Comparison of Volatile Constituents Present in Commercial and Lab-Distilled Frankincense (Boswellia carteri) Essential Oils for Authentication
Abstract
:1. Introduction
2. Results and Discussion
2.1. GC-MS Analysis of Commercial and Lab-Distilled Frankincense Essential Oil
2.2. Enantiomeric Distribution Analysis of Commercial and Lab-Distilled Frankincense Essential Oils
3. Materials and Methods
3.1. Sample Collection
3.2. Chemical Composition Analysis by Gas Chromatography-Mass Spectrometry (GC-MS)
3.3. Enantiomeric Distribution Analysis by Chiral Gas Chromatography-Mass Spectrometry (CGC-MS)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnson, S.; DeCarlo, A.; Satyal, P.; Dosoky, N.S.; Sorensen, A.; Setzer, W.N. The Chemical Composition of Boswellia Occulta Oleogum Resin Essential Oils. Nat. Prod. Commun. 2019, 14, 1934578X1986630. [Google Scholar] [CrossRef]
- DeCarlo, A.; Johnson, S.; Poudel, A.; Satyal, P.; Bangerter, L.; Setzer, W.N. Chemical Variation in Essential Oils from the Oleo-Gum Resin of Boswellia carteri: A Preliminary Investigation. Chem. Biodivers. 2018, 15, e1800047. [Google Scholar] [CrossRef]
- Mikhaeil, B.R.; Maatooq, G.T.; Badria, F.A.; Amer, M.M.A. Chemistry and Immunomodulatory Activity of Frankincense Oil. Z. Fur. Nat. C 2003, 58, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Thulin, M.; Warfa, A.M. The Frankincense Trees (Boswellia Spp., Burseraceae) of Northern Somalia and Southern Arabia. Kew. Bull. 1987, 42, 487. [Google Scholar] [CrossRef]
- Woolley, C.L.; Suhail, M.M.; Smith, B.L.; Boren, K.E.; Taylor, L.C.; Schreuder, M.F.; Chai, J.K.; Casabianca, H.; Haq, S.; Lin, H.-K.; et al. Chemical Differentiation of Boswellia sacra and Boswellia carterii Essential Oils by Gas Chromatography and Chiral Gas Chromatography–Mass Spectrometry. J. Chromatogr. A 2012, 1261, 158–163. [Google Scholar] [CrossRef]
- Singh, B.; Kumar, R.; Bhandari, S.; Pathania, S.; Lal, B. Volatile Constituents of Natural Boswellia Serrata Oleo-Gum-Resin and Commercial Samples. Flavour Fragr. J. 2007, 22, 145–147. [Google Scholar] [CrossRef]
- Bekana, D.; Kebede, T.; Assefa, M.; Kassa, H. Comparative Phytochemical Analyses of Resins of Boswellia Species (B. Papyrifera (Del.) Hochst., B. Neglecta S. Moore, and B. Rivae Engl.) from Northwestern, Southern, and Southeastern Ethiopia. ISRN Anal. Chem. 2014, 2014, e374678. [Google Scholar] [CrossRef]
- Prins, C.; Vieira, I.; Freitas, S. Growth Regulators and Essential Oil Production. Braz. J. Plant Physiol. 2009, 22, 91–102. [Google Scholar] [CrossRef]
- Capetti, F.; Marengo, A.; Cagliero, C.; Liberto, E.; Bicchi, C.; Rubiolo, P.; Sgorbini, B. Adulteration of Essential Oils: A Multitask Issue for Quality Control. Three Case Studies: Lavandula angustifolia Mill., Citrus Limon (L.) Osbeck and Melaleuca alternifolia (Maiden & Betche) Cheel. Molecules 2021, 26, 5610. [Google Scholar] [CrossRef]
- Ojha, P.K.; Poudel, D.K.; Dangol, S.; Rokaya, A.; Timsina, S.; Satyal, P.; Setzer, W.N. Volatile Constituent Analysis of Wintergreen Essential Oil and Comparison with Synthetic Methyl Salicylate for Authentication. Plants 2022, 11, 1090. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, J.; Ali, Z.; Avonto, C.; Khan, I.A. A Novel Approach for Lavender Essential Oil Authentication and Quality Assessment. J. Pharm. Biomed. Anal. 2021, 199, 114050. [Google Scholar] [CrossRef] [PubMed]
- Satyal, P.; Setzer, W. Adulteration Analysis in Essential Oils. In Essential Oil Research; Malik, S., Ed.; Springer Nature: Cham, Switzerland, 2019; pp. 261–273. [Google Scholar]
- Schipilliti, L.; Bonaccorsi, I.L.; Occhiuto, C.; Dugo, P.; Mondello, L. Authentication of Citrus Volatiles Based on Carbon Isotope Ratios. J. Essent. Oil Res. 2018, 30, 1–15. [Google Scholar] [CrossRef]
- Do, T.K.T.; Hadji-Minaglou, F.; Antoniotti, S.; Fernandez, X. Authenticity of Essential Oils. TrAC Trends Anal. Chem. 2015, 66, 146–157. [Google Scholar] [CrossRef]
- Chanotiya, C.S.; Yadav, A. Enantiomeric Composition of (3 R )-(-)- and (3 S )-(+)-Linalool in Various Essential Oils of Indian Origin by Enantioselective Capillary Gas Chromatography-Flame Ionization and Mass Spectrometry Detection Methods. Nat. Prod. Commun. 2009, 4, 1934578X0900400. [Google Scholar] [CrossRef]
- Manayi, A.; Kurepaz-mahmoodabadi, M.; Gohari, A.R.; Ajani, Y.; Saeidnia, S. Presence of Phthalate Derivatives in the Essential Oils of a Medicinal Plant Achillea Tenuifolia. Daru 2014, 22, 78. [Google Scholar] [CrossRef]
- Nichols, J.; Schipper, E. Keto Fatty Acids Derived from Castor Oil. I. Unsaturated Acids1. J. Am. Chem. Soc. 1958, 80, 5705–5710. [Google Scholar] [CrossRef]
- Arruda, C.; Aldana Mejía, J.A.; Ribeiro, V.P.; Gambeta Borges, C.H.; Martins, C.H.G.; Sola Veneziani, R.C.; Ambrósio, S.R.; Bastos, J.K. Occurrence, Chemical Composition, Biological Activities and Analytical Methods on Copaifera Genus—A Review. Biomed. Pharmacother. 2019, 109, 1–20. [Google Scholar] [CrossRef]
- Montaser, M.M.; El-sharnouby, M.E.; EL-Noubi, G.; El-Shaer, H.M.; Khalil, A.A.; Hassanin, M.; Amer, S.A.; El-Araby, D.A. Boswellia serrata Resin Extract in Diets of Nile Tilapia, Oreochromis Niloticus: Effects on the Growth, Health, Immune Response, and Disease Resistance to Staphylococcus aureus. Animals 2021, 11, 446. [Google Scholar] [CrossRef]
- Thulin, M.; Decarlo, A.; Johnson, S.P. Boswellia occulta (Burseraceae), a New Species of Frankincense Tree from Somalia (Somaliland). Phytotaxa 2019, 394, 219. [Google Scholar] [CrossRef]
- Johnson, S.; DeCarlo, A.; Satyal, P.; Dosoky, N.; Sorensen, A.; Setzer, W. Organic Certification Is Not Enough: The Case of the Methoxydecane Frankincense. Plants 2019, 8, 88. [Google Scholar] [CrossRef]
- Garlapati, V.K.; Banerjee, R. Solvent-Free Synthesis of Flavour Esters through Immobilized Lipase Mediated Transesterification. Enzym. Res. 2013, 2013, 367410. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Rodriguez, D.; Parker, T.L. Biological Activities of Frankincense Essential Oil in Human Dermal Fibroblasts. Biochimie Open. 2017, 4, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Al-Yasiry, A.; Kiczorowska, B. Frankincense—Therapeutic Properties. Postępy Hig. I Med. Doświadczalnej (Adv. Hyg. Exp. Med.) 2016, 70. [Google Scholar] [CrossRef]
- Cao, B.; Wei, X.-C.; Xu, X.-R.; Zhang, H.-Z.; Luo, C.-H.; Feng, B.; Xu, R.-C.; Zhao, S.-Y.; Du, X.-J.; Han, L.; et al. Seeing the Unseen of the Combination of Two Natural Resins, Frankincense and Myrrh: Changes in Chemical Constituents and Pharmacological Activities. Molecules 2019, 24, 3076. [Google Scholar] [CrossRef]
- Sharmeen, J.B.; Mahomoodally, F.M.; Zengin, G.; Maggi, F. Essential Oils as Natural Sources of Fragrance Compounds for Cosmetics and Cosmeceuticals. Molecules 2021, 26, 666. [Google Scholar] [CrossRef]
- Poudel, D.K.; Rokaya, A.; Ojha, P.K.; Timsina, S.; Satyal, R.; Dosoky, N.S.; Satyal, P.; Setzer, W.N. The Chemical Profiling of Essential Oils from Different Tissues of Cinnamomum camphora L. and Their Antimicrobial Activities. Molecules 2021, 26, 5132. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2007. [Google Scholar]
- Satyal, P. Development of GC-MS Database of Essential Oil Components by the Analysis of Natural Essential Oils and Synthetic Compounds and Discovery of Biologically Active Novel Chemotypes in Essential Oils. Ph.D. Thesis, University of Alabama, Huntsville, AL, USA, 2015. [Google Scholar]
R.I | Compounds | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11 | F12 | F13 | F14 | F15 | F16 | F17 | F18 | F19 | F20 | F21 | F22 | F23 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
924 | α-Thujene | 5.6 | 11.0 | 39.4 | 2.2 | 0.4 | 9.5 | 3.4 | 7.3 | 9.2 | 6.7 | 8.9 | 52.9 | 3.4 | 11.1 | 5.5 | 9.0 | 4.4 | 11.6 | 9.4 | 11.0 | 5.4 | 9.1 | 9.2 |
931 | α-Pinene | 40.3 | 37.2 | 19.1 | 35.5 | 37.9 | 29.0 | 46.4 | 29.2 | 29.8 | 27.8 | 29.8 | 10.6 | 31.0 | 38.8 | 41.9 | 24.1 | 31.1 | 30.6 | 27.4 | 41.2 | 36.8 | 31.8 | 33.3 |
948 | Camphene | 0.4 | 0.6 | 0.2 | 1.1 | 1.7 | 1.5 | 1.2 | 1.3 | 1.4 | 1.0 | 1.4 | 0.2 | 0.8 | 0.4 | 0.4 | 0.4 | 0.9 | 0.7 | 1.5 | 1.4 | 0.4 | 0.7 | 0.8 |
972 | Sabinene | 6.8 | 4.6 | 4.0 | 4.4 | 5.6 | 4.9 | 3.2 | 2.7 | 5.7 | 4.2 | 4.6 | 8.0 | 3.7 | 4.5 | 6.4 | 5.1 | 3.9 | 4.2 | 5.6 | 5.8 | 2.9 | 3.5 | 3.2 |
978 | β-Pinene | 5.3 | 3.9 | 5.1 | 2.0 | 3.7 | 2.9 | 4.5 | 1.8 | 3.5 | 2.3 | 2.7 | 0.7 | 1.6 | 3.8 | 4.9 | 3.0 | 1.7 | 2.3 | 2.9 | 3.7 | 3.9 | 2.1 | 2.4 |
989 | Myrcene | 1.5 | 3.5 | 0.7 | 5.3 | 6.5 | 4.8 | 3.4 | 3.6 | 4.6 | 3.2 | 4.5 | 1.4 | 4.2 | 2.3 | 1.5 | 3.7 | 7.1 | 0.5 | 5.0 | 3.3 | 1.9 | 3.2 | 3.4 |
1008 | α-Phellandrene | 2.4 | 2.6 | 1.9 | 4.1 | 4.3 | 3.0 | 1.8 | 2.2 | 2.3 | 1.9 | 2.8 | 2.5 | 2.1 | 1.8 | 2.3 | 2.2 | 2.6 | t | 2.3 | 0.7 | 0.8 | 1.6 | 1.4 |
1009 | δ-3-Carene | 1.6 | 0.9 | 5.8 | 2.6 | 0.8 | 1.4 | 0.8 | 1.4 | 1.0 | 2.4 | 1.4 | 5.8 | 0.9 | 0.7 | 1.5 | 1.4 | 0.6 | 3.1 | 0.9 | 1.0 | 0.6 | 0.9 | 0.7 |
1024 | p-Cymene | 3.6 | 2.4 | 6.1 | 5.5 | 5.3 | 5.2 | 4.5 | 4.9 | 4.9 | 4.4 | 5.0 | 3.3 | 3.7 | 3.1 | 3.3 | 4.3 | 4.5 | 10.1 | 5.5 | 4.9 | 3.0 | 5.5 | 5.6 |
1027 | Octyl methyl ether | - | 0.1 | - | - | - | - | 0.2 | - | 0.1 | - | - | - | 0.7 | t | - | - | t | - | - | 0.3 | - | - | - |
1028 | Limonene | 8.6 | 10.4 | 3.9 | 18.6 | 21.0 | 25.5 | 18.2 | 23.2 | 26.0 | 21.4 | 26.1 | 3.0 | 12.3 | 10.4 | 8.1 | 14.3 | 14.2 | 5.4 | 25.6 | 17.3 | 12.4 | 10.1 | 10.1 |
1195 | α-Terpineol | 0.5 | 0.3 | 0.2 | 0.5 | 0.1 | 0.2 | 0.4 | 0.6 | 0.2 | 0.6 | 0.2 | t | 0.5 | 0.3 | 0.5 | 0.4 | 0.4 | 2 | 0.1 | 0.2 | 0.3 | 0.8 | 0.8 |
1198 | Methyl chavicol | t | 0.1 | 1.8 | - | - | 0.2 | 0.1 | 0.1 | 0.3 | 0.2 | 0.2 | 2.2 | - | 0.1 | t | 0.1 | - | 3.8 | 0.3 | 0.1 | 0.1 | - | - |
1209 | Octyl acetate | 4.2 | 5.2 | - | - | t | - | 0.3 | 0.5 | 0.3 | 0.6 | t | - | 0.1 | 4.7 | 3.9 | 0.1 | 0.1 | - | 0.1 | 0.4 | 7.7 | 0.9 | 1.0 |
1228 | Decyl methyl ether | 0.2 | 0.3 | - | - | t | - | 0.7 | t | 0.4 | 0.2 | - | - | 3.0 | t | 0.2 | t | 0.1 | - | 0.1 | 1.2 | 0.1 | - | - |
1381 | β-Bourbonene | 0.1 | 0.1 | 0.3 | 0.1 | t | 0.1 | 0.2 | 0.1 | 0.2 | 0.2 | 0.1 | 0.6 | 0.5 | 0.1 | 0.1 | 0.2 | 0.1 | 2.1 | 0.1 | 0.2 | 0.1 | 0.3 | 0.3 |
1417 | (E)-β-Caryophyllene | 7.2 | 4.1 | t | 2.7 | 4.6 | 1.3 | 0.8 | 2.9 | 1.2 | 2.6 | 1.3 | - | 3.9 | 4.2 | 6.8 | 4 | 3.3 | 0.4 | 1.9 | 0.7 | 5.8 | 1.8 | 1.9 |
1585 | Ethyl isopropyl phthalate | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.1 | - | - | - | - | - |
2057 | Ricinelaidic acid lactone | - | - | - | - | - | - | - | - | - | - | t | t | - | - | - | - | - | - | t | 0.1 | - | - | - |
2145 | Serratol | 1.0 | 0.5 | t | - | - | 0.1 | 0.3 | - | - | - | 0.2 | 0.1 | 2.1 | 1.6 | 1.6 | 1.7 | 0.3 | 1.3 | 0.2 | 0.1 | 1.7 | 0.7 | 0.7 |
2146 | Incensole | - | 0.1 | - | - | - | - | 0.1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.2 | 0.1 |
2149 | Incensyl acetate | t | 0.2 | - | t | t | t | - | t | - | - | - | - | - | 0.3 | - | t | - | - | t | - | - | - | - |
2330 | Copalic acid | - | - | - | - | - | - | - | - | - | - | - | - | - | - | t | - | - | - | - | - | - | - | - |
2678 | Methyl commate isomer | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 7.1 | - | - | - | - | - | - |
2792 | Methyl commate B | - | 0.9 | - | 0.1 | - | - | - | - | - | - | - | 0.3 | - | - | - | - | - | - | - | - | - | - | - |
Chiral Compounds | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11 | F12 | F13 | F14 | F15 | F16 | F17 | F18 | F19 | F20 | F21 | F22 | F23 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
α-Thujene | (+) 0.0: (–) 100.0 | (+) 0.0: (–) 100.0 | (+) 100.0: (–) 0.0 | (+) 0.0: (–) 100.0 | (+) 11.4: (–) 88.6 | (+) 0.0: (–) 100.0 | (+) 0.0: (–) 100.0 | (+) 0.0: (–) 100.0 | (+) 0.0: (–) 100.0 | (+) 0.0: (–) 100.0 | (+) 0.0: (–) 100.0 | (+) 100.0: (–) 0.0 | (+) 0.0: (–) 100.0 | (+) 0.0: (–) 100.0 | (+) 7.6: (–) 92.4 | (+) 0.0: (–) 100.0 | (+) 0.0: (–) 100.0 | (+) 0.0: (–) 100.0 | (+) 0.0: (–) 100.0 | (+) 0.0: (–) 100.0 | (+) 0.0: (–) 100.0 | (+) 0.0: (–) 100.0 | (+) 0.0: (–) 100.0 |
α-Pinene | (+) 53.3: (–) 46.7 | (+) 54.3: (–) 45.7 | (+) 77.9: (–) 22.1 | (+) 41.2: (–) 58.8 | (+) 26.5: (–) 73.5 | (+) 28.4: (–) 71.6 | (+) 40.3: (–) 59.7 | (+) 31.9: (–) 68.1 | (+) 31.6: (–) 68.4 | (+) 36.5: (–) 63.5 | (+) 31.0: (–) 69.0 | (+) 64.8: (–) 35.2 | (+) 45.7: (–) 54.3 | (+) 52.7: (–) 47.3 | (+) 53.2: (–) 46.8 | (+) 42.1: (–) 57.9 | (+) 47.0: (–) 53.0 | (+) 88.5: (–) 11.5 | (+) 28.6: (–) 71.4 | (+) 25.3: (–) 74.7 | (+) 50.8: (–) 49.2 | (+) 44.4: (–) 55.6 | (+) 42.1: (–) 57.9 |
Camphene | (+) 40.3: (–) 59.7 | (+) 43.9: (–) 56.1 | (+) 33.0: (–) 67.0 | (+) 46.3: (–) 53.7 | (+) 29.1: (–) 70.9 | (+) 31.3: (–) 68.7 | (+) 34.4: (–) 65.6 | (+) 30.4: (–) 69.6 | (+) 30.1: (–) 69.9 | (+) 28.9: (–) 71.1 | (+) 30.8: (–) 69.2 | (+) 100.0: (–) 0.0 | (+) 52.7: (–) 47.3 | (+) 46.1: (–) 53.9 | (+) 39.5: (–) 60.5 | (+) 46.8: (–) 53.2 | (+) 53.2: (–) 46.8 | (+) 60.5: (–) 39.5 | (+) 27.7: (–) 72.3 | (+) 24.4: (–) 75.6 | (+) 47.4: (–) 52.6 | (+) 42.2: (–) 57.8 | (+) 45.6: (–) 54.4 |
Sabinene | (+) 7.2: (–) 92.8 | (+) 13.3: (–) 86.7 | (+) 19.6: (–) 80.4 | (+) 7.5: (–) 92.5 | (+) 6.1: (–) 93.9 | (+) 8.1: (–) 91.9 | (+) 15.2: (–) 84.8 | (+) 10.3: (–) 89.7 | (+) 10.2: (–) 89.8 | (+) 20.0: (–) 80.0 | (+) 7.0: (–) 93.0 | (+) 20.0: (–) 80.0 | (+) 20.9: (–) 79.1 | (+) 9.4: (–) 90.6 | (+) 7.4: (–) 92.6 | (+) 14.7: (–) 85.3 | (+) 8.9: (–) 91.1 | (+) 46.9: (–) 53.1 | (+) 8.4: (–) 91.6 | (+) 11.6: (–) 88.4 | (+) 9.5: (–) 90.5 | (+) 16.3: (–) 83.7 | (+) 16.8: (–) 83.2 |
β-Pinene | (+) 7.3: (–) 92.7 | (+) 10.5: (–) 89.5 | (+) 4.7: (–) 95.3 | (+) 33.0: (–) 67.0 | (+) 6.6: (–) 93.4 | (+) 8.8: (–) 91.2 | (+) 8.4: (–) 91.6 | (+) 15.4: (–) 84.6 | (+) 8.5: (–) 91.5 | (+) 14.9: (–) 85.1 | (+) 14.6: (–) 85.4 | (+) 19.2: (–) 80.8 | (+) 27.4: (–) 72.6 | (+) 7.9: (–) 92.1 | (+) 7.5: (–) 92.5 | (+) 9.7: (–) 90.3 | (+) 30.2: (–) 69.8 | (+) 14.0: (–) 86.0 | (+) 8.2: (–) 91.8 | (+) 8.4: (–) 91.6 | (+) 7.4: (–) 92.6 | (+) 17.4: (–) 82.6 | (+) 15.0: (–) 85.0 |
Limonene | (+) 40.4: (–) 59.6 | (+) 45.9: (–) 54.1 | (+) 71.1: (–) 28.9 | (+) 11.3: (–) 88.7 | (+) 76.3: (–) 23.7 | (+) 35.3: (–) 64.7 | (+) 53.2: (–) 46.8 | (+) 41.6: (–) 58.4 | (+) 35.3: (–) 64.7 | (+) 44.3: (–) 55.7 | (+) 41.6: (–) 58.4 | (+) 84.7: (–) 15.3 | (+) 23.0: (–) 77.0 | (+) 36.9: (–) 63.1 | (+) 40.6: (–) 59.4 | (+) 22.0: (–) 78.0 | (+) 15.8: (–) 84.2 | (+) 90.5: (–) 9.5 | (+) 33.3: (–) 66.7 | (+) 56.4: (–) 43.6 | (+) 44.7: (–) 55.3 | (+) 16.5: (–) 83.5 | (+) 15.2: (–) 84.8 |
Terpinen-4-ol | (+) 31.0: (–) 69.0 | (+) 33.3: (–) 66.7 | (+) 25.9: (–) 74.1 | (+) 28.9: (–) 71.1 | (+) 29.7: (–) 70.3 | (+) 28.4: (–) 71.6 | (+) 38.1: (–) 61.9 | (+) 29.2: (–) 70.8 | (+) 34.6: (–) 65.4 | (+) 36.3: (–) 63.7 | (+) 30.0: (–) 70.0 | (+) 29.4: (–) 70.6 | (+) 34.1: (–) 65.9 | (+) 31.1: (–) 68.9 | (+) 30.7: (–) 69.3 | (+) 27.0: (–) 73.0 | (+) 29.0: (–) 71.0 | (+) 28.2: (–) 71.8 | (+) 28.9: (–) 71.1 | (+) 39.7: (–) 60.3 | (+) 32.4: (–) 67.6 | (+) 31.1: (–) 68.9 | (+) 29.8: (–) 70.2 |
α-Terpineol | (+) 17.4: (–) 82.6 | (+) 33.9: (–) 66.1 | (+) 37.1: (–) 62.9 | (+) 31.4: (–) 68.6 | (+) 31.3: (–) 68.7 | (+) 38.1: (–) 61.9 | (+) 40.1: (–) 59.9 | (+) 34.0: (–) 66.0 | (+) 38.5: (–) 61.5 | (+) 34.8: (–) 65.2 | (+) 30.4: (–) 69.6 | nd | (+) 34.0: (–) 66.0 | (+) 30.6: (–) 69.4 | (+) 16.5: (–) 83.5 | (+) 28.6: (–) 71.4 | (+) 34.1: (–) 65.9 | (+) 57.3: (–) 42.7 | (+) 32.7: (–) 67.3 | (+) 33.4: (–) 66.6 | (+) 30.3: (–) 69.7 | (+) 32.2: (–) 67.8 | (+) 31.1: (–) 68.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ojha, P.K.; Poudel, D.K.; Rokaya, A.; Satyal, R.; Setzer, W.N.; Satyal, P. Comparison of Volatile Constituents Present in Commercial and Lab-Distilled Frankincense (Boswellia carteri) Essential Oils for Authentication. Plants 2022, 11, 2134. https://doi.org/10.3390/plants11162134
Ojha PK, Poudel DK, Rokaya A, Satyal R, Setzer WN, Satyal P. Comparison of Volatile Constituents Present in Commercial and Lab-Distilled Frankincense (Boswellia carteri) Essential Oils for Authentication. Plants. 2022; 11(16):2134. https://doi.org/10.3390/plants11162134
Chicago/Turabian StyleOjha, Pawan Kumar, Darbin Kumar Poudel, Anil Rokaya, Rakesh Satyal, William N. Setzer, and Prabodh Satyal. 2022. "Comparison of Volatile Constituents Present in Commercial and Lab-Distilled Frankincense (Boswellia carteri) Essential Oils for Authentication" Plants 11, no. 16: 2134. https://doi.org/10.3390/plants11162134
APA StyleOjha, P. K., Poudel, D. K., Rokaya, A., Satyal, R., Setzer, W. N., & Satyal, P. (2022). Comparison of Volatile Constituents Present in Commercial and Lab-Distilled Frankincense (Boswellia carteri) Essential Oils for Authentication. Plants, 11(16), 2134. https://doi.org/10.3390/plants11162134