Breeding Tools for Assessing and Improving Resistance and Limiting Mycotoxin Production by Fusarium graminearum in Wheat
Abstract
:1. Introduction
2. Resistance against Fusarium Head Blight in Wheat
3. Breeding Focus against Fusarium Head Blight
4. Traditional Crop Breeding against Fusarium Head Blight
5. Molecular Breeding Techniques
5.1. RNA Interference to Reduce Mycotoxin Contamination in Fusarium graminearum Infected Wheat
5.2. Gene Transfer in General and Specifically against Fusarium Head Blight
5.3. Genome Editing for FHB Resistance
5.4. Association Mapping to Find FHB Molecular Markers
6. Tools to Assist Breeding for Resistance against FHB and Mycotoxin Contamination
6.1. Real-Time PCR
6.2. Chromatography and Mass Spectrometry-Based Approaches to Assist Selection
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, S.; Saharan, M.S.; Panwar, V.; Chatrath, R.; Singh, G.P. Genetics of Fusarium head blight resistance in three wheat genotypes. Indian J. Genet. 2019, 79, 614–617. [Google Scholar] [CrossRef]
- Li, H.; Zhang, F.; Zhao, J.; Bai, G.; Amand, P.S.; Bernardo, A.; Ni, Z.; Sun, Q.; Su, Z. Identification of a novel major QTL from Chinese wheat cultivar Ji5265 for Fusarium head blight resistance in greenhouse. Theor. Appl. Genet. 2022, 31, 1. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Gill, H.S.; Brar, N.K.; Halder, J.; Ali, S.; Liu, X.; Bernardo, A.; St Amand, P.; Bai, G.; Gill, U.S.; et al. Genomic prediction of Fusarium head blight resistance in early stages using advanced breeding lines in hard winter wheat. Crop J. 2022, 26. [Google Scholar] [CrossRef]
- Liu, S.; Hall, M.D.; Griffey, C.A.; McKendry, A.L. Meta-analysis of QTL associated with Fusarium head blight resistance in wheat. Crop Sci. 2009, 49, 1955–1968. [Google Scholar] [CrossRef]
- Buerstmayr, M.; Steiner, B.; Buerstmayr, H. Breeding for Fusarium head blight resistance in wheat—Progress and challenges. Plant Breed. 2020, 139, 429–454. [Google Scholar] [CrossRef]
- Figueroa, M.; Hammond-Kosack, K.E.; Solomon, P.S. A review of wheat diseases—A field perspective. Mol. Plant Pathol. 2018, 19, 1523–1536. [Google Scholar] [CrossRef]
- Mielniczuk, E.; Barbara, S.-B. Fusarium head blight, mycotoxins and strategies for their reduction. Agronomy 2020, 10, 509. [Google Scholar] [CrossRef] [Green Version]
- de Arruda, M.H.M.; Zchosnki, F.L.; Silva, Y.K.; de Lima, D.L.; Tessmann, D.J.; Da-Silva, P.R. Genetic diversity of Fusarium meridionale, F. austroamericanum, and F. graminearum isolates associated with Fusarium head blight of wheat in Brazil. Trop. Plant Pathol. 2021, 46, 98–108. [Google Scholar] [CrossRef]
- Sheini, A. Colorimetric aggregation assay based on array of gold and silver nanoparticles for simultaneous analysis of aflatoxins, ochratoxin and zearalenone by using chemometric analysis and paper based analytical devices. Microchim. Acta 2020, 187, 1–11. [Google Scholar] [CrossRef]
- Zinedine, A.; Soriano, J.M.; Molto, J.C.; Manes, J. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: An oestrogenic mycotoxin. Food Chem. Toxicol. 2007, 45, 1–18. [Google Scholar] [CrossRef]
- Venkataramana, M.; Chandra Nayaka, S.; Anand, T.; Rajesh, R.; Aiyaz, M.; Divakara, S.T.; Murali, H.S.; Prakash, H.S.; Lakshmana Rao, P.V. Zearalenone induced toxicity in SHSY-5Y cells: The role of oxidative stress evidenced by N-acetyl cysteine. Food Chem. Tox. 2014, 65, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Schollenberger, M.; Müller, H.M.; Rüfle, M.; Suchy, S.; Plank, S.; Drochner, W. Natural occurrence of 16 Fusarium toxins in grains and feedstuffs of plant origin from Germany. Mycopathologia 2006, 161, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Vanhoutte, I.; Audenaert, K.; De Gelder, L. Biodegradation of mycotoxins: Tales from known and unexplored worlds. Front. Microbiol. 2016, 7, 561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chammem, N.; Issaoui, M.; De Almeida AI, D.; Delgado, A.M. Food crises and food safety incidents in European Union, United States, and Maghreb Area: Current risk communication strategies and new approaches. J. AOAC Int. 2018, 101, 923–938. [Google Scholar] [CrossRef] [PubMed]
- FAO; WHO. Codex General Standard for Contaminants and Toxins in Food and Feed; Codex Alimentarius: Rome, Italy, 1995.
- EC. Setting Maximum Levels for Certain Contaminants in Foodstuffs and Amendments; European Commission: Brussels, Belgium, 2006. [Google Scholar]
- FAO; WHO. Codex Committee on Contaminants in Foods; KoreaScience: Tokyo, Japan, 2018; p. 169.
- Mesterhazy, A. Updating the breeding philosophy of wheat to Fusarium head blight (FHB): Resistance components, QTL identification, and phenotyping—A review. Plants 2020, 9, 1702. [Google Scholar] [CrossRef]
- Kubo, K.; Kawada, N.; Fujita, M. Evaluation of Fusarium head blight resistance in wheat and the development of a new variety by integrating type I and II resistance. Jpn. Agric. Res. Q. 2013, 47, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Pumphrey, M.O.; Bernardo, R.; Anderson, J.A. Validating the Fhb1 QTL for Fusarium head blight resistance in near-isogenic wheat lines developed from breeding populations. Crop Sci. 2007, 47, 200–206. [Google Scholar] [CrossRef]
- Francesconi, S.; Angelo, M.; Giorgio, M.B. Different inoculation methods affect components of Fusarium head blight resistance in wheat. Phytopathol. Mediterr. 2019, 58, 679–691. [Google Scholar] [CrossRef]
- Gaire, R.; Sneller, C.; Brown-Guedira, G.; Van Sanford, D.; Mohammadi, M.; Kolb, F.L.; Olson, E.; Sorrells, M.; Rutkoski, J. Genetic Trends in Fusarium Head Blight Resistance from 20 Years of Winter Wheat Breeding and Cooperative Testing in the Northern USA. Plant Dis. 2022, 106, 364–372. [Google Scholar] [CrossRef]
- Crespo-Herrera, L.A.; José, C.; Mateo, V.; Hans-Joachim, B. Defining Target Wheat Breeding Environments. In Wheat Improvement; Springer: Cham, Switzerland, 2022; pp. 31–45. [Google Scholar]
- Singh, R.P.; Rajaram, S. Breeding for disease resistance in wheat. In Bread Wheat: Improvement and Production; No. CIS-3621. CIMMYT; FAO: Rome, Italy, 2002; pp. 141–156. [Google Scholar]
- Löffler, M.; Schön, C.C.; Miedaner, T. Revealing the genetic architecture of FHB resistance in hexaploid wheat (Triticum aestivum L.) by QTL meta-analysis. Mol. Breed. 2009, 23, 473–488. [Google Scholar] [CrossRef]
- Zhao, M.; Leng, Y.; Chao, S.; Xu, S.S.; Zhong, S. Molecular mapping of QTL for Fusarium head blight resistance introgressed into durum wheat. Theor. Appl. Genet. 2018, 131, 1939–1951. [Google Scholar] [CrossRef] [PubMed]
- Bai, G.; Kolb, F.L.; Shaner, G.; Domier, L.L. Amplified fragment length polymorphism markers linked to a major quantitative trait locus controlling scab resistance in wheat. Phytopathology 1999, 89, 343–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, J.A.; Stack, R.W.; Liu, S.; Waldron, B.L.; Fjeld, A.D.; Coyne, C.; Moreno-Sevilla, B.; Fetch, J.M.; Song, Q.J.; Cregan, P.B.; et al. DNA markers for Fusarium head blight resistance QTLs in two wheat populations. Theor. Appl. Genet. 2001, 102, 164–1168. [Google Scholar] [CrossRef]
- Buerstmayr, H.; Lemmens, M.; Hartl, L.; Doldi, L.; Steiner, B.; Stierschneider, M.; Ruckenbauer, P. Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (Type II resistance). Theor. Appl. Genet. 2002, 104, 84–91. [Google Scholar] [CrossRef]
- Buerstmayr, H.; Steiner, B.; Hartl, L.; Griesser, M.; Angerer, N.; Lengauer, D.; Miedaner, T.; Schneider, B.; Lemmens, M. Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. II. Resistance to fungal penetration and spread. Theor. Appl. Genet. 2003, 107, 503–508. [Google Scholar] [CrossRef]
- Buerstmayr, H.; Stierschneider, M.; Steiner, B.; Lemmens, M.; Griesser, M.; Nevo, E.; Fahima, T. Variation for resistance to head blight caused by Fusarium graminearum in wild emmer (Triticum dicoccoides) originating from Israel. Euphytica 2003, 130, 17–23. [Google Scholar] [CrossRef]
- Steiner, B.; Buerstmayr, M.; Wagner, C.; Danler, A.; Eshonkulov, B.; Ehn, M.; Buerstmayr, H. Fine-mapping of the Fusarium head blight resistance QTL Qfhs.ifa-5A identifies two resistance QTL associated with anther extrusion. Theor. Appl. Genet. 2019, 132, 2039–2053. [Google Scholar] [CrossRef] [Green Version]
- Lemmens, M.; Scholz, U.; Berthiller, F.; Dall’Asta, C.; Koutnik, A.; Schuhmacher, R.; Adam, G.; Buerstmayr, H.; Mesterházy, Á.; Krska, R.; et al. The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium head blight resistance in wheat. Mol. Plant-Microbe Interact. 2005, 18, 1318–1324. [Google Scholar] [CrossRef] [Green Version]
- Brown, D.W.; Butchko, R.A.E.; Proctor, R.H. Fusarium genomic resources: Tools to limit crop diseases and mycotoxin contamination. Mycopathologia 2006, 162, 191–199. [Google Scholar] [CrossRef]
- Mesterházy, Á. Role of deoxynivalenol in aggressiveness of Fusarium graminearum and F. culmorum and in resistance to Fusarium head blight. In Mycotoxins in Plant Disease; Springer: Dordrecht, The Netherlands, 2002; pp. 675–684. [Google Scholar] [CrossRef]
- Mendes, G.D.R.L.; Ponte, E.M.D.; Feltrin, A.C.; Badiale-Furlong, E.; Oliveira, A.C.D. Common resistance to Fusarium head blight in Brazilian wheat cultivars. Sci. Agric. 2018, 75, 426–431. [Google Scholar] [CrossRef] [Green Version]
- Mesterhazy, A.; Bartók, T.; Kászonyi, G.; Varga, M.; Tóth, B.; Varga, J. Common resistance to different Fusarium spp. causing Fusarium head blight in wheat. Eur. J. Plant Pathol. 2005, 112, 267–281. [Google Scholar] [CrossRef]
- Miedaner, T.; Heinrich, N.; Schneider, B.; Oettler, G.; Rohde, S.; Rabenstein, F. Estimation of deoxynivalenol (DON) content by symptom rating and exoantigen content for resistance selection in wheat and triticale. Euphytica 2004, 139, 123–132. [Google Scholar] [CrossRef]
- Proctor, R.H.; Desjardins, A.E.; McCornick, S.P.; Plattner, R.D.; Alexander, N.J.; Brown, D.W. Genetic analysis of the role of Trichothecene and Fumonisin mycotoxins in the virulence of Fusarium. Eur. J. Plant Pathol. 2002, 108, 691–698. [Google Scholar] [CrossRef]
- Lancova, K.; Hajslova, J.; Poustka, J.; Krplova, A.; Zachariasova, M.; Dostálek, P.; Sachambula, L. Transfer of Fusarium mycotoxins and ‘masked’deoxynivalenol (deoxynivalenol-3-glucoside) from field barley through malt to beer. Food Addit. Contam. 2008, 25, 732–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janick, J. (Ed.) Plant Breeding Reviews; John Wiley & Sons: Hoboken, NJ, USA, 2008; Volume 18, pp. 177–250. [Google Scholar]
- Steiner, B.; Buerstmayr, M.; Michel, S.; Schweiger, W.; Lemmens, M.; Buerstmayr, H. Breeding strategies and advances in line selection for Fusarium head blight resistance in wheat. Trop. Plant Pathol. 2017, 42, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Majumdar, R.; Rajasekaran, K.; Cary, J.W. RNA interference (RNAi) as a potential tool for control of mycotoxin contamination in crop plants: Concepts and considerations. Front. Plant Sci. 2017, 8, 200. [Google Scholar] [CrossRef] [Green Version]
- Baulcombe, D. RNA silencing in plants. Nature 2004, 431, 356. [Google Scholar] [CrossRef]
- Watson, J.M.; Fusaro, A.F.; Wang, M.; Waterhouse, P.M. RNA silencing platforms in plants. Febs Lett. 2005, 579, 5982–5987. [Google Scholar] [CrossRef]
- Small, I. RNAi for revealing and engineering plant gene functions. Curr. Opin. Biotechnol. 2007, 18, 148–153. [Google Scholar] [CrossRef]
- Koch, A.; Kogel, K.H. New wind in the sails: Improving the agronomic value of crop plants through RNAi-mediated gene silencing. Plant Biotechnol. J. 2014, 12, 821–831. [Google Scholar] [CrossRef]
- Nunes, C.C.; Dean, R.A. Host-induced gene silencing: A tool for understanding fungal host interaction and for developing novel disease control strategies. Mol. Plant Pathol. 2012, 13, 519–529. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Scot, H.H. Host-induced gene silencing (HIGS) for elucidating Puccinia gene function in wheat. In Plant Pathogenic Fungi and Oomycetes; Humana Press: New York, NY, USA, 2018; pp. 139–150. [Google Scholar] [CrossRef]
- Machado, A.K.; Brown, N.A.; Urban, M.; Kanyuka, K.; Hammond-Kosack, K.E. RNAi as an emerging approach to control Fusarium head blight disease and mycotoxin contamination in cereals. Pest Manag. Sci. 2018, 74, 790–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, C.; Jurgenson, J.E.; Hulbert, S.H. Development of a host-induced RNAi system in the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Mol. Plant-Microbe Interact. 2011, 24, 554–561. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.; Song, X.S.; Li, H.P.; Cao, L.H.; Sun, K.; Qiu, X.L.; Xu, Y.B.; Yang, P.; Huang, T.; Zhang, J.B.; et al. Host-induced gene silencing of an essential chitin synthase gene confers durable resistance to Fusarium head blight and seedling blight in wheat. Plant Biotechnol. J. 2015, 13, 1335–1345. [Google Scholar] [CrossRef] [PubMed]
- Low, L.Y.; Yang, S.K.; Andrew Kok, D.X.; Ong-Abdullah, J.; Tan, N.P.; Lai, K.S. Transgenic plants: Gene constructs, vector and transformation method. New Vis. Plant Sci. 2018, 41–61. [Google Scholar] [CrossRef]
- Harwood, W.A.; Hardon, J.; Ross, S.M.; Fish, L.; Smith, J.; Snape, J.W. Analysis of transgenic barley in a small scale field trial. John Innes Cent. Sainsbury Lab. Annu. Rep. 2000, 29. [Google Scholar]
- Romano, A.; Raemakers, K.; Visser, R.; Mooibroek, H. Transformation of potato (Solanum tuberosum) using particle bombardment. Plant Cell Rep. 2001, 20, 198–204. [Google Scholar] [CrossRef]
- Morikawa, H.; Sakamoto, A.; Hokazono, H.; Irifune, K.; Takahashi, M. Mechanism of transgene integration into a host genome by particle bombardment. Plant Biotechnol. 2002, 19, 219–228. [Google Scholar] [CrossRef] [Green Version]
- Bode, J.; Benham, C.; Knopp, A.; Mielke, C. Transcriptional augmentation: Modulation of gene expression by scaffold/matrix-attached regions (S/MAR elements). Crit. Rev. Eukaryot. Gene. Expr. 2000, 10, 73–90. [Google Scholar] [CrossRef]
- Haber, J.E. Partners and pathways: Repairing a double-strand break. Trends Genet. 2000, 16, 259–264. [Google Scholar] [CrossRef]
- Gelvin, S.B. Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2000, 51, 223–256. [Google Scholar] [CrossRef] [PubMed]
- Ward, D.V.; Zambryski, P.C. The six functions of Agrobacterium VirE2. Proc. Natl. Acad. Sci. USA 2001, 98, 385–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gelvin, S.B. Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: A non-tissue culture approach. Mol. Gen. Genet. 2003, 208, 1–9. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, X.; Wang, X.; Zhou, M.; Zhou, X.; Ye, X.; Wei, X. An R2R3 MYB transcription factor in wheat, Ta PIMP 1, mediates host resistance to Bipolaris sorokiniana and drought stresses through regulation of defense-and stress-related genes. New Phytol. 2012, 196, 1155–1170. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Frick, M.; Huel, R.; Nykiforuk, C.L.; Wang, X.; Gaudet, D.A.; Eudes, F.; Conner, R.L.; Kuzyk, A.; Chen, Q.; et al. The stripe rust resistance gene Yr10 encodes an evolutionary-conserved and unique CC–NBS–LRR sequence in wheat. Mol. Plant 2014, 7, 1740–1755. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Wang, S.; Li, X.Y.; Wei, X.J.; Zhang, Y.J.; Wang, H.Y.; Liu, D.Q. Expression and functional analysis of a pathogenesis-related protein 1 gene, TcLr19PR1, involved in wheat resistance against leaf rust fungus. Plant Mol. Biol. Report. 2015, 33, 797–805. [Google Scholar] [CrossRef]
- Jha, S.; Chattoo, B.B. Expression of a plant defensin in rice confers resistance to fungal phytopathogens. Transgenic Res. 2010, 19, 373–384. [Google Scholar] [CrossRef]
- Li, X.; Zhong, S.; Chen, W.; Fatima, S.; Huang, Q.; Li, Q.; Tan, F.; Luo, P. Transcriptome analysis identifies a 140 kb region of chromosome 3B containing genes specific to Fusarium Head Blight resistance in wheat. Int. J. Mol. Sci. 2018, 19, 852. [Google Scholar] [CrossRef] [Green Version]
- Ye, X.; Cheng, H.; Xu, H.; Du, L.; Lu, W.; Huang, Y. Development of transgenic wheat plants with chitinase and β-1, 3-glucosanase genes and their resistance to fusarium head blight. Zuo Wu Xue Bao 2005, 31, 583–586. [Google Scholar]
- Ishida, Y.; Tsunashima, M.; Hiei, Y.; Komari, T. Wheat (Triticum aestivum L.) transformation using immature embryos. In Agrobacterium Protocols; Springer: New York, NY, USA, 2015; pp. 189–198. [Google Scholar] [CrossRef]
- San Filippo, J.; Sung, P.; Klein, H. Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem. 2008, 77, 229–257. [Google Scholar] [CrossRef] [Green Version]
- Lieber, M.R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 2010, 79, 81–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, J.R.; Taylor, M.R.; Boulton, S.J. Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell 2012, 47, 497–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, F.; Doudna, J.A. CRISPR–Cas9 structures and mechanisms. Annu. Rev. Biophys. 2017, 46, 505–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsu-ura, T.; Baek, M.; Kwon, J.; Hong, C. Efficient gene editing in Neurospora crassa with CRISPR technology. Fungal Biol. Biotechnol. 2015, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Fuller, K.K.; Chen, S.; Loros, J.J.; Dunlap, J.C. Development of the CRISPR/Cas9 system for targeted gene disruption in Aspergillus fumigatus. Eukaryot. Cell 2015, 14, 1073–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nødvig, C.S.; Nielsen, J.B.; Kogle, M.E.; Mortensen, U.H. A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PLoS ONE 2015, 10, e0133085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pohl, C.; Kiel, J.A.K.W.; Driessen, A.J.M.; Bovenberg, R.A.L.; Nygard, Y. CRISPR/Cas9 based genome editing of Penicillium chrysogenum. ACS Synth. Biol. 2016, 5, 754–764. [Google Scholar] [CrossRef]
- Wenderoth, M.; Pinecker, C.; Voß, B.; Fischer, R. Establishment of CRISPR/Cas9 in Alternaria alternata. Fungal Genet. Biol. 2017, 101, 55–60. [Google Scholar] [CrossRef]
- Arazoe, T.; Miyoshi, K.; Yamato, T.; Ogawa, T.; Ohsato, S.; Arie, T.; Kuwata, S. Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus. Biotechnol. Bioeng. 2015, 112, 2543–2549. [Google Scholar] [CrossRef]
- Schuster, M.; Schweizer, G.; Reissmann, S.; Kahmann, R. Genome editing in Ustilago maydis using the CRISPR–Cas system. Fungal Genet. Biol. 2016, 89, 3–9. [Google Scholar] [CrossRef]
- Gardiner, D.M.; Kazan, K. Selection is required for efficient Cas9-mediated genome editing in Fusarium graminearum. Fungal Biol. 2018, 122, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Koch, A.; Hofle, L.; Werner, B.T.; Imani, J.; Schmidt, A.; Jelonek, L.; Kogel, K.-H. SIGS vs. HIGS: A study on the efficacy of two dsRNA delivery strategies to silence Fusarium FgCYP51 genes in infected host and non-host plants. Mol. Plant Pathol. 2019, 20, 1636–1644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, F.; Zhang, R.; Zhao, J.; Qi, T.; Kang, Z.; Guo, J. Host-induced silencing of Fusarium graminearum genes enhances the resistance of Brachypodium distachyon to Fusarium head blight. Front. Plant Sci. 2019, 10, 1362. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Amy, B.; Bin, T.; Hui, C.; Shan, W.; Hongxiang, M.; Shibin, C.; Liu, D.; Zhang, D.; Li, T.; et al. A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nat. Gen. 2019, 51, 1099–1105. [Google Scholar] [CrossRef]
- Mandalà, G.; Tundo, S.; Francesconi, S.; Gevi, F.; Zolla, L.; Ceoloni, C.; D’Ovidio, R. Deoxynivalenol detoxification in transgenic wheat confers resistance to Fusarium head blight and crown rot diseases. Mol. Plant Microbe Interact. 2019, 32, 583–592. [Google Scholar] [CrossRef]
- Koch, A.; Kumar, N.; Weber, L.; Keller, H.; Imani, J.; Kogel, K.H. Host-induced gene silencing of cytochrome P450 lanosterol C14 alpha-demethylase-encoding genes confers strong resistance to Fusarium species. Proc. Natl. Acad. Sci. USA 2013, 110, 19324–19329. [Google Scholar] [CrossRef] [Green Version]
- McLaughlin, J.E.; Darwish, N.I.; Garcia-Sanchez, J.; Tyagi, N.; Trick, H.N.; McCormick, S.; Dill-Macky, R.; Tumer, N.E. A lipid transfer protein has antifungal and antioxidant activity and suppresses Fusarium head blight disease and DON accumulation in transgenic wheat. Phytopathology 2021, 4, 671–683. [Google Scholar] [CrossRef]
- Wang, M.; Wu, L.; Mei, Y.; Zhao, Y.; Ma, Z.; Zhang, X.; Chen, Y. Host-induced gene silencing of multiple genes of Fusarium graminearum enhances resistance to Fusarium head blight in wheat. Plant Biotechnol. J. 2020, 18, 2373. [Google Scholar] [CrossRef]
- Kumar, J.; Rai, K.M.; Pirseyedi, S.; Elias, E.M.; Xu, S.; Dill-Macky, R.; Kianian, S.F. Epigenetic regulation of gene expression improves Fusarium head blight resistance in durum wheat. Sci. Rep. 2020, 10, 1–15. [Google Scholar] [CrossRef]
- Gatti, M.; Florence, C.; Caroline, T.; Catherine, M.; Florence, G.; Thierry, L.; Marie, D. The Brachypodium distachyon UGT Bradi5gUGT03300 confers type II fusarium head blight resistance in wheat. Plant Pathol. 2019, 68, 334–343. [Google Scholar] [CrossRef]
- Li, G.; Jiyang, Z.; Haiyan, J.; Zhongxia, G.; Min, F.; Yanjun, L.; Panting, Z.; Xue, S.; Li, N.; Yuan, Y.; et al. Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight. Nat. Gen. 2019, 51, 1106–1112. [Google Scholar] [CrossRef] [PubMed]
- Mandalà, G.; Carla, C.; Isabella, B.; Francesco, F.; Silvio, T. Transgene pyramiding in wheat: Combination of deoxynivalenol detoxification with inhibition of cell wall degrading enzymes to contrast Fusarium Head Blight and Crown Rot. Plant Sci. 2021, 313, 111059. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Gao, D.; Wu, H.; Liu, J.; Zhang, C.; Wang, J.; Jiang, Z.; Liu, Y.; Li, D.; Zhang, Y.; et al. Genome-wide association mapping revealed syntenic loci QFhb-4AL and QFhb-5DL for Fusarium head blight resistance in common wheat (Triticum aestivum L.). BMC Plant Biol. 2020, 20, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Słomińska-Durdasiak, K.M.; Sonja, K.; Viktor, K.; Daniela, N.; Patrick, S.; Armin, D.; Jochen, C.R. Association mapping of wheat Fusarium head blight resistance-related regions using a candidate-gene approach and their verification in a biparental population. Theor. Appl. Genet. 2020, 133, 341–351. [Google Scholar] [CrossRef]
- Tessmann, E.W.; Dong, Y.; Van Sanford, D.A. GWAS for Fusarium head blight traits in a soft red winter wheat mapping panel. Crop Sci. 2019, 59, 1823–1837. [Google Scholar] [CrossRef] [Green Version]
- Sonia, E.; Dorothée, S.; Sandrine, G.; Corinne, C.; Christian, L.; Henri, L.M.; Valérie, L. Optimized real time QPCR assays for detection and quantification of Fusarium and Microdochium species involved in wheat head blight as defined by MIQE guidelines. BioRxiv 2018. [Google Scholar] [CrossRef]
- Burlakoti, R.R.; Estrada Jr, R.; Rivera, V.V.; Boddeda, A.; Secor, G.A.; Adhikari, T.B. Real-time PCR quantification and mycotoxin production of Fusarium graminearum in wheat inoculated with isolates collected from potato, sugar beet, and wheat. Phytopathology 2007, 97, 835–841. [Google Scholar] [CrossRef] [Green Version]
- Munis, M.F.H.; Xu, S.; Hakim, H.J.C.; Masood, S.; Farooq, A.B.U. Diagnosis of Fusarium graminearum in Soil and Plant Samples of Wheat by Real-Time PCR. Rom. Biotechnol. Lett. 2018, 23, 14035–14042. [Google Scholar] [CrossRef]
- Tralamazza, S.M.; Braghini, R.; Corrêa, B. Trichothecene genotypes of the Fusarium graminearum species complex isolated from Brazilian wheat grains by conventional and quantitative PCR. Front. Microbiol. 2016, 7, 246. [Google Scholar] [CrossRef] [Green Version]
- Gatti, M.; Choulet, F.; Macadré, C.; Guérard, F.; Seng, J.M.; Langin, T.; Dufresne, M. Identification, molecular cloning and functional characterization of a wheat UDP-glucosyltransferase involved in resistance to Fusarium Head Blight and to mycotoxin accumulation. Front. Plant Sci. 2018, 9, 1853. [Google Scholar] [CrossRef]
Crop | Technology | Gene Involved | Effect on Transformed Line | Reference |
---|---|---|---|---|
Wheat | Gene silencing | Chitin synthase ChS3B | Enhanced combined type I and II resistance against FHB by targeting chitin biosynthesis | [52] |
Barley | Gene silencing | FgCYP51A and FgCYP51B | Reduced fungal growth by targeting Sterol biosynthesis | [81] |
Brachypodium distachyon | Gene silencing | Fg00677, Fg08731 and CYP51 | Improved FHB resistance by silencing the genes through inhibiting CYP51A, CYP51B, and CYP51C genes and essential protein kinase biosynthesis | [82] |
Wheat | Deletion mutation | TaHRC | Enhanced FHB resistance by silencing the gene that encodes a nuclear protein conferring FHB susceptibility | [83] |
Wheat | Overexpression | Barley HvUGT13248 | Decreased DON content in flour by increasing detoxification | [84] |
Arabidopsis | Gene silencing | CYP51 | Restricted fungal infection and reduced virulence by targeting Ergosterol biosynthesis | [85] |
Barley | Gene silencing | CYP51 | Restricted fungal infection and reduced virulence by targeting Ergosterol biosynthesis | [85] |
Wheat | Overexpression | AtLTP4.4 | Supressed DON induced reactive oxygen species and plant stress from infection | [86] |
Wheat | Gene silencing | FgSGE1, FgSTE12 and FgPP1 | Reduced infection and DON accumulation by targeting DON biosynthesis, fungal penetration structure formation and essential phosphatase | [87] |
Wheat | Epigenetic regulation of gene expression | Several | Reduced FHB severity and DON accumulation through methylation | [88] |
Wheat | Trans-gene expression | Bradi5g03300 UGT | Conferred resistance both to initial infection and to spike colonization and reduce mycotoxin content | [89] |
Wheat | Mutation/Deleation involving the 3′ exon | histidine-rich calcium-binding-protein gene | Resistance to FHB spread | [90] |
Wheat | Trans-gene expresion | HvUGT13248 | Increased resistance against Fusarium graminearum | [91] |
Aspect | Traditional Methods | Recent Technologies |
---|---|---|
Pros | Cons | |
Field expression of genes | Reliably confirmed each season | Gene may be present but not expressed as desired in the field [41] |
Variety release | Often targeted towards FHB resistant variety release and commercialization across multiple environments | Mostly limited to research and laboratory experiments under controlled environments |
Skills and reaserch facilities | Readily available | Still limited with most institutions outsourcing and licencing the technologies |
Selection methods | Well established breeding and selection procedures | Procedures mostly still being developed and improved |
Acceptability | Widely accepted | Some technologies like gene transformation are not widely accepted by policy makers and consumers |
Cons | Pros | |
Time utilization | Takes long–up to 12 years to release a variety | Significantly reduced time depending on technology |
Cost | Costly in terms of time and resources allocated to release a variety | Relatively cheap since the costs are concentrated over short space of time and less resources required |
Environmental influence | FHB expression can be influenced by the environment during phenotyping [23] | Tracking of genes and transgenes at molecular level is more reliable |
Space required | Several hectors of land are often required to handle breeding nurseries | Conversion and transformation often need lab and greenhouse space |
Foreign genes | Restricted to the use of plants of the same genius or species (cross compatible) | FHB resistant genes can be transferred from different plant or micro species without fertilization barriers [53] |
QTL conferring FHB resistance | Difficult to detect and transfer | Easy to detect and transfer [92,93,94] |
Pyramiding and stacking multiple genes | Difficult | Easier with genetic engineering [87] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Figlan, S.; Mwadzingeni, L. Breeding Tools for Assessing and Improving Resistance and Limiting Mycotoxin Production by Fusarium graminearum in Wheat. Plants 2022, 11, 1933. https://doi.org/10.3390/plants11151933
Figlan S, Mwadzingeni L. Breeding Tools for Assessing and Improving Resistance and Limiting Mycotoxin Production by Fusarium graminearum in Wheat. Plants. 2022; 11(15):1933. https://doi.org/10.3390/plants11151933
Chicago/Turabian StyleFiglan, Sandiswa, and Learnmore Mwadzingeni. 2022. "Breeding Tools for Assessing and Improving Resistance and Limiting Mycotoxin Production by Fusarium graminearum in Wheat" Plants 11, no. 15: 1933. https://doi.org/10.3390/plants11151933
APA StyleFiglan, S., & Mwadzingeni, L. (2022). Breeding Tools for Assessing and Improving Resistance and Limiting Mycotoxin Production by Fusarium graminearum in Wheat. Plants, 11(15), 1933. https://doi.org/10.3390/plants11151933