Achievements, Developments and Future Challenges in the Field of Bioherbicides for Weed Control: A Global Review
Abstract
:1. Introduction
2. Bioherbicides and Their Mechanisms
3. Bacteria
4. Fungi (Mycoherbicides)
5. Plant Extracts (Allelochemicals and Essential Oils)
Plant Source | Target Weed(s) | Effect a | Mode of Action | Commercial | Reference | |
---|---|---|---|---|---|---|
Allelochemicals | Canavalia ensiformis extract (50 g L−1) | Commelina benghalensis (Benghal dayflower) | **** | Causes inhibition of plant growth and development | X | [82] |
Ipomoea grandifolia (little bell) | **** | |||||
Cirsium setosum (HL-1 isolate) | Chenopodium album (goosefoot) | *** | Creates high levels of phytotoxins that inhibit seed germination and plant growth | X | [83] | |
Galium aparine (cleavers) | *** | |||||
Malva crispa (Chinese mallow | *** | |||||
Polygonum lapathifolium (pale knotweed | *** | |||||
Cynara cardunculus (Ethanol + Lyophilized leaf extracts) | Amaranthus retroflexus (redroot pigweed), Anagallis arvensis (scarlet pimpernel), Phalaris minor (little seed canary grass), Portulaca oleracea (little hogweed), Stellaria media (chickweed), Sylibum marianum (milk thistle), Trifolium incarnatum (crimson clover) | **** | Induces oxidative stress and disrupts physiological and biochemical functions within the plant cells. | X | [84,85] | |
Juglans nigra (black walnut) extracts (>42.9% concentration) | Convolvulus arvensis (field bindweed) | **** | Inhibits H+-ATPase activity decreases photosynthesis and reduces root, leaf and cotyledon production | NatureCur® (USA). Limited availability. | [86] | |
Conyza bonariensis (hairy fleabane) | **** | |||||
Conyza canadensis (horseweed) | **** | |||||
Echinochloa crus-galli (barnyard | **** | |||||
Ipomoea purpurea (tall annual) | **** | |||||
Portulaca oleraceae (common purslane) | **** | |||||
Solanum nigrum (black nightshade) | **** | |||||
Lantana camara cold and hot extracts | Avena fatua (common wild oats) | *** | Allelopathic compounds (aromatic) present in the plant cause the suppression of plant growth and germination | X | [81] | |
Euphorbia helioscopia (sun spurge) | *** | |||||
Phalaris minor (little seed canarygrass) | *** | |||||
Rumex dentatus (toothed dock) | *** | |||||
Ocimum basilicum extracts | Amaranthus species | *** | Inhibits germination, growth and root/shoot elongation | X | [87] | |
Portulaca species | *** | |||||
Sorghum bicolor (great millet) | Amaranthus retroflexus (redroot pigweed), Ambrosia artemisiifolia (common ragweed), Cassia obtusifolia (sicklepod), Coronopus didyum (lesser swinecress), Cyperus rotundus (purple nutsedge), Phalaris minor (littleseed canary grass), Solanum nigrum (black nightshade) | - | Inhibits photosynthetic apparatus by altering the uptake of solutes and water molecules. | X | [88] | |
Essential Oils | Corymbia citriodora, formerly Eucalyptus citriodora (formerly, oil (0.03% concentration) | Avena fatua (common wild oat) | **** | Impacts chlorophyll and cellular membranes causing chlorophyll and cell disruption | X | [94] |
Sinapis arvensis (charlock) | **** | |||||
Sonchus oleraceus (common sowthistle) | **** | |||||
Corymbia citriodora, formerly Eucalyptus citriodora oil (0.06% concentration) | Amaranthus viridis (slender amaranth) | **** | Inhibits seed germination and plant growth by affecting photosynthetic and respiratory metabolism. | X | [91] | |
Bidens pilosa (blackjack) | **** | |||||
Leucaena leucocephala (lead tree) | **** | |||||
Rumex nepalensis (nepal dock) | **** | |||||
Corymbia citriodora, formerly Eucalyptus citriodora oil (5.0 nL mL−1 concentration) | Parthenium hysterophorus (parthenium weed) | **** | Causes rapid electrolyte leakage, which impacts membrane integrity. | X | [98] | |
Eucalyptus globulus oil + Syzygium aromaticcum (Clove) oil (10% concentration) | Chenopodium album (goosefoot) | *** | Causes rapid electrolyte leakage and cellular membrane disruption. | X | [95] | |
Melilotus indicus (Indian sweet clover) | *** | |||||
Raphanus raphanistrum (wild radish) | *** | |||||
Sisymbrium irio (London rocket) | *** | |||||
Lemon-scented Eucalyptus citriodora oil (0.07% concentration) | Phalaris minor (littleseed canary grass) | **** | Impacts the photosynthetic and respiratory ability of treated plants. | X | [91] | |
Manuka oil mixture from Leptospermum scoparium (manuka tree) | Avena sterilis (sterile oat) | **** | Natural b-triketones inhibit the biosynthesis of tocochromanols and prenyl quinones. | X | [92,96] | |
Galium aparine (clever) | **** | |||||
Lolium rigidum (rigid ryegrass) | **** | |||||
Pine oil (10% concentration) + sugar | Nassella trichotoma (Serrated tussock) other herbaceous and grassy weeds | - | Inhibits seed germination and plant growth. | Bioweed™ | [93] |
6. Viruses
7. Achievements, Developments and Future Challenges
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Llewellyn, R.S.; Ronning, D.; Ouzman, J.; Walker, S.; Mayfield, A.; Clarke, M. Impact of Weeds on Australian Grain Production: The Cost of Weeds to Australian Grain Growers and the Adoption of Weed Management and Tillage Practices, Report for GRDC. CSIRO: Canberra, Australia, 2016; p. 112. ISBN 978-1-921779-91. [Google Scholar]
- Aneja, K.R.; Khan, S.A.; Aneja, A. Bioherbicides: Strategies, Challenges and Prospects. In Developments in Fungal Biology and Applied Mycology; Satyanarayana, T., Deshmukh, S., Johri, B., Eds.; Springer: Berlin, Germany, 2017; pp. 449–470. [Google Scholar] [CrossRef]
- Gharde, Y.; Singh, P.K.; Dubey, R.P.; Gupta, P.K. Assessment of yield and economic losses in agriculture due to weeds in India. Crop Prot. 2018, 107, 12–18. [Google Scholar] [CrossRef]
- Chauhan, B.S. Grand challenges in weed management. Front. Agron. 2020, 1, 1–4. [Google Scholar] [CrossRef]
- Qu, R.; He, B.; Yang, J.; Lin, H.; Yang, W.; Wu, Q.; Li, Q.X.; Yang, G. Where are the new herbicides? Pest Manag. Sci. 2021, 77, 2620–2625. [Google Scholar] [CrossRef] [PubMed]
- Bailey, K.L.; Boyetchko, S.M.; Langle, T. Social and economic drivers shaping the future of biological control: A Canadian perspective on the factors affecting the development and use of microbial biopesticides. Biol. Control 2010, 52, 221–229. [Google Scholar] [CrossRef]
- Bailey, K.L. The Bioherbicide Approach to Weed Control Using Plant Pathogens. In Integrated Pest Management: Current Concepts and Ecological Perspective; Abrol, D.P., Ed.; Integrated Pest Management: San Diego, CA, USA, 2014; Chapter 13; pp. 245–266. [Google Scholar] [CrossRef]
- Czaja, K.; Góralczyk, K.; Struciński, P.; Hernik, A.; Korcz, W.; Minorczyk, M.; Łyczewska, M.; Ludwicki, J.K. Biopesticides-towards increased consumer safety in the European Union. Pest Manag. Sci. 2015, 71, 3–6. [Google Scholar] [CrossRef]
- Cordeau, S.; Triolet, M.; Wayman, S.; Steinberg, C.; Guillemin, J.P. Bioherbicides: Dead in the water? A review of the existing products for integrated weed management. Crop Prot. 2016, 87, 44–49. [Google Scholar] [CrossRef]
- Gaines, T.A.; Busi, R.; Küpper, A. Can new herbicide discovery allow weed management to outpace resistance evolution? Pest Manag Sci. 2021, 77, 3036–3041. [Google Scholar] [CrossRef]
- Korres, N.E.; Burgos, N.R.; Travlos, I.; Vurro, M.; Gitsopoulos, T.K.; Varanasi, V.K.; Duke, S.O.; Kudsk, P.; Brabham, C.; Rouse, C.E.; et al. New directions for integrated weed management: Modern technologies, tools and knowledge discovery. Adv. Agron. 2019, 55, 243–319. [Google Scholar] [CrossRef]
- Heap, I.M.; Current Status of the International Herbicide-Resistant Weed Database. International Herbicide-Resistant Weed Database. 2021. Available online: http://www.weedscience.org (accessed on 15 November 2021).
- Bordin, E.; Frumi Camargo, A.; Stefanski, F.; Scapini, T.; Bonatto, C.; Zanivan, J.; Preczeski, K.; Modkovski, T.A.; Reichert Júnior, F.; MossI, A.J.; et al. Current production of bioherbicides: Mechanisms of action and technical and scientific challenges to improve food and environmental security. Biocatal. Biotransform. 2020, 39, 346–359. [Google Scholar] [CrossRef]
- Bo, A.B.; Khaitov, B.; Umurzokov, M.; Cho, K.M.; Park, K.W.; Choi, J.S. Biological control using plant pathogens in weed management. Weed Turf. Sci. 2019, 9, 11–19. [Google Scholar] [CrossRef]
- Radi, H.C.; Banaei-Moghaddam, A.M. Biological control of weeds by fungi: Challenges and opportunities. Acta Sci. Microbiol. 2020, 3, 62–70, ISSN: 2581-3226. [Google Scholar] [CrossRef]
- Rai, M.; Zimowska, B.; Shinde, S.; Tres, M.V. Bioherbicidal potential of different species of Phoma: Opportunities and challenges, Appl. Microbiol. Biotechnol. 2021, 105, 3009–3018. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, M.; Sehrawat, N.; Arti, N.; Singh, R.; Kumar Upadhyay, S.; Kumar, S.; Yadav, M. Mycoherbicide control strategy: Concept, constraints, and advancements. Biopestic. Int. 2021, 17, 29–40. [Google Scholar]
- Pacanoski, Z. Bioherbicides. Herbicides, Physiology of Action, and Safety; IntechOpen: London, UK, 2015; Chapter 11; pp. 245–276. [Google Scholar] [CrossRef]
- Ferrell, J.; Charudattan, R.; Elliott, M.; Hiebert, E. Effects of selected herbicides on the efficacy of Tobacco mild green mosaic virus to control tropical soda apple (Solanum viarum). Weed Sci. 2008, 56, 128–132. [Google Scholar] [CrossRef]
- Kremer, R.J. Bioherbicides and Nanotechnology: Current Status and Future Trends. Nano-Biopesticides Today and Future Perspectives; Academic Press: Cambridge, MA, USA, 2019; Chapter 15; pp. 353–366. [Google Scholar] [CrossRef]
- Hershenhorn, J.; Casella, F.; Vurro, M. Weed biocontrol with fungi: Past, present and future. Biocontrol Sci. Technol. 2016, 26, 1313–1328. [Google Scholar] [CrossRef]
- Caldwell, C.J.; Hynes, R.K.; Boyetchko, S.M.; Korber, D.R. Colonization and bioherbicidal activity on green foxtail by Pseudomonas fluorescens BRG100 in a pesta formulation. Can. J. Microbiol. 2012, 58, 1–9. [Google Scholar] [CrossRef]
- Harding, D.P.; Raizada, M.N. Controlling weeds with fungi, bacteria and viruses: A review. Front Plant Sci. 2015, 6, 659–673. [Google Scholar] [CrossRef] [Green Version]
- Xie, C.J.; Wang, C.Y.; Wang, X.K.; Yang, X.Y. Proteomics-based analysis reveals that Verticillium dahliae toxin induces cell death by modifying the synthesis of host proteins. J. Gen. Plant Pathol. 2013, 79, 335–345. [Google Scholar] [CrossRef]
- Hoagland, R.E.; Weaver, M.A.; Boyette, C.D. Myrothecium verrucaria fungus; A bioherbicide and strategies to reduce its non-target risks. Allelopath. J. 2007, 9, 179–192, ISSN: 0971-4693. [Google Scholar]
- Vurro, M.; Boari, A.; Evidente, A.; Andolfi, A.; Zermane, N. Natural metabolites for parasitic weed management. Pest Manag. Sci. 2009, 65, 566–571. [Google Scholar] [CrossRef]
- Lee, S.M.; Radhakrishnan, R.; Kang, S.M.; Kim, J.H.; Lee, I.Y.; Moon, B.K.; Yoon, B.W.; Lee, I.J. Phytotoxic mechanisms of bur cucumber seed extracts on lettuce with special reference to analysis of chloroplast proteins, phytohormones, and nutritional elements. Ecotoxicol. Environ. Saf. 2015, 122, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Talukder, M.R.; Asaduzzaman, M.; Tanaka, H.; Asao, T. Application of alternating current electro-degradation improves retarded growth and quality in lettuce under autotoxicity in successive cultivation. Sci. Hortic. 2019, 252, 324–331. [Google Scholar] [CrossRef]
- Imaizumi, S.; Nishino, T.; Miyabe, K.; Fujimori, T.; Yamada, M. Biological control of annual bluegrass (Poa annua L.) with a Japanese isolate of Xanthomonas campestris pv. poae (JT-P482). Biol. Control 1997, 8, 7–14. [Google Scholar] [CrossRef]
- Boyette, C.D.; Hoagland, R.E. Bioherbicidal potential of a strain of Xanthomonas spp. for control of common cocklebur (Xanthium strumarium). Biocontrol Sci. Technol. 2013, 23, 183–196. [Google Scholar] [CrossRef]
- Boyette, C.D.; Hoagland, R.E. Bioherbicidal potential of Xanthomonas campestris for controlling Conyza canadensis. Biocontrol Sci. Technol. 2015, 25, 229–237. [Google Scholar] [CrossRef]
- Papaianni, M.; Paris, D.; Woo, S.L.; Fulgione, A.; Rigano, M.M.; Parrilli, E.; Tutino, M.L.; Marra, R.; Manganiello, G.; Casillo, A.; et al. Plant dynamic metabolic response to bacteriophage treatment after Xanthomonas campestris pv. campestris infection. Front Microbiol. 2020, 11, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Gealy, D.R.; Gurusiddaiah, S.; Ogg, A.G.; Kennedy, A.C. Metabolites from Pseudomonas fluorescens strain D7 inhibit downy brome (Bromus tectorum) seedling growth. Weed Technol. 1996, 10, 282–287. [Google Scholar] [CrossRef]
- Kennedy, A.C. Selective soil bacteria to manage downy brome, jointed goatgrass, and medusahead and do no harm to other biota. Biol. Control. 2018, 123, 18–27. [Google Scholar] [CrossRef]
- Pyke, D.A.; Shaff, S.E.; Gregg, M.A.; Conley, J.L. Weed-suppressive bacteria applied as a spray or seed mixture did not control Bromus tectorum. Rangel. Ecol. Manag. 2019, 73, 749–752. [Google Scholar] [CrossRef]
- Quail, J.W.; Ismail, N.; Pedras, M.S.C.; Boyetchko, S.M. Pseudophomins A and B, a class of cyclic lipodepsipeptides isolated from a Pseudomonas species. Acta Crystallogr. 2002, 58, 268–271. [Google Scholar] [CrossRef]
- Samad, A.; Antonielli, L.; Sessitsch, A.; Compant, S.; Trognitz, F. Comparative genome analysis of the vineyard weed endophyte Pseudomonas viridiflava CDRTc14 showing selective herbicidal activity. Sci. Rep. 2017, 7, 765–781. [Google Scholar] [CrossRef] [PubMed]
- Pugazhendhi, A.; Radhakrishnan, R.; Duc, P.A. Curtobacterium sp. MA01 generates oxidative stress to inhibit the plant growth. Biocatal. Agric. Biotechnol. 2019, 20, 101274. [Google Scholar] [CrossRef]
- Banowetz, G.M.; Azevedo, M.D.; Armstrong, D.J.; Halgren, A.B.; Mills, D.I. Germination-Arrest Factor (GAF): Biological properties of a novel, naturally-occurring herbicide produced by selected isolates of rhizosphere bacteria. Biol. Control 2008, 46, 380–390. [Google Scholar] [CrossRef]
- Halgren, A.; Maselko, M.; Azevedo, M.; Mills, D.; Armstrong, D.; Banowetz, G. Genetics of germination-arrest factor (GAF) production by Pseudomonas fluorescens WH6: Identification of a gene cluster essential for GAF biosynthesis. Microbiology 2013, 159, 36–45. [Google Scholar] [CrossRef]
- Hussain, M.I.; Abideen, Z.; Danish, S.; Asghar, M.A.; Iqbal, K. Integrated weed management for sustainable agriculture. In Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Charudattan, R.; Walker, H.L.; Boyette, C.D. Evaluation of Alternaria cassiae as a Mycoherbicide for Sicklepod (Cassia obtusifolia) in Regional Field Test. Southern Regional Cooperative Series Bulletin; Alabama Agricultural Experiment Station, Auburn University: Auburn, AL, USA, 1986; Volume 317. [Google Scholar]
- Dumas, M.T.; Wood, J.E.; Mitchell, E.G.; Boyonoski, N.W. Control of stump sprouting of Populus tremuloides and P. grandidentataby inoculation with Chondrostereum purpureum. Biol. Control 1997, 10, 37–41. [Google Scholar] [CrossRef]
- Boyette, C.D.; Hoagland, R.E.; Stetina, K.C. Extending the host range of the bioherbicidal fungus Colletotrichum gloeosporioides f. sp. aeschynomene. Biocontrol Sci. Technol. 2019, 29, 1–7. [Google Scholar] [CrossRef]
- Nandhini, C.; Ganesh, P.; Yoganathan, K.; Kumar, D. Efficacy of Colletotrichum gloeosporioides, potential fungi for biocontrol of Echinochloa crus-galli (Barnyard grass). J. Drug Deliv. Ther. 2019, 9, 72–75. [Google Scholar] [CrossRef]
- Galea, V.J. Use of stem implanted bioherbicide capsules to manage an infestation of Parkinsonia aculeata in Northern Australia. Plants 2021, 10, 1909. [Google Scholar] [CrossRef]
- Morris, M.J.; Wood, A.R.; den Breeÿen, A. Plant pathogens and biological control of weeds in South Africa: A review of projects and progress during the last decade. Afr. Entomol. 1999, 1, 129–137. [Google Scholar]
- Butt, T.M.; Copping, L.G. Fungal biological control agents. Pestic. Outlook 2000, 11, 186–191. [Google Scholar] [CrossRef]
- Green, S. A review of the potential for the use of bioherbicides to control forest weeds in the UK. Forestry 2003, 76, 285–298. [Google Scholar] [CrossRef]
- Charudattan, R. Ecological, practical, and political inputs into selection of weed targets: What makes a good biological control target? Biol. Control 2005, 35, 183–196. [Google Scholar] [CrossRef]
- Aneja, K.R.; Kumar, V.; Jiloha, P.; Kaur, M.; Sharma, C.; Surain, P.; Dhiman, R.; Aneja, A. Potential Bioherbicides: Indian Perspectives. In Biotechnology: Prospects and Applications; Salar, R., Gahlawat, S., Siwach, P., Duhan, J., Eds.; Springer: New Delhi, India, 2013; pp. 197–215. [Google Scholar] [CrossRef]
- Aneja, K.R.; Mehrotra, R.S. Textbook of Fungal Diversity and Biotechnology; New Age International Publishers: New Delhi, India, 2011; pp. 621–622. ISBN 8122430481. [Google Scholar]
- Weaver, M.A.; Hoagland, R.E.; Boyette, C.D.; Brown, S.P. Taxonomic evaluation of a bioherbicidal isolate of Albifimbria verrucaria, formerly Myrothecium verrucaria. J. Fungi. 2021, 7, 694. [Google Scholar] [CrossRef] [PubMed]
- Andersen, R.; Walker, H. Colletotrichum coccodes: A pathogen of Eastern Black Nightshade (Solanum ptycanthum). Weed Sci. 1985, 33, 902–905. [Google Scholar] [CrossRef]
- Wan, F.H.; Wang, R. Biological Weed Control in China: An Update Report on Alien Invasive Species. In Workshop on Alien Invasive Species; IUCN Regional Biodiversity Programme: Sri Jayawardenepura Kotte, Sri Lanka, 2001; pp. 8–19. [Google Scholar]
- Bowers, R.C. Commercialization of Collego™—an industrialist’s view. Weed Sci. 1986, 34, 24–25. [Google Scholar] [CrossRef]
- Mortensen, K. The potential of an endemic fungus, Colletotrichum gloeosporioides for biological control of round-leaved mallow (Malva pusilla) and velvet leaf (Abutilon theophrasti). Weed Sci. 1988, 36, 473–478. [Google Scholar] [CrossRef]
- Vieira, B.S.; Dias, L.V.S.A.; Langoni, V.D.; Lopes, E.A. Liquid fermentation of Colletotrichum truncatum UFU 280, a potential mycoherbicide for beggartick. Australas. Plant Pathol. 2018, 47, 277–283. [Google Scholar] [CrossRef]
- Kakhaki, S.H.N.; Montazeri, M.; Naseri, B. Biocontrol of broomrape using Fusarium oxysporum f. sp. orthoceras in tomato crops under field conditions. Biocontrol Sci. Technol. 2017, 27, 1435–1444. [Google Scholar] [CrossRef]
- Daniel, J.J.; Zabot, G.L.; Tres, M.V.; Harakava, R.; Kuhn, R.C.; Mazutti, M.A. Fusarium fujikuroi: A novel source of metabolites with herbicidal activity. Biocatal. Agric. Biotechnol. 2018, 14, 314–320. [Google Scholar] [CrossRef]
- Félix-Gastélum, R.; Valdez-Leyva, A.B.; Fierro-Coronado, R.A.; Maldonado-Mendoza, I.E. First report of stem blight and leaf spot in horse purslane caused by Gibbago trianthemae in Sinaloa, Mexico. Can. J. Plant Pathol. 2020, 43, 1–8. [Google Scholar] [CrossRef]
- Cimmino, A.; Andolfi, A.; Zonno, M.C.; Avolio, F.; Santini, A.; Tuzi, A.; Berestetskyi, A.; Vurro, M.; Evidente, A. Chenopodolin: A phytotoxic unrearranged entpimaradiene diterpene produced by Phoma chenopodicola, a fungal pathogen for Chenopodium album biocontrol. J. Nat. Prod. 2013, 7, 1291–1297. [Google Scholar] [CrossRef] [PubMed]
- Hynes, R.K. Phoma macrostoma: As a broad spectrum bioherbicide for turfgrass and agricultural applications. CABI Rev. 2018, 13, 1–9. [Google Scholar] [CrossRef]
- Todero, I.; Confortin, T.C.; Luft, L.; Brun, T.; Ugalde, G.A.; Almeida, T.C.; Arnemann, J.A.; Zabot, G.L.; Mazutti, M.A. Formulation of a bioherbicide with metabolites from Phoma sp. Sci. Hortic. 2018, 241, 285–292. [Google Scholar] [CrossRef]
- Ridings, W.H. Biological control of strangler vine in citrus—A researcher’s view. Weed Sci. 1986, 34, 31–32. [Google Scholar] [CrossRef]
- Kotzé, L.J.D.; Wood, A.R.; Lennox, C.L. Risk assessment of the Acacia cyclops dieback pathogen, Pseudolagarobasidium acaciicola, as a mycoherbicide in South African strandveld and limestone fynbos. Biol. Control 2015, 82, 52–60. [Google Scholar] [CrossRef]
- Phatak, S.C.; Sumner, D.R.; Wells, H.D.; Bell, D.K.; Glaze, N.C. Biological control of Yellow nutsedge with the indigenous rust fungus Puccinia canaliculata. Science 1983, 219, 1446–1447. [Google Scholar] [CrossRef]
- Abu-Dieyeh, M.H.; Watson, A.K. Grass over seeding and a fungus combine to control Taraxacum officinale. J. Appl. Ecol. 2007, 44, 115–124. [Google Scholar] [CrossRef]
- Reichert, F.W., Jr.; Scariot, M.A.; Forte, C.T.; Pandolfi, L.; Dil, J.M.; Weirich, S.; Carezia, C.; Mulinari, J.; Mazutti, M.A.; Fongaro, G.; et al. New perspectives for weeds control using autochthonous fungi with selective bioherbicide potential. Heliyon 2019, 5, e01676. [Google Scholar] [CrossRef]
- Zhu, H.; Ma, Y.; Guo, Q.; Xu, B. Biological weed control using Trichoderma polysporum strain HZ-31. Crop Prot. 2020, 134, 1–8. [Google Scholar] [CrossRef]
- Fernando, W.G.D.; Watson, A.K.; Paulitz, T.C. A simple technique to observe conidial germination on leaf surfaces. Mycologist 1993, 7, 188–189. [Google Scholar] [CrossRef]
- Fernando, W.G.D.; Watson, A.K.; Paulitz, T.C. Phylloplane Pseudomonas sp. enhances disease caused by Colletotrichum coccodes on velvetleaf. Biol. Control 1994, 4, 125–131. [Google Scholar] [CrossRef]
- Fernando, W.G.D.; Watson, A.K.; Paulitz, T.C. Role of Pseudomonas spp. and competition for iron, carbon and nitrogen in the enhancement of appressorium formation by Colletotrichum coccodes on velvetleaf. Eur. J. Plant Pathol. 1996, 102, 1–7. [Google Scholar] [CrossRef]
- Boyetchko, S.M.; Bailey, K.L.; Hynes, R.K.; Peng, G. Development of the Mycoherbicide, BioMal (R). In Biological Control: A Global Perspective; Vincent, C., Goettel, M.S., Lazarovits, G., Eds.; CABI Publishing: Wallingford, UK, 2007; pp. 274–283. [Google Scholar] [CrossRef]
- Zimdahl, R.L. Fundamentals of Weed Science; Elsevier: Amsterdam, The Netherlands, 2018; Chapter 12; pp. 359–389. ISBN 9780128111444. [Google Scholar]
- Osadebe, V.O.; Dauda, N.; Ede, A.E.; Chimdi, G.O.; Echezona, B.C. The use of bioherbicides in weed control: Constraints and prospects. Afr. J. Agric. Tech. 2021, 21, 37–54, ISSN: 2877-1990. [Google Scholar]
- Hasan, M.; Mokhtar, A.S.; Rosli, A.M.; Hamdan, H.; Motmainna, M.; Ahmad-Hamdani, M.S. Weed control efficacy and crop-weed selectivity of a new bioherbicide Weed Lock. Agronomy 2021, 11, 1488. [Google Scholar] [CrossRef]
- Duke, S.O.; Pan, Z.; Bajsa-Hirschel, J.; Boyette, C.D. The potential future roles of natural compounds and microbial bioherbicides in weed management in crops. Adv. Weed Sci. 2022, 40, 1–13. [Google Scholar] [CrossRef]
- Anese, S.; Jatoba, L.J.; Grisi, P.U.; Gualtieri, S.C.J.; Santos, M.F.C.; Berlinck, R.G.S. Bioherbicidal activity of drimane sesquiterpenes from Drimys brasiliensis Miers roots. Ind. Crop. Prod. 2015, 74, 28–35. [Google Scholar] [CrossRef]
- Tigre, R.C.; Pereira, E.C.; Silva, N.H.; Vicente, C.; Legaz, M.E. Potential phenolic bioherbicides from Cladonia verticillaris produce ultrastructural changes in Lactuca sativa seedlings. S. Afr. J. Bot. 2015, 98, 16–25. [Google Scholar] [CrossRef]
- Anwar, T.; Qureshi, H.; Mahnashi, M.H.; Kabir, F.; Parveen, N.; Ahmed, D.; Afzal, U.; Batool, S.; Awais, M.; Alyami, S.A.; et al. Bioherbicidal ability and weed management of allelopathic methyl esters from Lantana camara. Saudi J. Biol. Sci. 2021, 28, 4365–4374. [Google Scholar] [CrossRef]
- Mendes, I.D.S.; Rezende, M.O.O. Assessment of the allelopathic effect of leaf and seed extracts of Canavalia ensiformis as post emergent bioherbicides: A green alternative for sustainable agriculture. J. Environ. Sci. Health. 2014, 49, 374–380. [Google Scholar] [CrossRef]
- Cheng, L.; Zhu, H.X.; Wei, Y.H.; Guo, L.Z.; Weng, H.; Guo, Q.Y. Biological control of Qinghai plateau terrestrial weeds with the A. alternata HL-1. J. Plant Dis. Prot. 2021, 128, 1691–1704. [Google Scholar] [CrossRef]
- Ben Kaab, S.; Lins, L.; Hanafi, M.; Bettaieb Rebey, I.; Deleu, M.; Fauconnier, M.; Ksouri, R.; Jijaki, M.H.; De Clerck, C. Cynara cardunculus crude extract as a powerful natural herbicide and insight into the mode of action of its bioactive molecules. Biomolecules 2020, 10, 209. [Google Scholar] [CrossRef]
- Scavo, A.; Pandino, G.; Restuccia, A.; Mauromicale, G. Leaf extracts of cultivated cardoon as potential bioherbicide. Sci. Hortic. 2019, 261, 109024. [Google Scholar] [CrossRef]
- Shrestha, A. Potential of a Black walnut (Juglans nigra) extract product (NatureCur®) as a pre- and post-emergence bioherbicide. J. Sustain. Agric. 2009, 33, 810–822. [Google Scholar] [CrossRef]
- Mekky, M.S.; Hassanien, A.M.A.; Kamel, E.M.; Ismail, A.E.A. Allelopathic effect of Ocimum basilicum L. extracts on weeds and some crops and its possible use as new crude bio-herbicide. Ann. Agric. Sci. 2019, 64, 211–221. [Google Scholar] [CrossRef]
- Jesudas, P.A.; Kingsly, S.J.; Ignacimuthu, S. Sorgoleone from Sorghum bicolor as a potent bioherbicide. Res. J. Recent Sci. 2014, 3, 32–36, ISSN: 2277-2502. [Google Scholar]
- Bhowmik, P.; Inderjit, C. Challenges and opportunities in implementing allelopathy for natural weed management. Crop Prod. 2003, 22, 661–671. [Google Scholar] [CrossRef]
- Soltys, D.; Krasuska, U.; Bogatek, R.; Agnieszka Gniazdowska, A. Allelochemicals as Bioherbicides—Present and Perspectives. In Herbicides—Current Research and Case Studies in Use; Price, A.J., Kelton, J.A., Eds.; IntechOpen: London, UK, 2013; pp. 517–542. [Google Scholar] [CrossRef]
- Batish, D.R.; Singh, H.P.; Setia, N.; Kohli, R.K.; Kaur, S.; Yadav, S.S. Alternative control of littleseed canary grass using eucalypt oil. Agron. Sustain. Dev. 2007, 27, 171–177. [Google Scholar] [CrossRef]
- Dayan, F.E.; Howell, J.L.; Marais, J.P.; Ferreira, D.; Koivunen, M. Manuka Oil, a natural herbicide with preemergence activity. Weed Sci. 2011, 59, 464–469. [Google Scholar] [CrossRef]
- McLaren, D.A.; Butler, K.L.; Bonilla, J. Effects of Pine Oil, Sugar and Covers on Germination of Serrated Tussock and Kangaroo Grass in a Pot Trial. In Proceedings of the Nineteenth Australasian Weeds Conference—Science, Community and Food Security: The Weed Challenge, Hobart, Australia, 1–4 September 2014; Tasmanian Weed Society: Penguin, TAS, Australia, 2014; pp. 239–242, ISBN 9780646924540. [Google Scholar]
- Benchaa, S.; Hazzit, M.; Abdelkrim, H. Allelopathic effect of Eucalyptus citriodora essential oil and its potential use as bioherbicide. Chem. Biodivers. 2018, 15, e1800202. [Google Scholar] [CrossRef]
- Almarie, A. Bioherbicidal potential of Eucalyptus and clove oil and their combinations on four weedy species. Iraqi J. Sci. 2021, 62, 1494–1502. [Google Scholar] [CrossRef]
- Travlos, I.; Rapti, E.; Gazoulis, I.; Kanatas, P.; Tataridas, A.; Kakabouki, I.; Papastylianou, P. The herbicidal potential of different pelargonic acid products and essential oils against several important weed species. Agronomy 2020, 10, 1687. [Google Scholar] [CrossRef]
- Zanellato, M.; Masciarelli, E.; Casorri, L.; Boccia, P.; Sturchio, E.; Pezzella, M.; Cavalieri, A.; Caporali, F. The essential oils in agriculture as an alternative strategy to herbicides: A case study. Int. J. Environ. Health Res. 2009, 3, 198–213. [Google Scholar] [CrossRef]
- Singh, H.P.; Batish, D.R.; Setia, N.; Kohli, R.K. Herbicidal activity of volatile oils from Eucalyptus citriodora against Parthenium hysterophorus. Ann. Appl. Biol. 2005, 146, 89–94. [Google Scholar] [CrossRef]
- Diaz, R.; Manrique, V.; Hibbard, K.; Fox, A.; Roda, A.; Gandolfo, D.; McKay, F.; Medal, J.; Hight, S.; Overholt, W.A. Successful biological control of tropical soda apple (Solanales: Solanaceae) in Florida: A review of key program components. Fla. Entomol. 2014, 97, 179–190. [Google Scholar] [CrossRef]
- Charudattan, R.; Hiebert, E.; Currey, W.; Elliot, M.; DeValerio, J.; Maia, G. Design and testing of field application tools for a bioherbicide with a plant virus as active ingredient. Weeds-J. Asian-Pac. Weed Sci. Soc. 2020, 2, 34–45. [Google Scholar]
- Charudattan, R.; Hiebert, E. A Plant virus as a bioherbicide for Tropical Soda Apple. Solanum Viarum. Outlooks Pest Manag. 2007, 18, 167–171. [Google Scholar] [CrossRef]
- Elliott, M.S.; Massey, B.; Cui, X.; Hiebert, E.; Charudattan, R.; Waipara, N.; Hayes, L. Supplemental host range of Araujia mosaic virus, a potential biological control agent of moth plant in New Zealand. Australas. Plant Pathol. 2009, 38, 603–607. [Google Scholar] [CrossRef]
- Forray, A.; Tüske, M.; Gáborjányi, R. First report on the occurrence of pepino mosaic virus in Hungary. Növényvédelem 2004, 40, 471–474, ISSN: 0133-0829. [Google Scholar]
- Kazinczi, G.; Lukacs, D.; Takacs, A.; Horvath, J.; Gaborjanyi, R.; Nadasy, M.; Nadasy, E. Biological decline of Solanum nigrum due to virus infections. J. Plant Dis Prot. 2006, 32, 325–330. [Google Scholar]
- Kollmann, J.; Banuelos, M.J.; Nielsen, S.L. Effects of virus infection on growth of the invasive alien Impatiens glandulifera. Preslia 2007, 79, 33–44, ISSN: 0032-7786. [Google Scholar]
- Grand View Research Inc. GVR. Bioherbicides Market Size Worth $4.14 Billion by 2024. 2018. Available online: https://www.grandviewresearch.com/press-release/global-bioherbicides-market (accessed on 1 January 1970).
- DiTomaso, J.M.; van Steenwyk, R.A.; Nowierski, R.M.; Meyerson, L.A.; Doering, O.C.; Lane, E.; Cowan, P.E.; Zimmerman, K.; Pitcairn, M.J.; Dionigi, C.P. Addressing the needs for improving classical biological control programs in the USA. Biol. Control. 2017, 106, 35–39. [Google Scholar] [CrossRef]
- Giepen, M.; Neto, F.; Kopke, U. Controlling Weeds with Natural Phytotoxic Substances (NPS) in Direct Seeded Soybean. In Proceedings of the 4th ISOFAR Scientific Conference, Istanbul, Turkey, 13–15 October 2014; Rahmann, G., Aksoy, U., Eds.; ISOFAR: Westerau, Germany, 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Abbas, T.; Zahir, Z.A.; Naveed, M.; Kremer, R.J. Limitations of existing weed control practices necessitate development of alternative techniques based on biological approaches. Adv. Agron. 2018, 147, 239–280. [Google Scholar] [CrossRef]
- Verdeguer, M.; Sánchez-Moreiras, A.M.; Araniti, F. Phytotoxic effects and mechanism of action of essential oils and terpenoids. Plants 2020, 9, 1571. [Google Scholar] [CrossRef]
- Auld, B.A.; Hetherington, S.D.; Smith, H.E. Advances in bioherbicide formulation. Weed Biol. Manag. 2003, 3, 61–67. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Matloob, A.; Mahajan, G.; Aslam, F.; Florentine, S.K.; Jha, P. Emerging challenges and opportunities for education and research in weed science. Front. Plant Sci. 2017, 8, 1537–1550. [Google Scholar] [CrossRef] [PubMed]
- Matzrafi, M.; Seiwert, B.; Reemtsma, T.; Rubin, B.; Peleg, Z. Climate change increases the risk of herbicide-resistant weeds due to enhanced detoxification. Planta 2016, 244, 1217–1227. [Google Scholar] [CrossRef]
- Ziska, L.H. Climate change and the herbicide paradigm: Visiting the future. Agronomy 2020, 10, 1953. [Google Scholar] [CrossRef]
- Sun, Y.; Kaleibar, B.P.; Oveisi, M.; Müller-Schärer, H. Addressing climate change: What can plant invasion science and weed science learn from each other? Front. Agron. 2021, 2, 1–7. [Google Scholar] [CrossRef]
- Barros, S.; Pedrosa, J.L.F.; Gonçalves, D.R.; de Medeiros, F.C.L.; Carvalho, G.R.; Gonçalves, A.H.; Teixeira, P.V.V.Q. Herbicides of biological origin: A review. J. Hortic. Sci. Biotechnol. 2021, 96, 1–9. [Google Scholar] [CrossRef]
- Kaab, S.B.; Rebey, I.B.; Hanafi, M.; Hammi, K.M.; Smaoui, A.; Fauconnier, M.L.; De Clerck, C.; Jijakli, M.H.; Ksouri, R. Screening of Tunisian plant extracts for herbicidal activity and formulation of a bioherbicide based on Cynara cardunculus. S. Afr. J. Bot. 2020, 128, 67–76. [Google Scholar] [CrossRef]
Bacterial Source | Target Weed(s) | Effect a | Mode of Action | Commercial | Reference |
---|---|---|---|---|---|
Curtobacterium sp. MA01 | Petunia spp. | - | Alters enzymatic and metabolic reactions including the degradation of protein synthesis and lipid peroxidation. | X | [32] |
Pseudomonas fluorescens D7 | Aegilops cylindrica (jointed goatgrass); Bromus tectorum (downy brome); Taeniatherum caput-medusae (medusa-head) | ** | Colonizes root structures and interferes with the enzymes that use pyridoxal phosphate as a cofactor. | X | [33,34] |
Pseudomonas fluorescens D7 | Bromus tectorum (cheatgrass) | * | X | [35] | |
Pseudomonas fluorescens BRG100 | Setaria viridis (green foxtail) | - | Interferes with plant hormones and metabolism, inhibiting roots and shoots. | X | [22,36] |
Pseudomonas viridiflava CDRTC14 | Lepidium draba (hoary cress) | - | Alters plant hormones and metabolism. | X | [37] |
Xanthomonas campestris pv. poae (JT-P482) | Poa annua (annual bluegrass); Poa attenuata (meadow-grass) | **** | Suppresses growth and causes black rot disease. | Camperico™ | [29,32] |
Xanthomonas campestris (LVA-987) | Ambrosia artemisifolia (common ragweed) | *** | Suppresses growth and causes black rot disease. | X | [30,31,32] |
Ambrosia trifida (giant ragweed) | *** | ||||
Conyza canadensis (marestail) | **** | ||||
Xanthomonas spp. (common cocklebur) | **** |
Fungal Source | Target Weed(s) | Effect a | Mode of Action | Commercial | Reference |
---|---|---|---|---|---|
Alternaria cassiae | Cassia obtusifolia (sicklepod), Cassia occidentalis (coffee senna), Crotalaria spectablis (showy crotalaria) | - | Causes parasitic leaf blight and damage to the plant. | Casst™ (USA). No longer available. | [42] |
Alternaria destruens | Cuscuta spp. (dodder) | - | Inhibits plant growth and development. | Smolder® (USA). No longer available. | [51,52] |
Albifimbria verrucaria, formally Myrothecium verrucaria | Pueraria lobata (kudzu) | **** | Inhibits seed germination and early plant growth. | X | [25,53] |
Chondrostereum purpureum | Prunus serotina (black/wild cherry) | - | Prevents stumps from resprouting and increases woody decay. | BioChon™ (The Netherlands). No longer available. | [43] |
Chondrostereum purpureum | hardwoods and deciduous trees and shrubs | - | Causes stump decay and prevents resprouting. | Chontrol™/EcoClear™/ MycoTech™ | [6,50] |
Colletotrichum coccodes | Abutilon theophrasti Medicus (velvetleaf) | - | Causes inoculation damage and prevents plant growth and production. | Velgo® (Canada). No longer available. | [48,54] |
Colletotrichum gloeosporioides | Echinochloa crus-galli (barnyard grass) | - | Causes severe infection and leaf spot disease in the plant. | Lubao 1 and Lubao 2 (China). Limited availability. | [45,55] |
Cuscuta chinensis Lamarck (Chinese dodder) and Cuscuta australis r brown (Australian dodder) | **** | ||||
Colletotrichum gloeosporioides f. sp. aeschynomene | Aeschynomene virginica (jointvetch) | **** | Induces anthracnose lesions on the plants’ stems. | Collego™/LockDown™ | [7,9,44,56] |
Aeschynomene indica (Indian jointvetch) | **** | ||||
Sesbania exaltata (hemp sebania) | **** | ||||
Colletotrichum gloeosporioides f. sp. malvae | Malva pusilla (round-leaved mallow) | - | Causes lesions within the plant’s flowers, leaves and stems. | BioMal® (Canada) No longer available. | [57] |
Colletotrichum truncatum | Bidens pilosa (beggartick) | **** | Inhibits plant growth and seed germination. | X | [58] |
Cylindrobasidium laeve | Acacia mearnsii (black wattle), Acacia pycnantha (golden wattle), Poa annua (winter grass) | - | Accelerates the decomposition of stumps and roots. | Stumpout™ | [47,49] |
Fusarium oxysporum f. sp. orthoceras | Orobanche spp. (broomrape) | *** | Causes lesions on the leaves. | X | [59] |
Fusarium fujikuroi Sawada. | Cucumis sativus L. (cucumber) and Sorghum bicolour L. (great millet) | ** | Causes chlorosis and necrosis. | X | [60] |
Gibbago trianthemae | Trianthema portulacastrum (horse purslane) | - | Causes stem blight and leaf spot disease | X | [61] |
Lasiodiplodia pseudotheobromae, Macrophomina phaseolina and Neoscytalidium novaehollandiae | Parkinsonia aculeata (parkinsonia) | - | Produces harmful toxins and enzymes that disarm the plants’ defence mechanisms, leading to cell and tissue degradation. | Di-Bak Parkinsonia™ | [46] |
Phoma chenopodicola | Chenopodium album (lamb’s quarter) | - | Causes extensive necrotic lesions | X | [62] |
Phoma macrostoma Montagne 94–44B | Broadleaf weeds such as Taraxacum officinale (dandelion) | - | Colonizes and passes into the root system which causes mycelium to obstruct nutrient uptake. | Phoma® | [16,63,64] |
Phytophthora palmivora | Morrenia odorata (milkweed vine) | - | Causes a root infection in the plant which leads to its death. | DeVine® (USA). No longer available. | [9,65] |
Pseudolagarobasidium acaciicola | Acacia cyclops (coastal wattle) | **** | Causes seed mortality and plant death. | X | [66] |
Puccinia canaliculata | Cyperus esculentus (yellow nutsedge) | - | Inhibits the reproductive process and seed germination in the species | Dr. Biosedge® (USA). No longer available. | [67] |
Puccinia thalaspeos | Isatis tinctoria (dyer’s woad) | - | Infects first-year plants and impacts flowering and seed formation in the following year. | Woad Warrior® | [7] |
Sclerotinia minor | Araxacum officeinale (dandelion), broadleaf | - | Absorbs plant tissue. | Sarritor™ | [51,68] |
Trichoderma koningiopsis | Euphorbia heterophylla (Mexican fire plant) | *** | Increases enzymatic material (cellulase and lipase) which causes increased damage to the plant. | X | [69] |
Trichoderma polysporum (Louk: Fr.) Rifai. | Avena fatua (common wild oats) | **** | Produces several secondary metabolites that have antifungal activities and prevent plant growth and germination. | X | [70] |
Chenopodium album (goosefoot) | **** | ||||
Elsholtzia densa (dense Himalayan mint) | **** | ||||
Lepyrodiclis holosteoides (false jagged chickweed) | **** | ||||
Polygonum aviculare (common knotgrass) | |||||
Polygonum lapathifolium (pale persicaria) |
Virus Source | Target Weed(s) | Effect a | Mode of Action | Commercial | Reference |
---|---|---|---|---|---|
Araujia Mosaic Virus | Araujia hortorum (moth plant) | - | Causes mosaic symptoms and leaf distortion in the plant. | X | [102] |
Pepper mosaic virus (Óbuda Pepper Virus) | Solanum nigrum (black nightshade) | - | Causes biomass reduction and increased seed dormancy. | X | [104] |
Tobacco rattle-like virus | Impatiens glandulifera (Himalayan balsam) | - | Develops necrotic spots on the plant. | X | [105] |
Tobacco mild green mosaic virus | Solanum viarum (tropical soda apple) | **** | Triggers a hypersensitive response in S. viarum and causes necrotic local lesions. | SolviNix™ LC and WP (liquid concentrate and wettable powder) | [19,99,100] |
Commercial Name | Active Constituents | Use/Target Plant(s) | Country Available | Released |
---|---|---|---|---|
Avenger Organic Weed Killer® | d-Limonene and castor oil | Grass and broadleaf weeds | USA | N/A |
Barrier H° | 22.9% citronella oil | Ragwort | Europe, Japan, USA | 2015 |
Beloukha®/Scythe® | Rapeseed oil, nonanoic acid and pelargonic acid | Non-selective control of seedlings and young weeds | Australia, USA | N/A |
Bialaphos® | Streptomyces hygroscopicus | Broad-spectrum and post-emergence bioherbicide | Eastern Asia | 2016 |
Bioweed™ | Pine oil (10% concentration) + sugar | Herbaceous and grassy weeds | Australia | N/A |
Camperico™ | Xanthomonas campestris pv. poae (JT-P482) | Turf grass weeds | Japan | 1997 |
Di-Bak Parkinsonia™ | Lasiodiplodia pseudotheobromae, Macrophomina phaseolina and Neoscytalidium novaehollandiae | Parkinsonia aculeata (parkinsonia) | Australia | 2013 |
GreenMatch® | Lemon grass oil | Broadleaf and grassy weeds | USA | 2008 |
Katana® | Pelargonic acid | Broadleaf and grassy weeds | USA | 2016 |
Lockdown®/Collego™ | Flumioxazin and Colletotrichum gloeosporioides f. sp. aeschynomene | Residual control of various broadleaf weeds | USA | N/A |
Matratec® | Clove oil, lactic acid, lecithin, n-butyl ester and wintergreen oil | Broad-spectrum, non-selective | USA | N/A |
Myco-Tech®/Chontrol®/EcoClear™ | Acetic acid, citric acid and Chondrostereum purpureum | Non-selective to green foliage and deciduous trees and shrubs | Belgium, Canada, The Netherlands | 2005 |
Opportune™ | Streptomyces strain RL-110 T | Pre/Post emergent herbicide (broadleaf and sedges) | USA | 2013 |
Organic Interceptor® | Pine oil | Knockdown and pre-emergent herbicide | New Zealand | N/A |
Organo-Sol®/Kona™/Bioprotec™ | Lactic acid, citric acid, Lactobacillus rhamnosus (LPT–21), L. casei (LPT–111), L. lactis ssp. cremoris (M11/CSL), L. lactis ssp. Lactis (LL64/CSL and LL102/CSL) | Non-selective, post-emergent herbicide | Canada | 2010 |
Phoma® | Phoma macrostoma 94–44B (Macrocidins A, B) | Broad spectrum of broadleaf weeds | Canada, USA | 2016 |
Sarritor® | Flumetsulam and Sclerotina minor | Broadleaf weeds | Australia, Canada | 2007 |
SolviNix™ LC and WP | Tobacco soft green mosaic, Tobamovirus cepa U2 | Tropical soda apple (Solanum viarum) | USA | N/A |
Stump out™ | Sodium bicarbonate and Cylindrobasidium laeve | Acacia and Poa species | South Africa | 1997 |
Weed Slayer® | Eugenol, clove oil, molasses | Grassy weeds | USA | N/A |
WeedZap® | Cinnamon oil, clove oil, lactose and water | Non-selective, small broadleaf and grassy weeds | USA | N/A |
Woad Warrior® | Puccinia thalaspeos | Isatis tinctoria (dyer’s woad) | USA | 2002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roberts, J.; Florentine, S.; Fernando, W.G.D.; Tennakoon, K.U. Achievements, Developments and Future Challenges in the Field of Bioherbicides for Weed Control: A Global Review. Plants 2022, 11, 2242. https://doi.org/10.3390/plants11172242
Roberts J, Florentine S, Fernando WGD, Tennakoon KU. Achievements, Developments and Future Challenges in the Field of Bioherbicides for Weed Control: A Global Review. Plants. 2022; 11(17):2242. https://doi.org/10.3390/plants11172242
Chicago/Turabian StyleRoberts, Jason, Singarayer Florentine, W. G. Dilantha Fernando, and Kushan U. Tennakoon. 2022. "Achievements, Developments and Future Challenges in the Field of Bioherbicides for Weed Control: A Global Review" Plants 11, no. 17: 2242. https://doi.org/10.3390/plants11172242
APA StyleRoberts, J., Florentine, S., Fernando, W. G. D., & Tennakoon, K. U. (2022). Achievements, Developments and Future Challenges in the Field of Bioherbicides for Weed Control: A Global Review. Plants, 11(17), 2242. https://doi.org/10.3390/plants11172242