (TPA)
- 3.
- Determination of total phenolic content (TP)
- 4.
- Identification and quantification of polyphenolic compounds by Ultra-High Performance Liquid Chromatography coupled with High Resolution Mass Spectrometry (UHPLC–HRMS/MS)
- LC parameters
- MS parameters
4.2. Determination of Antioxidant Activity (AA)
4.2.1. DPPH Free Radical Scavenging Activity
4.2.2. ABTS Method of Total Antioxidant Capacity Assessment
4.2.3. Antioxidant Activity Using FRAP Assay (Ferric Reducing Antioxidant Power Assay)
4.3. Molecular Docking Simulations
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahal, A.; Kumar, A.; Singh, V.; Yadav, B.; Tiwari, R.; Chakraborty, S.; Dhama, K. Oxidative Stress, Prooxidants, and Antioxidants: The Interplay. BioMed Res. Int. 2014, 2014, 761264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaggini, M.; Morelli, M.; Buzzigoli, E.; DeFronzo, R.; Bugianesi, E.; Gastaldelli, A. Non-Alcoholic Fatty Liver Disease (NAFLD) and Its Connection with Insulin Resistance, Dyslipidemia, Atherosclerosis and Coronary Heart Disease. Nutrients 2013, 5, 1544–1560. [Google Scholar] [CrossRef] [PubMed]
- LaBrecque, D.R.; Abbas, Z.; Anania, F.; Ferenci, P.; Khan, A.G.; Goh, K.-L.; Hamid, S.S.; Isakov, V.; Lizarzabal, M.; Peñaranda, M.M.; et al. World Gastroenterology Organisation global guidelines: Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. J. Clin. Gastroenterol. 2014, 48, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Bagherniya, M.; Nobili, V.; Blesso, C.N.; Sahebkar, A. Medicinal plants and bioactive natural compounds in the treatment of non-alcoholic fatty liver disease: A clinical review. Pharmacol. Res. 2018, 130, 213–240. [Google Scholar] [CrossRef] [PubMed]
- Asrih, M.; Jornayvaz, F.R. Diets and nonalcoholic fatty liver disease: The good and the bad. Clin. Nutr. 2014, 33, 186–190. [Google Scholar] [CrossRef]
- Hebbard, L.; George, J. Animal models of nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 2011, 8, 35–44. [Google Scholar] [CrossRef]
- Kistler, K.D.; Brunt, E.M.; Clark, J.M.; Diehl, A.M.; Sallis, J.F.; Schwimmer, J.B. Physical Activity Recommendations, Exercise Intensity, and Histological Severity of Nonalcoholic Fatty Liver Disease. Am. J. Gastroenterol. 2011, 106, 460–468. [Google Scholar] [CrossRef] [Green Version]
- Rinella, M.E. Nonalcoholic Fatty Liver Disease. JAMA 2015, 313, 2263. [Google Scholar] [CrossRef]
- Hernandez-Rodas, M.; Valenzuela, R.; Videla, L. Relevant Aspects of Nutritional and Dietary Interventions in Non-Alcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2015, 16, 25168–25198. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Simon, J.E.; Aviles, I.F.; He, K.; Zheng, Q.-Y.; Tadmor, Y. Analysis of Antioxidative Phenolic Compounds in Artichoke (Cynara scolymus L.). J. Agric. Food Chem. 2003, 51, 601–608. [Google Scholar] [CrossRef]
- Miraj, S.; Kiani, S. Study of therapeutic effects of Cynara scolymus L.: A review. Pharm. Lett. 2016, 8, 168–173. [Google Scholar]
- Kollia, E.; Markaki, P.; Zoumpoulakis, P.; Proestos, C. Antioxidant activity of Cynara scolymus L. and Cynara cardunculus L. extracts obtained by different extraction techniques. Nat. Prod. Res. 2017, 31, 1163–1167. [Google Scholar] [CrossRef] [PubMed]
- Abu-Reidah, I.M.; Arráez-Román, D.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Extensive characterisation of bioactive phenolic constituents from globe artichoke (Cynara scolymus L.) by HPLC–DAD-ESI-QTOF-MS. Food Chem. 2013, 141, 2269–2277. [Google Scholar] [CrossRef]
- Mocelin, R.; Marcon, M.; Santo, G.D.; Zanatta, L.; Sachett, A.; Schönell, A.P.; Bevilaqua, F.; Giachini, M.; Chitolina, R.; Wildner, S.M.; et al. Hypolipidemic and antiatherogenic effects of Cynara scolymus in cholesterol-fed rats. Rev. Bras. Farmacogn. 2016, 26, 233–239. [Google Scholar] [CrossRef] [Green Version]
- Speroni, E.; Cervellati, R.; Govoni, P.; Guizzardi, S.; Renzulli, C.; Guerra, M.C. Efficacy of different Cynara scolymus preparations on liver complaints. J. Ethnopharmacol. 2003, 86, 203–211. [Google Scholar] [CrossRef]
- Bekheet, S.; Sota, V. Biodiversity and medicinal uses of globe artichoke (Cynara scolymus L.) plant. J. Biodivers. Conserv. Bioresour. Manag. 2019, 5, 39–54. [Google Scholar] [CrossRef]
- de Oliveira, J.R.; Camargo, S.E.A.; de Oliveira, L.D. Rosmarinus officinalis L. (rosemary) as therapeutic and prophylactic agent. J. Biomed. Sci. 2019, 26, 5. [Google Scholar] [CrossRef]
- Andrade, J.M.; Faustino, C.; Garcia, C.; Ladeiras, D.; Reis, C.P.; Rijo, P. Rosmarinus officinalis L.: An update review of its phytochemistry and biological activity. Future Sci. OA 2018, 4, FSO283. [Google Scholar] [CrossRef] [Green Version]
- al-Sereiti, M.R.; Abu-Amer, K.M.; Sen, P. Pharmacology of rosemary (Rosmarinus officinalis Linn.) and its therapeutic potentials. Indian J. Exp. Biol. 1999, 37, 124–130. [Google Scholar]
- Miraj, S. An evidence-based review on herbal remedies of Rosmarinus officinalis. Pharm. Lett. 2016, 8, 426–436. [Google Scholar]
- Hamidpour, R.; Hamidpour, S.; Elias, G. Rosmarinus officinalis (Rosemary): A Novel Therapeutic Agent for Antioxidant, Antimicrobial, Anticancer, Antidiabetic, Antidepressant, Neuroprotective, Anti-Inflammatory, and Anti-Obesity Treatment. Biomed. J. Sci. Tech. Res. 2017, 1, 1098–1103. [Google Scholar] [CrossRef]
- Nieto, G.; Ros, G.; Castillo, J. Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis L.): A Review. Medicines 2018, 5, 98. [Google Scholar] [CrossRef] [Green Version]
- Farkhondeh, T.; Samarghandian, S.; Pourbagher-Shahri, A.M. Hypolipidemic effects of Rosmarinus officinalis L. J. Cell. Physiol. 2019, 234, 14680–14688. [Google Scholar] [CrossRef] [PubMed]
- Schütz, K.; Carle, R.; Schieber, A. Taraxacum—A review on its phytochemical and pharmacological profile. J. Ethnopharmacol. 2006, 107, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Hu, C. Taraxacum: Phytochemistry and health benefits. Chin. Herb. Med. 2018, 10, 353–361. [Google Scholar] [CrossRef]
- Lis, B.; Olas, B. Pro-health activity of dandelion (Taraxacum officinale L.) and its food products—History and present. J. Funct. Foods 2019, 59, 40–48. [Google Scholar] [CrossRef]
- di Napoli, A.; Zucchetti, P. A comprehensive review of the benefits of Taraxacum officinale on human health. Bull. Natl. Res. Cent. 2021, 45, 110. [Google Scholar] [CrossRef]
- Faria, T.; Nascimento, C.C.H.C.; de Vasconcelos, S.D.D.; Stephens, P.R.S. Literature Review on the Biological Effects of Taraxacum officinale Plant in Therapy. Asian J. Pharm. Res. Dev. 2019, 7, 94–99. [Google Scholar] [CrossRef]
- Singh, A.; Malhotra, S.; Subban, R. Dandelion (Taraxacum officinale)—Hepatoprotective Herb with Therapeutic Potential. Phcog. Net. 2008, 2, 163–167. [Google Scholar]
- Park, J.-Y.; Park, C.-M.; Kim, J.-J.; Song, Y.-S. Hepatoprotective Activity of Dandelion (Taraxacum officinale) Water Extract against D-Galactosamine-Induced Hepatitis in Rats. J. Korean Soc. Food Sci. Nutr. 2008, 37, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Al-Snafi, A.E. Medicinal importance of Cichorium intybus—A review. IOSR J. Pharm. 2016, 6, 41–56. [Google Scholar]
- Saxena, R.; Sulakhiya, K.B.; Rathore, M. Cichorium intybus Linn: A review of pharmacological profile. Int. J. Curr. Pharm. Res. 2014, 6, 11–15. [Google Scholar]
- Janda, K.; Gutowska, I.; Geszke-Moritz, M.; Jakubczyk, K. The Common Cichory (Cichorium intybus L.) as a Source of Extracts with Health-Promoting Properties—A Review. Molecules 2021, 26, 1814. [Google Scholar] [CrossRef] [PubMed]
- Bahmani, M.; Shahinfard, N.; Rafieian-Kopaei, M.; Saki, K.; Shahsavari, S.; Taherikalani, M.; Ghafourian, S.; Baharvand-Ahmadi, B. Chicory: A review on ethnobotanical effects of Cichorium intybus L. J. Chem. Pharm. Sci. 2015, 8, 672–682. [Google Scholar]
- Mathur, N.; Katare, P.D.; Aeri, V. Cichorium intybus Linn: Its role in hepatoprotection. Int. J. Pharmacogn. Phytochem. Res. 2014, 6, 499–505. [Google Scholar]
- Street, R.A.; Sidana, J.; Prinsloo, G. Cichorium intybus: Traditional Uses, Phytochemistry, Pharmacology, and Toxicology. Evid.-Based Complement. Altern. Med. 2013, 2013, 579319. [Google Scholar] [CrossRef] [Green Version]
- Aisa, H.A.; Xin, X.; Tang, D. Chemical constituents and their pharmacological activities of plants from Cichorium genus. Chin. Herb. Med. 2020, 12, 224–236. [Google Scholar] [CrossRef]
- Paluch, Z.; Biriczová, L.; Pallag, G.; Carvalheiro Marques, E.; Vargová, N.; Kmoníčková, E. The therapeutic effects of Agrimonia eupatoria L. Physiol. Res. 2020, 69, S555–S571. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. The pharmacological and therapeutic importance of Agrimonia eupatoria—A review. Asian J. Pharm. Sci. Technol. 2015, 5, 112–117. [Google Scholar]
- Ivanova, D.; Tasinov, O.; Vankova, D.; Kiselova-Kaneva, Y. Antioxidative potential of Agrimonia eupatoria L. Sci. Technol. 2011, 1, 20–24. [Google Scholar]
- Kostryco, M.; Chwil, M. Biologically active compounds in Agrimoni eupatoria L. and their therapeutic effects. World Sci. News 2017, 89, 85–92. [Google Scholar]
- Akbar, S. Agrimonia eupatoria L. (Rosaceae). In Handbook of 200 Medicinal Plants; Springer International Publishing: Cham, Switzerland, 2020; pp. 123–128. [Google Scholar] [CrossRef]
- Cojocaru-Toma, M. Agrimonia eupatoria as a source of biologically active compounds. In Proceedings of the Perspectives of World Science and Education. Abstracts of the 9th International International Scientific and Practical Conference, Osaka, Japan, 20–22 May 2020; pp. 18–27. [Google Scholar]
- Ribeiro, M. Agrimonia eupatoria L.: Atividade farmacológica e interações medicamentosas. Rev. Ciênc. Agrár. 2017, 40, S236–S244. [Google Scholar] [CrossRef]
- Leung, T.-M.; Nieto, N. CYP2E1 and oxidant stress in alcoholic and non-alcoholic fatty liver disease. J. Hepatol. 2013, 58, 395–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osawa, Y.; Kojika, E.; Hayashi, Y.; Kimura, M.; Nishikawa, K.; Yoshio, S.; Doi, H.; Kanto, T.; Kimura, K. Tumor necrosis factor-α-mediated hepatocyte apoptosis stimulates fibrosis in the steatotic liver in mice. Hepatol. Commun. 2018, 2, 407–420. [Google Scholar] [CrossRef]
- Carlson, B.A.; Tobe, R.; Yefremova, E.; Tsuji, P.A.; Hoffmann, V.J.; Schweizer, U.; Gladyshev, V.N.; Hatfield, D.L.; Conrad, M. Glutathione peroxidase 4 and vitamin E cooperatively prevent hepatocellular degeneration. Redox Biol. 2016, 9, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Rousseaux, C.G.; Gad, S.C. Statistical Assessment of Toxicologic Pathology Studies. In Haschek and Rousseaux’s Handbook of Toxicologic Pathology; Elsevier: Amsterdam, The Netherlands, 2013; pp. 893–988. [Google Scholar] [CrossRef]
- Boccard, J.; Rudaz, S. Mass Spectrometry Metabolomic Data Handling for Biomarker Discovery. In Proteomic and Metabolomic Approaches to Biomarker Discovery; Elsevier: Amsterdam, The Netherlands, 2013; pp. 425–445. [Google Scholar] [CrossRef]
- Rezazadeh, K.; Aliashrafi, S.; Asghari-Jafarabadi, M.; Ebrahimi-Mameghani, M. Antioxidant response to artichoke leaf extract supplementation in metabolic syndrome: A double-blind placebo-controlled randomized clinical trial. Clin. Nutr. 2018, 37, 790–796. [Google Scholar] [CrossRef]
- Salekzamani, S.; Ebrahimi-Mameghani, M.; Rezazadeh, K. The antioxidant activity of artichoke (Cynara scolymus): A systematic review and meta-analysis of animal studies. Phytother. Res. 2019, 33, 55–71. [Google Scholar] [CrossRef] [Green Version]
- Lombardo, S.; Pandino, G.; Mauromicale, G.; Knödler, M.; Carle, R.; Schieber, A. Influence of genotype, harvest time and plant part on polyphenolic composition of globe artichoke [Cynara cardunculus L. var. scolymus (L.) Fiori]. Food Chem. 2010, 119, 1175–1181. [Google Scholar] [CrossRef]
- Nouraei, S.; Rahimmalek, M.; Saeidi, G. Variation in polyphenolic composition, antioxidants and physiological characteristics of globe artichoke (Cynara cardunculus var. scolymus Hayek L.) as affected by drought stress. Sci. Hortic. 2018, 233, 378–385. [Google Scholar] [CrossRef]
- Allahdadi, M.; Farzaneh, P. Influence of different levels of nitrogen fertilizer on some phytochemical characteristics of artichoke (Cynara scolymus L.) leaves. J. Med. Plants Stud. 2018, 6, 109–115. [Google Scholar]
- Romani, A.; Pinelli, P.; Cantini, C.; Cimato, A.; Heimler, D. Characterization of Violetto di Toscana, a typical Italian variety of artichoke (Cynara scolymus L.). Food Chem. 2006, 95, 221–225. [Google Scholar] [CrossRef]
- Fratianni, F.; Tucci, M.; de Palma, M.; Pepe, R.; Nazzaro, F. Polyphenolic composition in different parts of some cultivars of globe artichoke (Cynara cardunculus L. var. scolymus (L.) Fiori). Food Chem. 2007, 104, 1282–1286. [Google Scholar] [CrossRef]
- Escriche, I.; Kadar, M.; Juan-Borrás, M.; Domenech, E. Suitability of antioxidant capacity, flavonoids and phenolic acids for floral authentication of honey. Impact of industrial thermal treatment. Food Chem. 2014, 142, 135–143. [Google Scholar] [CrossRef]
- Aouad, R.F.; Boufadi, M.Y.; Houari Adli, D.E.; Moulai-Hacene, F.; Kahloula, K.; Slimani, M. Chemical Composition and Protective Effect of Rosmarinus officinalis on Alcohol-Induced Serum Hepatic Changes and Liver Injury in Male Rats. Pharmacogn. J. 2021, 13, 1205–1215. [Google Scholar] [CrossRef]
- Miłek, M.; Marcinčáková, D.; Legáth, J. Polyphenols Content, Antioxidant Activity, and Cytotoxicity Assessment of Taraxacum officinale Extracts Prepared through the Micelle-Mediated Extraction Method. Molecules 2019, 24, 1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenny, O.; Smyth, T.J.; Hewage, C.M.; Brunton, N.P. Antioxidant properties and quantitative UPLC-MS/MS analysis of phenolic compounds in dandelion (Taraxacum officinale) root extracts. Free Radic. Antioxid. 2014, 4, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Gordon, M.H. The Mechanism of Antioxidant Action in Vitro. In Food Antioxidants; Springer: Dordrecht, The Netherlands, 1990; pp. 1–18. [Google Scholar] [CrossRef]
- Fang, X.; Wada, S. Enhancing the antioxidant effect of α-tocopherol with rosemary in inhibiting catalyzed oxidation caused by Fe2+ and hemoprotein. Food Res. Int. 1993, 26, 405–411. [Google Scholar] [CrossRef]
- Ivanov, I.G. Polyphenols Content and Antioxidant Activities of Taraxacum officinale F.H. Wigg (Dandelion) Leaves. Int. J. Pharmacogn. Phytochem. Res. 2014, 6, 889–893. [Google Scholar]
- Atef, M.; El-Gendi, A.-B.Y.; Amer, A.M.; Al Razzak, B.A.; Abo-El-Sooud, K.; Ibrahim, S.I. Antioxidant, Hepatoprotective and In vitro Cytotoxic Activities of Cichorium intybus L. Extract. Adv. Anim. Vet. Sci. 2020, 9, 137–142. [Google Scholar] [CrossRef]
- Correia, H.S.; Batista, M.T.; Dinis, T.C.P. The activity of an extract and fraction of Agrimonia eupatoria L. against reactive species. BioFactors 2007, 29, 91–104. [Google Scholar] [CrossRef]
- Santos, T.N.; Costa, G.; Ferreira, J.P.; Liberal, J.; Francisco, V.; Paranhos, A.; Cruz, M.T.; Castelo-Branco, M.; Figueiredo, I.V.; Batista, M.T. Antioxidant, Anti-Inflammatory, and Analgesic Activities of Agrimonia eupatoria L. Infusion. Evid.-Based Complement. Altern. Med. 2017, 2017, 8309894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Rodríguez, J.L.; Gutiérrez-Hernández, R.; Reyes-Estrada, C.A.; Granados-López, A.J.; Pérez-Veyna, O.; Arcos-Ortega, T.; López, J.A. Hepatoprotective, Antihyperlipidemic and Radical Scavenging Activity of Hawthorn (Crataegus oxyacantha) and Rosemary (Rosmarinus officinalis) on Alcoholic Liver Disease. Altern. Ther. Health Med. 2019, 25, 54–63. [Google Scholar] [PubMed]
- Hfaiedh, M.; Brahmi, D.; Zourgui, L. Hepatoprotective effect of T araxacum officinale leaf extract on sodium dichromate-induced liver injury in rats. Environ. Toxicol. 2016, 31, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Soliman, H.; ElDesouky, M.; Hozayen, W.; Ahmed, R.; Khaliefa, A. Hepatoprotective effects of parsley, basil, and chicory aqueous extracts against dexamethasone-induced in experimental rats. J. Intercult. Ethnopharmacol. 2016, 5, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Kuczmannová, A.; Gál, P.; Varinská, L.; Treml, J.; Kováč, I.; Novotný, M.; Vasilenko, T.; Dall’Acqua, S.; Nagy, M.; Mučaji, P. Agrimonia eupatoria L. and Cynara cardunculus L. Water Infusions: Phenolic Profile and Comparison of Antioxidant Activities. Molecules 2015, 20, 20538–20550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teraoka, R.; Shimada, T.; Aburada, M. The Molecular Mechanisms of the Hepatoprotective Effect of Gomisin A against Oxidative Stress and Inflammatory Response in Rats with Carbon Tetrachloride-Induced Acute Liver Injury. Biol. Pharm. Bull. 2012, 35, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Tan, W.; Liu, X.; Deng, L.; Huang, L.; Wang, X.; Gao, X. New insight and potential therapy for NAFLD: CYP2E1 and flavonoids. Biomed. Pharmacother. 2021, 137, 111326. [Google Scholar] [CrossRef]
- Yan, S.; Wang, Z.; Yen, H.; Lee, Y.; Yin, M. Reversal of ethanol-induced hepatotoxicity by cinnamic and syringic acids in mice. Food Chem. Toxicol. 2016, 98, 119–126. [Google Scholar] [CrossRef]
- Cheng, A.-W.; Tan, X.; Sun, J.-Y.; Gu, C.-M.; Liu, C.; Guo, X. Catechin attenuates TNF-α induced inflammatory response via AMPK-SIRT1 pathway in 3T3-L1 adipocytes. PLoS ONE 2019, 14, e0217090. [Google Scholar] [CrossRef] [Green Version]
- Jang, S.-A.; Park, D.W.; Sohn, E.H.; Lee, S.R.; Kang, S.C. Hyperoside suppresses tumor necrosis factor α-mediated vascular inflammatory responses by downregulating mitogen-activated protein kinases and nuclear factor-κB signaling. Chem.-Biol. Interact. 2018, 294, 48–55. [Google Scholar] [CrossRef]
- Saklani, R.; Gupta, S.K.; Mohanty, I.R.; Kumar, B.; Srivastava, S.; Mathur, R. Cardioprotective effects of rutin via alteration in TNF-α, CRP, and BNP levels coupled with antioxidant effect in STZ-induced diabetic rats. Mol. Cell. Biochem. 2016, 420, 65–72. [Google Scholar] [CrossRef]
- Jia, Z.; Babu, P.V.A.; Si, H.; Nallasamy, P.; Zhu, H.; Zhen, W.; Misra, H.P.; Li, Y.; Liu, D. Genistein inhibits TNF-α-induced endothelial inflammation through the protein kinase pathway A and improves vascular inflammation in C57BL/6 mice. Int. J. Cardiol. 2013, 168, 2637–2645. [Google Scholar] [CrossRef] [Green Version]
- Gil, M.; Kim, Y.K.; Hong, S.B.; Lee, K.J. Naringin Decreases TNF-α and HMGB1 Release from LPS-Stimulated Macrophages and Improves Survival in a CLP-Induced Sepsis Mice. PLoS ONE 2016, 11, e0164186. [Google Scholar] [CrossRef]
- Han, D.; Yao, Y.; Chen, L.; Miao, Z.; Xu, S. Apigenin ameliorates di(2-ethylhexyl) phthalate-induced ferroptosis: The activation of glutathione peroxidase 4 and suppression of iron intake. Food Chem. Toxicol. 2022, 164, 113089. [Google Scholar] [CrossRef]
- Xu, S.; Wu, B.; Zhong, B.; Lin, L.; Ding, Y.; Jin, X.; Huang, Z.; Lin, M.; Wu, H.; Xu, D. Naringenin alleviates myocardial ischemia/reperfusion injury by regulating the nuclear factor-erythroid factor 2-related factor 2 (Nrf2)/System xc-/glutathione peroxidase 4 (GPX4) axis to inhibit ferroptosis. Bioengineered 2021, 12, 10924–10934. [Google Scholar] [CrossRef]
- Abarikwu, S.O.; Olufemi, P.D.; Lawrence, C.J.; Wekere, F.C.; Ochulor, A.C.; Barikuma, A.M. Rutin, an antioxidant flavonoid, induces glutathione and glutathione peroxidase activities to protect against ethanol effects in cadmium-induced oxidative stress in the testis of adult rats. Andrologia 2017, 49, e12696. [Google Scholar] [CrossRef]
- Costea, L.; Ghica, M.; Costea, T.; Gîrd, C.E. Spectrophotometric evaluation of flavonoids, phenolcarboxylic acids and total phenolic contents of several indigenous herbal products with potential hepatoprotective effect. Farmacia 2021, 69, 1176–1181. [Google Scholar] [CrossRef]
- Gîrd, C.E.; Duțu, L.E.; Popescu, M.L.; Nencu, I.; Costea, T. Farmacognozie Practică (Laboratory Guide—“Carol Davila” University); Editura Universitară “Carol Davila”: București, Romania, 2020; Volume I. [Google Scholar]
- Lamuela-Raventós, R.M. Folin-Ciocalteu method for the measurement of total phenolic content and antioxidant capacity. In Measurement of Antioxidant Activity & Capacity; John Wiley & Sons, Ltd.: Chichester, UK, 2017; pp. 107–115. [Google Scholar] [CrossRef]
- Available online: https://www.chemspider.com (accessed on 15 March 2022).
- Available online: https://massbank.eu/MassBank (accessed on 15 March 2022).
- Available online: https://www.mzcloud.org/ (accessed on 15 March 2022).
- Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 4 April 2022).
- Available online: https://www.acdlabs.com/products/adh/ms/index.php (accessed on 15 April 2022).
- Çelik, S.E.; Özyürek, M.; Güçlü, K.; Apak, R. Solvent effects on the antioxidant capacity of lipophilic and hydrophilic antioxidants measured by CUPRAC, ABTS/persulphate and FRAP methods. Talanta 2010, 81, 1300–1309. [Google Scholar] [CrossRef]
- Ohnishi, M.; Morishita, H.; Iwahashi, H.; Toda, S.; Shirataki, Y.; Kimura, M.; Kido, R. Inhibitory effects of chlorogenic acids on linoleic acid peroxidation and haemolysis. Phytochemistry 1994, 36, 579–583. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Dudonné, S.; Vitrac, X.; Coutière, P.; Woillez, M.; Mérillon, J.-M. Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD, and ORAC Assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Porubsky, P.R.; Battaile, K.P.; Scott, E.E. Human Cytochrome P450 2E1 Structures with Fatty Acid Analogs Reveal a Previously Unobserved Binding Mode. J. Biol. Chem. 2010, 285, 22282–22290. [Google Scholar] [CrossRef] [Green Version]
- He, M.M.; Smith, A.S.; Oslob, J.D.; Flanagan, W.M.; Braisted, A.C.; Whitty, A.; Cancilla, M.T.; Wang, J.; Lugovskoy, A.A.; Yoburn, J.C.; et al. Small-Molecule Inhibition of TNF-α. Science 2005, 310, 1022–1025. [Google Scholar] [CrossRef]
- Scheerer, P.; Borchert, A.; Krauss, N.; Wessner, H.; Gerth, C.; Höhne, W.; Kuhn, H. Structural Basis for Catalytic Activity and Enzyme Polymerization of Phospholipid Hydroperoxide Glutathione Peroxidase-4 (GPx4). Biochemistry 2007, 46, 9041–9049. [Google Scholar] [CrossRef]
- Land, H.; Humble, M.S. YASARA: A Tool to Obtain Structural Guidance in Biocatalytic Investigations. In Protein Engineering; Humana Press: New York, NY, USA, 2018; Volume 1685, pp. 43–67. [Google Scholar] [CrossRef]
- Li, C.; Deng, X.; Zhang, W.; Xie, X.; Conrad, M.; Liu, Y.; Angeli, J.P.F.; Lai, L. Novel Allosteric Activators for Ferroptosis Regulator Glutathione Peroxidase 4. J. Med. Chem. 2019, 62, 266–275. [Google Scholar] [CrossRef]
- Nitulescu, G.; Nitulescu, G.M.; Zanfirescu, A.; Mihai, D.P.; Gradinaru, D. Candidates for Repurposing as Anti-Virulence Agents Based on the Structural Profile Analysis of Microbial Collagenase Inhibitors. Pharmaceutics 2021, 14, 62. [Google Scholar] [CrossRef]
- Zanfirescu, A.; Nitulescu, G.; Mihai, D.P.; Nitulescu, G.M. Identifying FAAH Inhibitors as New Therapeutic Options for the Treatment of Chronic Pain through Drug Repurposing. Pharmaceuticals 2021, 15, 38. [Google Scholar] [CrossRef]
- Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. DataWarrior: An Open-Source Program for Chemistry Aware Data Visualization and Analysis. J. Chem. Inf. Model. 2015, 55, 460–473. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2009, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Maechler, M.; Rousseeuw, P.; Struyf, A.; Hubert, M.; Hornik, K. Cluster Analysis Basics and Extensions. R Package Version 2.1.3. 2022. Available online: https://CRAN.R-project.org/package=cluster (accessed on 20 April 2022).
Vegetal Extract | TPA (g Chlorogenic Acid/100 g Dry Extract) | TF (g Rutoside/100 g Dry Extract) | TP (g Tannic Acid/100 g Dry Extract) |
---|---|---|---|
CE | 1.7389 ± 0.0904 | 2.2942 ± 0.1020 | 5.7627 ± 0.6946 |
RE | 17.3293 ± 0.5010 | 6.0847 ± 0.3025 | 31.0913 ± 1.9781 |
TE | 7.7644 ± 0.7846 | 1.9019 ± 0.1080 | 7.0016 ± 0.1686 |
CHE | 7.7066 ± 0.7596 | 4.2714 ± 0.3628 | 16.1272 ± 0.6446 |
AE | 24.1528 ± 1.1936 | 4.6713 ± 0.5440 | 31.7017 ± 1.2211 |
CE–28 Identified Compounds | ||||
---|---|---|---|---|
Identified Compound | Chemical Formula | Exact Mass | Adduct Ion (m/z)/Monitored Negative Ion | Retention Times (Rt-Min) |
Flavonoids (Flavan-3-Ols, Flavones, Flavonols, Flavanones, Heterosides) | ||||
scolimoside | C27H30O15 | 594.15847 | 593.15121 | 20.23 |
quercetin-3-O-glucuronide | C21H18O13 | 478.07474 | 477.06748 | 20.27/24.11 |
kaempferol (or luteolin)-O-glucoside/isomers | C21H20O11 | 448.10056 | 447.09331 | 20.29 |
kaempferol-3-O-rutinoside | C27H30O15 | 594.15847 | 593.15122 | 20.33 |
apigenin-7-rutinoside | C27H30O14 | 578.16355 | 577.15630 | 21.03 |
vitexin/isovitexin | C21H20O10 | 432.10565 | 431.09839 | 21.17 |
apigenin-7-O-glucuronide | C21H18O11 | 446.08491 | 445.07763 | 21.21 |
6-methoxyluteolin | C16H12O7 | 316.05830 | 315.05105 | 22.66 |
apigenin | C15H10O5 | 270.05282 | 269.04502 | 23.20 |
kaempferol | C15H10O6 | 286.04774 | 285.04049 | 23.21 |
luteolin | C15H10O6 | 286.04774 | 285.04048 | 23.87 |
rutin (quercetin-3-O-rutinoside) | C27H30O16 | 610.15338 | 609.14613 | 24.10 |
hispidulin | C16H12O6 | 300.06339 | 299.05613 | 24.24 |
chrysoeriol | C16H12O6 | 300.06339 | 299.05614 | 25.29 |
chrysin | C15H10O4 | 254.05791 | 253.05066 | 25.70 |
Isoflavones | ||||
pseudobaptigenin | C16H10O5 | 282.05282 | 281.04557 | 24.24 |
tectorigenin | C16H12O6 | 300.06339 | 299.05611 | 24.24 |
Phenolic acids and dicarboxylic acids | ||||
chlorogenic acid | C16H18O9 | 354.09508 | 353.08783 | 10.44/13.80 |
caffeic acid | C9H8O4 | 180.04226 | 179.03501 | 14.47 |
azelaic acid | C9H16O4 | 188.10486 | 187.09761 | 21.24 |
Depsides | ||||
cynarine (1,5-dicaffeoylquinic acid) | C25H24O12 | 516.12678 | 515.11949 | 20.06 |
Diterpenes | ||||
rosmanol/epirosmanol | C20H26O5 | 346.17802 | 345.17077 | 23.80 |
rosmanol methyl ether | C21H28O5 | 360.19367 | 359.18639 | 26.45 |
rosmadial/isomers | C20H24O5 | 344.16237 | 343.15509 | 26.52 |
carnosol | C20H26O4 | 330.18311 | 329.17585 | 27.06 |
Sesquiterpenes | ||||
cichorin | C15H16O9 | 340.07943 | 339.07218 | 11.94 |
cynaropicrin | C19H22O6 | 346.14164 | 345.13438 | 23.82 |
Coumarin derivatives | ||||
esculetin-7-glucoside (esculin) | C15H16O9 | 340.07943 | 339.07218 | 11.94 |
RE-48 Identified Compounds | ||||
---|---|---|---|---|
Identified Compound | Chemical Formula | Exact Mass | Adduct Ion (m/z)/Monitored Negative Ion | Retention Times (Rt-min) |
Flavonoids (Flavan-3-Ols, Flavones, Flavonols, Flavanones, Heterosides) | ||||
quercetin-3-O-glucuronide | C21H18O13 | 478.07474 | 477.06748 | 19.41 |
rutin (quercetin-3-O-rutinoside) | C27H30O16 | 610.15338 | 609.14613 | 19.51 |
kaempferol-3-O-rutinoside | C27H30O15 | 594.15847 | 593.15122 | 20.25 |
scolimoside | C27H30O15 | 594.15847 | 593.15121 | 20.25 |
kaempferol (or luteolin)-O-glucoside/isomers | C21H20O11 | 448.10056 | 447.09331 | 20.32/21.57/22.09 |
isorhamnetin-3-O-glucoside | C22H22O12 | 478.11113 | 477.10381 | 20.76 |
liquiritigenin/isoliquiritigenin | C15H12O4 | 256.07356 | 255.06631 | 20.94/25.03 |
pinostrobin | C16H14O4 | 270.08921 | 269.08196 | 20.95 |
apigenin-7-rutinoside | C27H30O14 | 578.16355 | 577.15630 | 21.05 |
apigenin-7-O-glucuronide | C21H18O11 | 446.08491 | 445.07763 | 21.22 |
hispidulin-7-rutinoside/isomers | C28H32O15 | 608.17412 | 607.16684 | 21.38 |
diosmetin-7-O-rutinoside (diosmin) | C28H32O15 | 608.17412 | 607.16684 | 21.38 |
hispidulin-O-glucoside/isomers | C22H22O11 | 462.11621 | 461.10893 | 21.54 |
naringenin | C15H12O5 | 272.06847 | 271.06122 | 22.73 |
hesperetin | C16H14O6 | 302.07904 | 301.07179 | 23.11 |
kaempferol | C15H10O6 | 286.04774 | 285.04049 | 23.22 |
luteolin | C15H10O6 | 286.04774 | 285.04048 | 23.89 |
tricin | C17H14O7 | 330.07395 | 329.06668 | 24.04 |
apigenin | C15H10O5 | 270.05282 | 269.04502 | 24.11 |
pinocembrin | C15H12O4 | 256.07356 | 255.06631 | 25.03 |
diosmetin | C16H12O6 | 300.06339 | 299.05611 | 25.29 |
2′,6-dihydroxyflavone | C15H10O4 | 254.05791 | 253.05066 | 25.75 |
chrysin | C15H10O4 | 254.05791 | 253.05066 | 25.76 |
Isoflavones | ||||
formononetin | C16H12O4 | 268.07356 | 267.06631 | 20.94 |
medicarpin | C16H14O4 | 270.08921 | 269.08196 | 20.95 |
sissotrin (biochanin A 7-O-β-D-glucoside) | C22H22O10 | 446.12130 | 445.11404 | 22.04 |
baptigenin | C15H10O6 | 286.04774 | 285.04046 | 23.22 |
pratensein | C16H12O6 | 300.06339 | 299.05614 | 24.21/24.24/24.41 |
irisolidone | C17H14O6 | 314.07904 | 313.07179 | 24.90 |
biochanin A | C16H12O5 | 284.06847 | 283.06122 | 26.21 |
Phenolic acids and dicarboxylic acids | ||||
4-hydroxy-3-methoxymandelic acid | C9H10O5 | 198.05282 | 197.04555 | 7.74 |
chlorogenic acid | C16H18O9 | 354.09508 | 353.08783 | 10.32/14.51 |
neochlorogenic acid | C16H18O9 | 354.09508 | 353.08783 | 13.82 |
caffeic acid | C9H8O4 | 180.04226 | 179.03501 | 14.44 |
ferulic acid | C10H10O4 | 194.05791 | 193.05066 | 20.31 |
rosmarinic acid | C18H16O8 | 360.08452 | 359.07726 | 20.93 |
salvianolic acid B | C36H30O16 | 718.15338 | 717.14610 | 20.93 |
ellagic acid | C14H6O8 | 302.00627 | 300.99899 | 21.25 |
azelaic acid | C9H16O4 | 188.10486 | 187.09761 | 21.26 |
carnosic acid | C20H28O4 | 332.19876 | 331.19150 | 29.07 |
Diterpenes | ||||
rosmanol/epirosmanol | C20H26O5 | 346.17802 | 345.17077 | 23.83/25.55 |
rosmanol methyl ether | C21H28O5 | 360.19367 | 359.18639 | 26.47 |
rosmadial/isomers | C20H24O5 | 344.16237 | 343.15509 | 26.56/27.58 |
carnosic acid quinone | C20H26O4 | 329.17528 | 328.16803 | 27.05 |
carnosol | C20H26O4 | 330.18311 | 329.17585 | 27.05 |
rosmaridiphenol | C20H28O3 | 316.20384 | 315.19656 | 28.10 |
Sesquiterpenes | ||||
cichorin | C15H16O9 | 340.07943 | 339.07218 | 11.88 |
Coumarin derivatives | ||||
aesculetin/isomers | C9H6O4 | 178.02661 | 177.01935 | 20.93 |
TE–39 Identified Compounds | ||||
---|---|---|---|---|
Identified Compound | Chemical Formula | Exact Mass | Adduct Ion (m/z)/ Monitored Negative ion | Retention Times (Rt-Min) |
Flavonoids (Flavan-3-Ols, Flavones, Flavonols, Flavanones, Heterosides) | ||||
rutin (quercetin-3-O-rutinoside) | C27H30O16 | 610.15338 | 609.14613 | 19.33 |
kaempferol-3-O-rutinoside | C27H30O15 | 594.15847 | 593.15122 | 20.26 |
scolimoside | C27H30O15 | 594.15847 | 593.15121 | 20.26 |
kaempferol (or luteolin)-O-glucoside/isomers | C21H20O11 | 448.10056 | 447.09331 | 20.29 |
cynaroside (luteolin-7-O-glucoside) | C21H20O11 | 448.10056 | 447.09328 | 20.29 |
quercetin-3-O-glucuronide | C21H18O13 | 478.07474 | 477.06748 | 20.52 |
hyperoside (quercetin-3-galactoside) | C21H20O12 | 464.09548 | 463.08768 | 20.61 |
vitexin (apigenin-8-C-glucoside)/isovitexin | C21H20O10 | 432.10565 | 431.09839 | 21.17 |
apigenin-7-O-glucuronide | C21H18O11 | 446.08491 | 445.07763 | 21.22 |
naringenin | C15H12O5 | 272.06847 | 271.06122 | 22.73 |
kaempferol | C15H10O6 | 286.04774 | 285.04049 | 23.22 |
luteolin | C15H10O6 | 286.04774 | 285.04048 | 23.85 |
apigenin/genistein | C15H10O5 | 270.05282 | 269.04502 | 24.11 |
tricin | C17H14O7 | 330.07395 | 329.06668 | 24.25 |
2′,6-dihydroxyflavone | C15H10O4 | 254.05791 | 253.05066 | 25.71 |
Isoflavones | ||||
genistin | C21H20O10 | 432.10565 | 431.09837 | 19.62 |
tectorigenin | C16H12O6 | 300.06339 | 299.05611 | 24.25 |
pseudobaptigenin | C16H10O5 | 282.05282 | 281.04557 | 24.38 |
formononetin | C16H12O4 | 268.07356 | 267.06631 | 24.58 |
Phenolic acids and dicarboxylic acids | ||||
caftaric acid | C13H12O9 | 312.04813 | 311.04085 | 9.94 |
chlorogenic acid | C16H18O9 | 354.09508 | 353.08783 | 10.54 |
neochlorogenic acid | C16H18O9 | 354.09508 | 353.08783 | 13.82 |
caffeic acid | C9H8O4 | 180.04226 | 179.03501 | 14.48 |
p-coumaric acid | C9H8O3 | 164.04734 | 163.03954 | 17.57 |
ferulic acid | C10H10O4 | 194.05791 | 193.05066 | 18.21 |
chicoric acid | C22H18O12 | 474.07983 | 473.07257 | 18.26 |
rosmarinic acid | C18H16O8 | 360.08452 | 359.07726 | 20.91 |
ellagic acid | C14H6O8 | 302.00627 | 300.99899 | 21.24 |
azelaic acid | C9H16O4 | 188.10486 | 187.09761 | 21.25 |
abscisic acid | C15H20O4 | 264.13616 | 263.12891 | 22.87 |
Depsides | ||||
cynarine (1,5-dicaffeoylquinic acid) | C25H24O12 | 516.12678 | 515.11949 | 19.95/20.83 |
1,3-O-dicaffeoylquinic acid | C25H24O12 | 516.12678 | 515.11949 | 20.85 |
Diterpenes | ||||
rosmanol/epirosmanol | C20H26O5 | 346.17802 | 345.17077 | 23.80 |
rosmanol methyl ether | C21H28O5 | 360.19367 | 359.18639 | 26.45 |
rosmadial/isomers | C20H24O5 | 344.16237 | 343.15509 | 26.52 |
carnosol | C20H26O4 | 330.18311 | 329.17585 | 27.07 |
Sesquiterpenes | ||||
lactucopicrin | C23H22O7 | 410.13655 | 409.12930 | 22.58 |
Coumarin derivatives | ||||
aesculetin/isomers | C9H6O4 | 178.02661 | 177.01935 | 13.95 |
Proanthocyanidins | ||||
procyanidin | C30H26O13 | 594.13734 | 593.13006 | 23.15 |
CHE–43 Identified Compounds | ||||
---|---|---|---|---|
Identified Compound | Chemical Formula | Exact Mass | Adduct Ion (m/z)/ Monitored Negative Ion | Retention Times (Rt-Min) |
Flavonoids (Flavan-3-Ols, Flavones, Flavonols, Flavanones, Heterosides) | ||||
catechin | C15H14O6 | 290.07904 | 289.07176 | 12.68 |
epicatechin | C15H14O6 | 290.07904 | 289.07176 | 16.17 |
chrysoeriol-7-glucoside | C22H22O11 | 462.11621 | 461.10893 | 19.34 |
vitexin (apigenin-8-C-glucoside)/isovitexin | C21H20O10 | 432.10565 | 431.09839 | 20.19/21.37 |
kaempferol-3-O-rutinoside | C27H30O15 | 594.15847 | 593.15122 | 20.25/21.58 |
kaempferol (or luteolin)-O-glucoside/isomers | C21H20O11 | 448.10056 | 447.09331 | 20.31 |
quercetin | C15H10O7 | 302.04265 | 301.03540 | 20.56/22.78 |
hyperoside (quercetin-3-galactoside) | C21H20O12 | 464.09548 | 463.08768 | 20.63 |
rutin (quercetin-3-O-rutinoside) | C27H30O16 | 610.15338 | 609.14613 | 20.65 |
apigetrin (apigenin-7-glucoside) | C21H20O10 | 432.10565 | 431.09839 | 21.18 |
apigenin-7-O-glucuronide | C21H18O11 | 446.08491 | 445.07763 | 21.22 |
cynaroside (luteolin-7-O-glucoside) | C21H20O11 | 448.10056 | 447.09328 | 21.51 |
cynarotrioside | C33H40O20 | 756.21129 | 755.11024 | 21.57 |
isorhamnetin-3-O-glucoside | C22H22O12 | 478.11113 | 477.10381 | 21.66 |
kaempferol | C15H10O6 | 286.04774 | 285.04049 | 23.23 |
luteolin | C15H10O6 | 286.04774 | 285.04048 | 23.23/23.86 |
apigenin | C15H10O5 | 270.05282 | 269.04502 | 24.12 |
tricin | C17H14O7 | 330.07395 | 329.06668 | 24.28 |
chrysoeriol | C16H12O6 | 300.06339 | 299.05614 | 24.39 |
chrysin | C15H10O4 | 254.05791 | 253.05066 | 25.73 |
2′,6-dihydroxyflavone | C15H10O4 | 254.05791 | 253.05066 | 25.78 |
Isoflavones | ||||
genistin | C21H20O10 | 432.10565 | 431.09837 | 21.18 |
daidzin | C21H20O9 | 416.11073 | 415.10348 | 23.66 |
pratensein | C16H12O6 | 300.06339 | 299.05614 | 24.21/24.24/24.41 |
irisolidone | C17H14O6 | 314.07904 | 313.07179 | 24.90 |
biochanin A | C16H12O5 | 284.06847 | 283.06122 | 26.22 |
Phenolic acids and dicarboxylic acids | ||||
caftaric acid | C13H12O9 | 312.04813 | 311.04085 | 9.98 |
chlorogenic acid | C16H18O9 | 354.09508 | 353.08783 | 10.49 |
neochlorogenic acid | C16H18O9 | 354.09508 | 353.08783 | 13.84 |
syringic acid | C9H10O5 | 198.05282 | 197.04555 | 15.83 |
p-coumaric acid | C9H8O3 | 164.04734 | 163.03954 | 17.57 |
chicoric acid | C22H18O12 | 474.07983 | 473.07257 | 18.27 |
rosmarinic acid | C18H16O8 | 360.08452 | 359.07726 | 20.92/24.56 |
ellagic acid | C14H6O8 | 302.00627 | 300.99899 | 21.24 |
azelaic acid | C9H16O4 | 188.10486 | 187.09761 | 21.28 |
abscisic acid | C15H20O4 | 264.13616 | 263.12891 | 21.73 |
Depsides | ||||
cynarine (1,5-dicaffeoylquinic acid) | C25H24O12 | 516.12678 | 515.11949 | 19.97 |
Diterpenes | ||||
rosmanol/epirosmanol | C20H26O5 | 346.17802 | 345.17077 | 23.81/25.85 |
rosmanol methyl ether | C21H28O5 | 360.19367 | 359.18639 | 26.45 |
rosmadial/isomers | C20H24O5 | 344.16237 | 343.15509 | 26.57 |
Triterpenes | ||||
oleanolic acid | C30H48O3 | 456.36034 | 455.35309 | 31.01 |
Sesquiterpenes | ||||
cichorin | C15H16O9 | 340.07943 | 339.07218 | 11.83 |
Proanthocyanidins | ||||
procyanidin | C30H26O13 | 594.13734 | 593.13006 | 23.18 |
AE–31 Identified Compounds | ||||
---|---|---|---|---|
Identified Compound | Chemical Formula | Exact Mass | Adduct Ion (m/z)/Monitored Negative Ion | Retention Times (Rt-Min) |
Flavonoids (Flavan-3-Ols, Flavones, Flavonols, Flavanones, Heterosides) | ||||
catechin | C15H14O6 | 290.07904 | 289.07176 | 12.68 |
epicatechin | C15H14O6 | 290.07904 | 289.07176 | 16.18 |
apigenin-7-O-glucosylglucoside | C27H30O15 | 594.15847 | 593.15121 | 17.93/21.57 |
hispidulin-O-glucoside/isomers | C22H22O11 | 462.11621 | 461.10893 | 19.34/21.53 |
apigetrin (apigenin-7-glucoside) | C21H20O10 | 432.10565 | 431.09839 | 20.21 |
vitexin (apigenin-8-C-glucoside)/isovitexin | C21H20O10 | 432.10565 | 431.09839 | 20.21/21.18/21.37 |
cynaroside (luteolin-7-O-glucoside) | C21H20O11 | 448.10056 | 447.09328 | 20.32/21.51 |
apigenin-7-O-glucuronide | C21H18O11 | 446.08491 | 445.07763 | 21.25 |
hispidulin-7-rutinoside/isomers | C28H32O15 | 608.17412 | 607.16684 | 21.39/22.33 |
naringenin | C15H12O5 | 272.06847 | 271.06122 | 22.71 |
kaempferol | C15H10O6 | 286.04774 | 285.04049 | 23.20 |
luteolin | C15H10O6 | 286.04774 | 285.04048 | 23.22/23.89 |
apigenin | C15H10O5 | 270.05282 | 269.04502 | 24.11 |
tricin | C17H14O7 | 330.07395 | 329.06668 | 24.27 |
hispidulin | C16H12O6 | 300.06339 | 299.05613 | 24.41 |
chrysoeriol | C16H12O6 | 300.06339 | 299.05614 | 25.29 |
chrysin | C15H10O4 | 254.05791 | 253.05066 | 25.72 |
2′,6-dihydroxyflavone | C15H10O4 | 254.05791 | 253.05066 | 25.72 |
Isoflavones | ||||
genistin | C21H20O10 | 432.10565 | 431.09837 | 19.63 |
biochanin A | C16H12O5 | 284.06847 | 283.06122 | 26.22 |
Phenolic acids and dicarboxylic acids | ||||
chlorogenic acid | C16H18O9 | 354.09508 | 353.08783 | 10.51 |
caffeic acid | C9H8O4 | 180.04226 | 179.03501 | 14.48 |
azelaic acid | C9H16O4 | 188.10486 | 187.09761 | 21.29 |
Diterpenes | ||||
rosmanol/epirosmanol | C20H26O5 | 346.17802 | 345.17077 | 23.07/23.81 |
rosmanol methyl ether | C21H28O5 | 360.19367 | 359.18639 | 26.47 |
rosmadial/isomers | C20H24O5 | 344.16237 | 343.15509 | 26.57 |
carnosol | C20H26O4 | 330.18311 | 329.17585 | 27.06 |
rosmaridiphenol | C20H28O3 | 316.20384 | 315.19656 | 28.10 |
Triterpenes | ||||
oleanolic acid | C30H48O3 | 456.36034 | 455.35309 | 31.01 |
Proanthocyanidins | ||||
procyanidin B1/B2 | C30H26O12 | 578.14243 | 577.13514 | 11.38/13.97 |
procyanidin | C30H26O13 | 594.13734 | 593.13006 | 23.16 |
AP (µg/g Extract) | Vegetal Extract | ||||
---|---|---|---|---|---|
CE | RE | TE | CHE | AE | |
catechin | NF | NF | 5883.4 | 5885.7 | 11,854.8 |
epicatechin | NF | NF | 878.9 | 895.0 | 6801.2 |
caffeic acid | 3219.6 | 3678.2 | 3509.9 | NF | 3197.3 |
p-coumaric acid | 190.4 | 294.3 | 351.6 | 231.3 | 249.6 |
syringic acid | 72.2 | 150.1 | 149.7 | 65.1 | NF |
genistin | NF | NF | 69.5 | 132.0 | 5514.9 |
chlorogenic acid | 717.3 | 714.6 | 619.8 | 685.2 | 2032.4 |
ferulic acid | 207.6 | 479.9 | 274.6 | 200.4 | 208.3 |
hyperoside | NF | NF | 365.1 | 4250.0 | 15,431.3 |
apigenin | 329.7 | 585.3 | 138.2 | 84.3 | 150.0 |
rutoside | 191.4 | 105.1 | 446.0 | 1212.5 | 1724.7 |
gallic acid | NF | 163.4 | NF | 57.4 | 172.3 |
ellagic acid | 20.5 | 26.6 | 23.1 | 18.7 | 206.9 |
formononetin | NF | NF | 632.95 | 61.60 | NF |
pinocembrin | 32.7 | 43.1 | 34.0 | 31.9 | 33.2 |
galangin | 299.2 | 404.4 | 321.5 | 265.7 | 272.5 |
chrysin | 115.28 | 342.10 | 174.67 | 39.02 | 55.38 |
kaempferol | 2028.4 | 530.9 | 1396.3 | 243.0 | 278.8 |
hesperetin | NF | 20718.4 | NF | NF | NF |
naringin | NF | 269.5 | NF | NF | NF |
naringenin | 439.4 | 560.3 | 396.0 | 383.0 | 1375.8 |
quercetol | NF | NF | NF | 490.98 | 4958.05 |
cinnamic acid | NF | 27.40 | NF | NF | NF |
abscisic acid (ABA) | NF | NF | NF | NF | 167.7 |
Vegetal Extract | TP (g Tannic Acid/100 g Dry Extract) | TPA (g Chlorogenic Acid/100 g Dry Extract) | DPPH IC50 (mg/mL) | ABTS IC50 (mg/mL) | FRAP EC50 (mg/mL) |
---|---|---|---|---|---|
CE | 5.7627 | 1.7389 | 0.6596 | 0.1588 | 0.5413 |
RE | 31.0913 | 17.3293 | 0.0900 | 0.0297 | 0.0537 |
TE | 7.0016 | 7.7644 | 0.3121 | 0.0752 | 0.2745 |
CHE | 16.1272 | 7.7066 | 0.1954 | 0.0539 | 0.2012 |
AE | 31.7017 | 24.1528 | 0.0537 | 0.0147 | 0.0483 |
Sum of Squares | df | Mean Square | F | Sig. | |
---|---|---|---|---|---|
Between Groups | 0.945 | 2 | 0.473 | 2.581 | 0.117 * |
Within Groups | 2.198 | 12 | 0.183 | ||
Total | 3.143 | 14 |
Correlation | r | R2 | R2 (%) |
---|---|---|---|
ABTS vs. DPPH | 0.995 | 0.9900 | 99.0025 |
ABTS vs. FRAP | 0.964 | 0.9293 | 92.9296 |
DPPH vs. FRAP | 0.982 | 0.9643 | 96.4324 |
Sum of Squares | df | Mean Square | F | Sig. | |
---|---|---|---|---|---|
Between Groups | 0.709 | 4 | 0.177 | 21.885 | 0.000 * |
Within Groups | 0.364 | 45 | 0.008 | ||
Total | 1.073 | 49 |
Sum of Squares | df | Mean Square | F | Sig. | |
---|---|---|---|---|---|
Between Groups | 0.246 | 4 | 0.061 | 15.960 | 0.000 * |
Within Groups | 0.173 | 45 | 0.004 | ||
Total | 0.419 | 49 |
Sum of Squares | df | Mean Square | F | Sig. | |
---|---|---|---|---|---|
Between Groups | 3.804 | 4 | 0.951 | 14.460 | 0.000 * |
Within Groups | 2.959 | 45 | 0.066 | ||
Total | 6.763 | 49 |
Correlation | r | R2 | R2 (%) |
---|---|---|---|
TP vs. DPPH | −0.956 | 0.9139 | 91.3936 |
TP vs. ABTS | −0.930 | 0.8649 | 86.4900 |
TP vs. FRAP | −0.979 | 0.9584 | 95.8441 |
Correlation | r | R2 | R2 (%) |
---|---|---|---|
TPA vs. DPPH | −0.973 | 0.9467 | 94.6729 |
TPA vs. ABTS | −0.980 | 0.9604 | 96.0400 |
TPA vs. FRAP | −0.965 | 0.9312 | 93.1225 |
CYP2E1 | TNF-α | GPx4 | ||||
---|---|---|---|---|---|---|
Ligand | ΔG (kcal/mol) | LE | ΔG (kcal/mol) | LE | ΔG (kcal/mol) | LE |
abscisic acid | −7.807 | 0.4109 | −7.419 | 0.3905 | −5.499 | 0.2894 |
apigenin | −8.621 | 0.4311 | −7.785 | 0.3892 | −6.918 | 0.3459 |
caffeic acid | −7.644 | 0.5880 | −6.266 | 0.4820 | −5.491 | 0.4224 |
catechin | −8.315 | 0.3960 | −7.951 | 0.3786 | −5.915 | 0.2817 |
chlorogenic acid | −5.985 | 0.2394 | −7.843 | 0.3137 | −6.872 | 0.2749 |
chrysin | −8.800 | 0.4632 | −7.589 | 0.3994 | −6.641 | 0.3495 |
cinnamic acid | −8.159 | 0.7417 | −5.980 | 0.5436 | −5.187 | 0.4715 |
ellagic acid | −6.675 | 0.3034 | −7.638 | 0.3472 | −6.563 | 0.2983 |
epicatechin | −8.540 | 0.4067 | −7.774 | 0.3702 | −6.830 | 0.3252 |
ferulic acid | −7.253 | 0.5181 | −6.137 | 0.4384 | −5.137 | 0.3669 |
formononetin | −8.556 | 0.4278 | −7.626 | 0.3813 | −6.547 | 0.3273 |
galangin | −6.996 | 0.3498 | −7.476 | 0.3738 | −6.532 | 0.3266 |
gallic acid | −6.495 | 0.5412 | −5.795 | 0.4829 | −4.873 | 0.4061 |
genistin | −4.590 | 0.1481 | −8.824 | 0.2846 | −7.008 | 0.2261 |
hyperoside | −0.884 | 0.0268 | −8.641 | 0.2618 | −6.838 | 0.2072 |
kaempferol | −6.985 | 0.3326 | −7.289 | 0.3471 | −6.800 | 0.3238 |
naringenin | −8.388 | 0.4194 | −7.228 | 0.3614 | −6.048 | 0.3024 |
naringin | - | - | −8.640 | 0.2107 | −7.023 | 0.1713 |
p-coumaric acid | −8.011 | 0.6676 | −5.787 | 0.4823 | −5.039 | 0.4199 |
pinocembrin | −8.942 | 0.4706 | −7.818 | 0.4115 | −6.738 | 0.3546 |
quercetin | −6.768 | 0.3076 | −7.600 | 0.3455 | −6.540 | 0.2973 |
rutin | - | - | −8.998 | 0.2093 | −6.888 | 0.1602 |
syringic acid | −5.284 | 0.3774 | −5.673 | 0.4052 | −4.637 | 0.3312 |
omega-imidazolyl-dodecanoic acid | −7.776 | 0.4093 | - | - | - | - |
SPD304 | - | - | −8.867 | 0.2217 | - | - |
1d4 | - | - | - | - | −6.978 | 0.3172 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costea, L.; Chițescu, C.L.; Boscencu, R.; Ghica, M.; Lupuliasa, D.; Mihai, D.P.; Deculescu-Ioniță, T.; Duțu, L.E.; Popescu, M.L.; Luță, E.-A.; et al. The Polyphenolic Profile and Antioxidant Activity of Five Vegetal Extracts with Hepatoprotective Potential. Plants 2022, 11, 1680. https://doi.org/10.3390/plants11131680
Costea L, Chițescu CL, Boscencu R, Ghica M, Lupuliasa D, Mihai DP, Deculescu-Ioniță T, Duțu LE, Popescu ML, Luță E-A, et al. The Polyphenolic Profile and Antioxidant Activity of Five Vegetal Extracts with Hepatoprotective Potential. Plants. 2022; 11(13):1680. https://doi.org/10.3390/plants11131680
Chicago/Turabian StyleCostea, Liliana, Carmen Lidia Chițescu, Rica Boscencu, Manuela Ghica, Dumitru Lupuliasa, Dragoș Paul Mihai, Teodora Deculescu-Ioniță, Ligia Elena Duțu, Maria Lidia Popescu, Emanuela-Alice Luță, and et al. 2022. "The Polyphenolic Profile and Antioxidant Activity of Five Vegetal Extracts with Hepatoprotective Potential" Plants 11, no. 13: 1680. https://doi.org/10.3390/plants11131680
APA StyleCostea, L., Chițescu, C. L., Boscencu, R., Ghica, M., Lupuliasa, D., Mihai, D. P., Deculescu-Ioniță, T., Duțu, L. E., Popescu, M. L., Luță, E. -A., Nițulescu, G. M., Olaru, O. T., & Gîrd, C. E. (2022). The Polyphenolic Profile and Antioxidant Activity of Five Vegetal Extracts with Hepatoprotective Potential. Plants, 11(13), 1680. https://doi.org/10.3390/plants11131680