Essential Oils from Cameroonian Aromatic Plants as Effective Insecticides against Mosquitoes, Houseflies, and Moths
Abstract
:1. Introduction
2. Results
2.1. Essential Oil Yield and Chemical Composition
2.2. Insecticidal Activity
3. Discussion
3.1. Essential Oil Chemical Composition
3.2. Insecticidal Activity
4. Materials and Methods
4.1. Plant Material and Essential Oil Extraction
4.2. GC-MS Analysis
4.3. Insects
4.4. Insecticidal Activity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De La Torre, J.E.; Gassara, F.; Kouassi, A.P.; Brar, S.K.; Belkacemi, K. Spice use in food: Properties and benefits. Crit. Rev. Food Sci. Nutr. 2017, 57, 1078–1088. [Google Scholar] [CrossRef]
- Scott, I.M.; Jensen, H.R.; Philogène, B.J.R.; Arnason, J.T. A review of Piper spp. (Piperaceae) phytochemistry, insecticidal activity and mode of action. Phytochem. Rev. 2008, 7, 65–75. [Google Scholar] [CrossRef]
- Ashouri, S.; Shayesteh, N. Insecticidal activities of two powdered spices, black pepper and red pepper on adults of Rhyzopertha dominica (F.) and Sitophilus granaries (L.). Munis Entomol. Zool. J. 2010, 5, 600–607. [Google Scholar]
- Devi, K.C.; Devi, S.S. Insecticidal and oviposition deterrent properties of some spices against coleopteran beetle, Sitophilus oryzae. J. Food Sci. Technol. 2013, 50, 600–604. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Petrelli, R.; Cappellacci, L.; Bartolucci, F.; Canale, A.; Maggi, F. Origanum syriacum subsp. syriacum: From an ingredient of Lebanese ‘manoushe’ to a source of effective and eco-friendly botanical insecticides. Ind. Crops Prod. 2019, 134, 26–32. [Google Scholar] [CrossRef]
- Pavela, R.; Benelli, G. Essential Oils as Ecofriendly Biopesticides? Challenges and Constraints. Trends Plant Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef]
- da Silva, I.M.; Zanuncio, J.C.; Brügger, B.P.; Soares, M.A.; Zanuncio, A.J.V.; Wilcken, C.F.; de Souza Tavares, W.; Serrão, J.E.; Sediyama, C.S. Selectivity of the botanical compounds to the pollinators Apis mellifera and Trigona hyalinata (Hymenoptera: Apidae). Sci. Rep. 2020, 10, 4820. [Google Scholar] [CrossRef]
- Sánchez-Gómez, S.; Pagán, R.; Pavela, R.; Mazzara, E.; Spinozzi, E.; Marinelli, O.; Zeppa, L.; Morshedloo, M.R.; Maggi, F.; Canale, A.; et al. Lethal and sublethal effects of essential oil-loaded zein nanocapsules on a zoonotic disease vector mosquito, and their non-target impact. Ind. Crops Prod. 2022, 176, 114413. [Google Scholar] [CrossRef]
- Ribeiro, A.V.; de Sá Farias, E.; Santos, A.A.; Filomeno, C.A.; dos Santos, I.B.; Barbosa, L.C.A.; Picanço, M.C. Selection of an essential oil from Corymbia and Eucalyptus plants against Ascia monuste and its selectivity to two non-target organisms. Crop Prot. 2018, 110, 207–213. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Boukouvala, M.C.; Ntalaka, C.T.; Skourti, A.; Nika, E.P.; Maggi, F.; Spinozzi, E.; Mazzara, E.; Petrelli, R.; Lupidi, G.; et al. Efficacy of 12 commercial essential oils as wheat protectants against stored-product beetles, and their acetylcholinesterase inhibitory activity. Entomol. Gen. 2021, 41, 385–414. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R. Repellence of essential oils and selected compounds against ticks—A systematic review. Acta Trop. 2018, 179, 47–54. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R. Beyond mosquitoes—Essential oil toxicity and repellency against bloodsucking insects. Ind. Crops Prod. 2018, 117, 382–392. [Google Scholar] [CrossRef]
- Benelli, G.; Maggi, F.; Canale, A.; Mehlhorn, H. Lyme disease is on the rise–How about tick repellents? A global view. Entomol. Gen. 2019, 39, 61–72. [Google Scholar] [CrossRef]
- Marsin, A.M.; Muhamad, I.I.; Anis, S.N.S.; Lazim, N.A.M.; Ching, L.W.; Dolhaji, N.H. Essential oils as insect repellent agents in food packaging: A review. Eur. Food Res. Technol. 2020, 246, 1519–1532. [Google Scholar] [CrossRef]
- Galland, C.; Glesner, V.; Verheggen, F. Laboratory and field evaluation of a combination of attractants and repellents to control Drosophila suzukii. Entomol. Gen. 2020, 40, 263–272. [Google Scholar] [CrossRef]
- Dunan, L.; Malanga, T.; Bearez, P.; Benhamou, S.; Monticelli, L.S.; Desneux, N.; Michel, T.; Lavoir, A.V. Biopesticide evaluation from lab to greenhouse scale of essential oils used against Macrosiphum euphorbiae. Agriculture 2021, 11, 867. [Google Scholar] [CrossRef]
- Shah, F.M.; Razaq, M.; Ali, Q.; Ali, A.; Shad, S.A.; Aslam, M.; Hardy, I.C.W. Action threshold development in cabbage pest management using synthetic and botanical insecticides. Entomol. Gen. 2020, 40, 157–172. [Google Scholar] [CrossRef]
- Verheggen, F.; Barrès, B.; Bonafos, R.; Al, E. Producing sugar beets without neonicotinoids: An evaluation of alternatives for the management of viruses-transmitting aphids. Entomol. Gen. 2022, 42, 491–498. [Google Scholar] [CrossRef]
- Eddleston, M.; Eyer, P.; Worek, F.; Mohamed, F.; Senarathna, L.; Von Meyer, L.; Juszczak, E.; Hittarage, A.; Azhar, S.; Dissanayake, W.; et al. Differences between organophosphorus insecticides in human self-poisoning: A prospective cohort study. Lancet 2005, 366, 1452–1459. [Google Scholar] [CrossRef]
- Agiriga, A.; Siwela, M. Monodora myristica (Gaertn.) Dunal: A plant with multiple food, health and medicinal applications: A review. Am. J. Food Technol. 2017, 12, 271–284. [Google Scholar] [CrossRef]
- Massodi, M.L.E.; Mime, L.C.; Fogang, H.P.D.; Djikeng, F.T.; Karuna, M.S.L.; Womeni, H.M. Chemical composition and antioxidant activity of Syzygium aromaticum and Monodora myristica essential oils from Cameroon. J. Food Stab. 2018, 1–13. [Google Scholar]
- Asekun, O.T.; Adeniyi, B.A. Antimicrobial and cytotoxic activities of the fruit essential oil of Xylopia aethiopica from Nigeria. Fitoterapia 2004, 75, 368–370. [Google Scholar] [CrossRef]
- Keita, B.; Sidibé, L.; Figueredo, G.; Chalchat, J.-C. Chemical composition of the essential oil of Xylopia aethiopica (Dunal) A. ch. from Mali. J. Essent. Oil Res. 2003, 15, 267–269. [Google Scholar] [CrossRef]
- Ijeh, I.I.; Omodamiro, O.D.; Nwanna, I.J. Antimicrobial effects of aqueous and ethanolic fractions of two spices, Ocimum gratissimum and Xylopia aethiopica. Afr. J. Biotechnol. 2005, 4, 953–956. [Google Scholar]
- Adaramoye, O.A.; Okiti, O.O.; Farombi, E.O. Dried fruit extract from Xylopia aethiopica (Annonaceae) protects Wistar albino rats from adverse effects of whole body radiation. Exp. Toxicol. Pathol. 2011, 63, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Sylvie, C.M.D.; Jean-De-Dieu, T.; Guy, S.S.N.; Pierre, T.; Jules-Roger, K. Chemical composition and antimicrobial activity of essential oils from Aframomum citratum, Aframomum daniellii, Piper capense and Monodora myristica. J. Med. Plants Res. 2019, 13, 173–187. [Google Scholar] [CrossRef]
- Okonkwo, E.U.; Okoye, W.I. The efficacy of four seed powders and the essential oils as protectants of cowpea and maize grains against infestation by Callosobruchus maculatus (Fabricus) (Coleoptera: Bruchidae) and Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae) in Nigeria. Int. J. Pest Manag. 1996, 42, 143–146. [Google Scholar] [CrossRef]
- Kouninki, H.; Haubruge, E.; Noudjou, F.E.; Lognay, G.; Malaisse, F.; Ngassoum, M.B.; Goudoum, A.; Mapongmetsem, P.M.; Ngamo, L.S.; Hance, T. Potential use of essential oils from Cameroon applied as fumigant or contact insecticides against Sitophilus zeamais Motsch. (Coleoptera: Curculionidae). Commun. Agric. Appl. Biol. Sci. 2005, 70, 787–792. [Google Scholar]
- Kouninki, H.; Hance, T.; Noudjou, F.A.; Lognay, G.; Malaisse, F.; Ngassoum, M.B.; Mapongmetsem, P.M.; Ngamo, L.S.T.; Haubruge, E. Toxicity of some terpenoids of essential oils of Xylopia aethiopica from Cameroon against Sitophilus zeamais Motschulsky. J. Appl. Entomol. 2007, 131, 269–274. [Google Scholar] [CrossRef]
- Babarinde, S.A.; Adeyemo, Y.A. Toxic and repellent properties of Xylopia aethiopica (Dunal) A. Richard on Tribolium castaneum Herbst infesting stored millets, Pennisetum glaucum (L.) R. Br. Arch. Phytopathol. Plant Prot. 2010, 43, 810–816. [Google Scholar] [CrossRef]
- Habiba, K.; Thierry, H.; Jules, D.; Félicité, N.; Georges, L.; François, M.; Benoit, N.M.; Marie, M.P.; Leonard, N.T.; Eric, H. Persistent effect of a preparation of essential oil from Xylopia aethiopica against Callosobruchus maculates (Coleoptera, Bruchidae). Afr. J. Agric. Res. 2010, 5, 1881–1888. [Google Scholar]
- Nguemtchouin, M.M.G.; Ngassoum, M.B.; Ngamo, L.S.T.; Gaudu, X.; Cretin, M. Insecticidal formulation based on Xylopia aethiopica essential oil and kaolinite clay for maize protection. Crop Prot. 2010, 29, 985–991. [Google Scholar] [CrossRef]
- Salama, H.S.; Dimetry, N.Z.; Salem, S.A. On the host preference and biology of the cotton leaf worm Spodoptera littoralis Bois. Z. Für Angew. Entomol. 1971, 67, 261–266. [Google Scholar] [CrossRef]
- Wilke, A.B.B.; Beier, J.C.; Benelli, G. Filariasis vector control down-played due to the belief the drugs will be enough–not true! Entomol. Gen. 2020, 40, 15–24. [Google Scholar] [CrossRef]
- Neupane, S.; Nayduch, D. Effects of habitat and sampling time on bacterial community composition and diversity in the gut of the female house fly, Musca domestica Linnaeus (Diptera: Muscidae). Med. Vet. Entomol. 2022, 1–9. [Google Scholar] [CrossRef]
- Koudou, J.; Ossibi, A.W.E.; Aklikokou, K.; Abenna, A.A.; Gbeassor, M.; Bessiere, J.M. Chemical composition and hypotensive effects of essential oil of Monodora myristica Gaertn. J. Biol. Sci 2007, 7, 937–942. [Google Scholar] [CrossRef]
- Owokotomo, I.A.; Ekundayo, O. Comparative study of the essential oils of Monodora myristica from Nigeria. Eur. Chem. Bull. 2012, 1, 263–265. [Google Scholar] [CrossRef]
- Bakarnga-Via, I.; Hzounda, J.B.; Fokou, P.V.T.; Tchokouaha, L.R.Y.; Gary-Bobo, M.; Gallud, A.; Garcia, M.; Walbadet, L.; Secka, Y.; Dongmo, P.M.J.; et al. Composition and cytotoxic activity of essential oils from Xylopia aethiopica (Dunal) A. Rich, Xylopia parviflora (A. Rich) Benth.) and Monodora myristica (Gaertn) growing in Chad and Cameroon. BMC Complement. Altern. Med. 2014, 14, 125. [Google Scholar] [CrossRef]
- Konan, N.; Kouame, B.A.; Mamyrbekova-Bekro, J.A.; Nemlin, J.; Yves-Alain, B. Chemical composition and antioxidant activities of essential oils of Xylopia aethiopica (dunal) a. rich. Eur. J. Sci. Res. 2009, 37, 311–318. [Google Scholar]
- Yasser, S. Variation in Chemical Composition of Essential Oil of Ferulago angulata Collected from West Parts of Iran. Pharmaceut. Sci. 2016, 22, 16–21. [Google Scholar] [CrossRef]
- da Silva, R.O.M.; Castro, J.W.G.; Junior, O.d.M.D.; de Araújo, A.C.J.; Leandro, M.K.D.N.S.; Costa, R.J.O.; Pinto, L.L.; Leandro, L.M.G.; da Silva, L.E.; Do Amaral, W.; et al. Photoinduced antibacterial activity of the essential oils from Eugenia brasiliensis lam and Piper mosenii C. DC. by blue led light. Antibiotics 2019, 8, 242. [Google Scholar] [CrossRef]
- Sola, P.; Mvumi, B.M.; Ogendo, J.O.; Mponda, O.; Kamanula, J.F.; Nyirenda, S.P.; Belmain, S.R.; Stevenson, P.C. Botanical pesticide production, trade and regulatory mechanisms in sub-Saharan Africa: Making a case for plant-based pesticidal products. Food Secur. 2014, 6, 369–384. [Google Scholar] [CrossRef]
- Stevenson, P.C.; Isman, M.B.; Belmain, S.R. Pesticidal plants in Africa: A global vision of new biological control products from local uses. Ind. Crops Prod. 2017, 110, 2–9. [Google Scholar] [CrossRef]
- Ito, E.E.; Ighere, E.J. Bio-insecticidal potency of five plant extracts against Cowpea Weevil, Callosobruchus maculatus (F.), on Stored Cowpea, Vigna unguiculata (L). Jordan J. Biol. Sci. 2017, 10, 317–322. [Google Scholar]
- Owolabi, M.S.; Oladimeji, M.O.; Lajide, L.; Singh, G.; Marimuthu, P.; Isidorov, V.A. Bioactivity of three plant derived essential oils against the maize weevils Sitophilus zeamais (Motschulsky) and Cowpea Weevils Callosobruchus maculatus (Fabricius). Electron. J. Environ. Agric. Food Chem. 2009, 8, 828–835. [Google Scholar]
- Nwosu, L.C.; Obi, O.A.; Azoro, V.A.; Dialoke, S.A.; Onah, E.; Zakka, U.; Azeez, O.M.; Eluwa, A.N.; Uloma, A.; Ukpai, K.U.; et al. The efficacy of the plant extracts of Afrostyrax kamerunensis, Monodora myristica, Moringa oleifera and Azadirachta indica against the infestation of the leather beetle, Dermestes maculatus De Geer in smoked African mud catfish, Clarias gariepinus Burchell. Jordan J. Biol. Sci. 2018, 11, 511–515. [Google Scholar]
- Ntonifor, N.N.; Mueller-Harvey, I.; Van Emden, H.F.; Brown, R.H. Antifeedant activities of crude seed extracts of tropical African spices against Spodoptera littoralis (Lepidoptera: Noctuidae). Int. J. Trop. Insect Sci. 2006, 26, 78–85. [Google Scholar] [CrossRef]
- Pavela, R.; Maggi, F.; Petrelli, R.; Cappellacci, L.; Buccioni, M.; Palmieri, A.; Canale, A.; Benelli, G. Outstanding insecticidal activity and sublethal effects of Carlina acaulis root essential oil on the housefly, Musca domestica, with insights on its toxicity on human cells. Food Chem. Toxicol. 2020, 136, 111037. [Google Scholar] [CrossRef]
- Bello, M.O.; Adekunle, A.S.; Oyekunle, J.A.O.; Yusuf, T.A. Evaluation of the fixed oil of two commonly consumed spices, Monodora myristica and Myristica fragrans, as adjunct in food formulations. Sci. Res. Essays 2014, 9, 607–610. [Google Scholar] [CrossRef] [Green Version]
- Sokamte Tegang, A.; Beumo, T.M.N.; Dongmo, P.M.J.; Ngoune, L.T. Essential oil of Xylopia aethiopica from Cameroon: Chemical composition, antiradical and in vitro antifungal activity against some mycotoxigenic fungi. J. King Saud. Univ.-Sci. 2018, 30, 466–471. [Google Scholar] [CrossRef]
- Pavela, R.; Maggi, F.; Iannarelli, R.; Benelli, G. Plant extracts for developing mosquito larvicides: From laboratory to the field, with insights on the modes of action. Acta Trop. 2019, 193, 236–271. [Google Scholar] [CrossRef]
- Pavela, R.; Sedlák, P. Post-application temperature as a factor influencing the insecticidal activity of essential oil from Thymus vulgaris. Ind. Crops Prod. 2018, 113, 46–49. [Google Scholar] [CrossRef]
- Pavela, R.; Pavoni, L.; Bonacucina, G.; Cespi, M.; Cappellacci, L.; Petrelli, R.; Spinozzi, E.; Aguzzi, C.; Zeppa, L.; Ubaldi, M.; et al. Encapsulation of Carlina acaulis essential oil and carlina oxide to develop long-lasting mosquito larvicides: Microemulsions versus nanoemulsions. J. Pest Sci. 2021, 94, 899–915. [Google Scholar] [CrossRef]
- Suresh, U.; Murugan, K.; Panneerselvam, C.; Aziz, A.T.; Cianfaglione, K.; Wang, L.; Maggi, F. Encapsulation of sea fennel (Crithmum maritimum) essential oil in nanoemulsion and SiO2 nanoparticles for treatment of the crop pest Spodoptera litura and the dengue vector Aedes aegypti. Ind. Crops Prod. 2020, 158, 113033. [Google Scholar] [CrossRef]
- Desneux, N.; Decourtye, A.; Delpuech, J.M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 2007, 52, 81–106. [Google Scholar] [CrossRef]
- Stepanycheva, E.; Petrova, M.; Chermenskaya, T.; Pavela, R. Fumigant effect of essential oils on mortality and fertility of thrips Frankliniella occidentalis Perg. Environ. Sci. Pollut. Res. 2019, 26, 30885–30892. [Google Scholar] [CrossRef]
- Pavela, R. Sublethal effects of some essential oils on the cotton leafworm Spodoptera littoralis (Boisduval). J. Essent. Oil Bear. Plants 2012, 15, 144–156. [Google Scholar] [CrossRef]
- Chellappandian, M.; Thanigaivel, A.; Vasantha-Srinivasan, P.; Edwin, E.S.; Ponsankar, A.; Selin-Rani, S.; Kalaivani, K.; Senthil-Nathan, S.; Benelli, G. Toxicological effects of Sphaeranthus indicus Linn. (Asteraceae) leaf essential oil against human disease vectors, Culex quinquefasciatus Say and Aedes aegypti Linn., and impacts on a beneficial mosquito predator. Environ. Sci. Pollut. Res. 2018, 25, 10294–10306. [Google Scholar] [CrossRef]
- Thanigaivel, A.; Vasantha-Srinivasan, P.; Edwin, E.S.; Ponsankar, A.; Selin-Rani, S.; Chellappandian, M.; Kalaivani, K.; Senthil-Nathan, S.; Benelli, G. Development of an eco-friendly mosquitocidal agent from Alangium salvifolium against the dengue vector Aedes aegypti and its biosafety on the aquatic predator. Environ. Sci. Pollut. Res. 2018, 25, 10340–10352. [Google Scholar] [CrossRef]
- Benelli, G.; Ricciardi, R.; Romano, D.; Cosci, F.; Stefanini, C.; Lucchi, A. Wing-fanning frequency as a releaser boosting male mating success—High-speed video analysis of courtship behavior in Campoplex capitator, a parasitoid of Lobesia botrana. Insect Sci. 2019, 27, 1298–1310. [Google Scholar] [CrossRef]
- Pavela, R.; Morshedloo, M.R.; Mumivand, H.; Khorsand, G.J.; Karami, A.; Maggi, F.; Desneux, N.; Benelli, G. Phenolic monoterpene-rich essential oils from apiaceae and lamiaceae species: Insecticidal activity and safety evaluation on non-target earthworms. Entomol. Gen. 2020, 40, 421–435. [Google Scholar] [CrossRef]
- Pavela, R.; Žabka, M.; Vrchotová, N.; Tříska, J. Effect of foliar nutrition on the essential oil yield of Thyme (Thymus vulgaris L.). Ind. Crops Prod. 2018, 112, 762–765. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Iannarelli, R.; Petrelli, R.; Cappellacci, L.; Cianfaglione, K.; Afshar, F.H.; Nicoletti, M.; Canale, A.; Maggi, F. Synergized mixtures of Apiaceae essential oils and related plant-borne compounds: Larvicidal effectiveness on the filariasis vector Culex quinquefasciatus Say. Ind. Crops Prod. 2017, 96, 186–195. [Google Scholar] [CrossRef]
- Pavela, R.; Sajfrtová, M.; Sovová, H.; Bárnet, M. The insecticidal activity of Satureja hortensis L. extracts obtained by supercritical fluid extraction and traditional extraction techniques. Appl. Entomol. Zool. 2008, 43, 377–382. [Google Scholar] [CrossRef]
- Benelli, G.; Pavel, R.; Zorzetto, C.; Sanchez-Mateo, C.C.; Santini, G.; Canale, A.; Maggi, F. Insecticidal activity of the essential oil from Schizogyne sericea (Asteraceae) on four insect pests and two non-target species. Entomol. Gen. 2019, 39, 9–18. [Google Scholar] [CrossRef]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Finney, D.J. Probit Analysis; Cambridge University Press: Cambridge, UK, 1971. [Google Scholar]
Relative % in Essential Oil | ||||||
---|---|---|---|---|---|---|
Component a | RI Calc. b | RI Lit. c | M. myristicad | X. aethiopica | A. citratum | Method of Identification e |
α-Thujene | 920 | 924 | 3.1 ± 0.6 | 1.9 ± 0.4 | tr f | RI,MS |
α-Pinene | 925 | 932 | 7.6 ± 1.2 | 9.6 ± 1.6 | 1.0 ± 0.2 | Std |
Camphene | 938 | 946 | 0.1 ± 0.0 | Std | ||
Thuja-2,4(10)-diene | 944 | 953 | tr | RI,MS | ||
Sabinene | 966 | 969 | 0.1 ± 0.0 | 26.1 ± 3.1 | Std | |
β-Pinene | 968 | 974 | 0.3 ± 0.0 | 17.4 ± 1.9 | 5.4 ± 0.9 | Std |
Myrcene | 988 | 988 | 4.3 ± 0.8 | 0.2 ± 0.0 | 0.1 ± 0.0 | Std |
δ-2-carene | 998 | 1001 | 0.9 ± 0.0 | 0.1 ± 0.0 | RI,MS | |
α-Phellandrene | 1002 | 1002 | 32.3 ± 3.6 | 0.3 ± 0.0 | Std | |
α-Terpinene | 1013 | 1014 | 0.1 ± 0.0 | 1.9 ± 0.4 | Std | |
p-Cymene | 1021 | 1020 | 32.8 ± 3.0 | 1.1 ± 0.2 | 0.1 ± 0.0 | Std |
Limonene | 1024 | 1024 | 4.4 ± 0.9 | 0.3 ± 0.1 | Std | |
β-Phellandrene | 1024 | 1025 | 6.2 ± 1.2 | Std | ||
1,8-Cineole | 1026 | 1026 | 3.6 ± 0.7 | 0.7 ± 0.2 | Std | |
(Z)-β-Ocimene | 1036 | 1032 | 0.3 ± 0.0 | 1.2 ± 0.3 | tr | Std |
(E)-β-Ocimene | 1046 | 1044 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.3 ± 0.0 | Std |
α-Terpinene | 1054 | 1054 | 0.1 ± 0.0 | 3.2 ± 0.6 | tr | Std |
cis-Sabinene hydrate | 1062 | 1065 | 1.3 ± 0.3 | RI,MS | ||
cis-Linalool oxide | 1069 | 1067 | tr | RI,MS | ||
Terpinolene | 1084 | 1086 | tr | 0.6 ± 0.2 | Std | |
trans-Sabinene hydrate | 1093 | 1098 | 0.8 ± 0.2 | RI,MS | ||
Linalool | 1100 | 1095 | 1.9 ± 0.4 | 0.1 ± 0.0 | 2.4 ± 0.5 | Std |
cis-p-Menth-2-en-1-ol | 1117 | 1118 | 0.2 ± 0.0 | 0.3 ± 0.0 | RI,MS | |
α-Campholenal | 1122 | 1122 | tr | 0.1 ± 0.0 | RI,MS | |
allo-Ocimene | 1128 | 1128 | 0.1 ± 0.0 | RI,MS | ||
trans-Pinocarveol | 1131 | 1135 | 0.4 ± 0.1 | tr | Std | |
trans-p-Menth-2-en-1-ol | 1135 | 1136 | 0.1 ± 0.0 | 0.2 ± 0.0 | RI,MS | |
trans-Verbenol | 1140 | 1140 | 0.1 ± 0.0 | RI,MS | ||
Pinocarvone | 1156 | 1160 | 0.2 ± 0.0 | RI,MS | ||
Borneol | 1159 | 1165 | 0.1 ± 0.0 | tr | Std | |
p-Mentha-1,5-dien-8-ol | 1164 | 1166 | tr | RI,MS | ||
cis-Pinocamphone | 1167 | 1172 | tr | RI,MS | ||
Terpinen-4-ol | 1172 | 1174 | 6.1 ± 1.1 | tr | Std | |
p-Cymen-8-ol | 1183 | 1179 | 0.1 ± 0.0 | RI,MS | ||
Cryptone | 1181 | 1183 | 0.1 ± 0.0 | RI,MS | ||
α-Terpineol | 1186 | 1186 | 0.5 ± 0.1 | 1.0 ± 0.2 | 0.3 ± 0.0 | RI,MS |
Myrtenal | 1189 | 1195 | 0.2 ± 0.0 | tr | Std | |
Myrtenol | 1191 | 1194 | 0.4 ± 0.1 | Std | ||
trans-Piperitol | 1203 | 1207 | 0.1 ± 0.0 | RI,MS | ||
Verbenone | 1204 | 1204 | 0.1 ± 0.0 | RI,MS | ||
Cuminaldehyde | 1236 | 1238 | tr | RI,MS | ||
Neral | 1239 | 1235 | 0.5 ± 0.2 | RI,MS | ||
Carvotanacetone | 1243 | 1244 | 0.1 ± 0.0 | RI,MS | ||
Geraniol | 1264 | 1249 | 85.6 ± 2.8 | Std | ||
Geranial | 1272 | 1264 | 1.9 ± 0.4 | Std | ||
Carvacrol | 1303 | 1298 | 0.6 ± 0.2 | Std | ||
δ-Elemene | 1331 | 1335 | 1.8 ± 0.4 | RI,MS | ||
α-Cubebene | 1343 | 1345 | 0.1 ± 0.0 | RI,MS | ||
α-Ylangene | 1362 | 1373 | 0.2 ± 0.0 | RI,MS | ||
α-Copaene | 1367 | 1374 | 0.1 ± 0.0 | 0.4 ± 0.1 | RI,MS | |
β-Cubebene | 1382 | 1387 | 0.1 ± 0.0 | RI,MS | ||
β-Elemene | 1385 | 1389 | 0.2 ± 0.0 | Std | ||
Geranyl acetate | 1385 | 1379 | 0.8 ± 0.2 | RI,MS | ||
Cyperene | 1387 | 1398 | 0.1 ± 0.0 | RI,MS | ||
(E)-Caryophyllene | 1408 | 1417 | tr | Std | ||
cis-α-Bergamotene | 1408 | 1411 | 0.1 ± 0.0 | RI,MS | ||
β-Ylangene | 1408 | 1419 | 0.2 ± 0.0 | RI,MS | ||
α-Santalene | 1412 | 1416 | 0.5 ± 0.1 | RI,MS | ||
β-Copaene | 1419 | 1430 | 0.1 ± 0.0 | RI,MS | ||
γ-Elemene | 1426 | 1434 | 0.3 ± 0.0 | RI,MS | ||
trans-α-Bergamotene | 1430 | 1432 | tr | RI,MS | ||
6,9-Guaiadiene | 1434 | 1442 | 0.1 ± 0.0 | RI,MS | ||
α-Humulene | 1442 | 1452 | tr | 0.1 ± 0.0 | Std | |
Germacrene D | 1471 | 1484 | 9.7 ± 1.6 | RI,MS | ||
Bicyclogermacrene | 1486 | 1500 | 0.5 ± 0.2 | RI,MS | ||
α-Muurolene | 1492 | 1500 | 0.1 ± 0.0 | tr | RI,MS | |
δ-Amorphene | 1498 | 1511 | 0.1 ± 0.0 | RI,MS | ||
γ-Cadinene | 1504 | 1513 | 0.3 ± 0.0 | 0.1 ± 0.0 | RI,MS | |
δ-Cadinene | 1516 | 1522 | 1.2 ± 0.3 | 0.3 ± 0.1 | RI,MS | |
α-Cadinene | 1528 | 1537 | tr | RI,MS | ||
Germacrene B | 1544 | 1559 | 0.3 ± 0.1 | RI,MS | ||
epi-α-Cadinol | 1631 | 1638 | 0.1 ± 0.0 | RI,MS | ||
epi-α-Muurolol | 1645 | 1640 | 0.1 ± 0.0 | RI,MS | ||
Manool oxide | 1991 | 1987 | 0.1 ± 0.0 | RI,MS | ||
Total identified (%) | 92.9 | 99.6 | 99.9 | |||
Number of identified compounds | 35 | 55 | 23 | |||
Grouped compounds (%) | ||||||
Monoterpene hydrocarbons | 86.5 | 69.8 | 7.4 | |||
Oxygenated monoterpenes | 3.8 | 15.0 | 91.5 | |||
Sesquiterpene hydrocarbons | 2.4 | 14.6 | 0.2 | |||
Oxygenated sesquiterpenes | 0.2 | - | - | |||
Others | tr | 0.2 | 0.9 |
Musca domestica—Female | Musca domestica—Male | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LD50 (µg adult−1) | CI95 | LC90 (µg adult−1) | CI95 | χ2 | df | p-value | LD50 (µg adult−1) | CI95 | LC90 (µg adult−1) | CI95 | χ2 | df | p-Value | |
Essential oils | ||||||||||||||
Monodora myristica | 29.1 | 18.5–42.8 | 137.6 | 128.5–152.7 | 4.763 | 4 | 0.321 | 22.1 | 15.7–26.9 | 127.6 | 111.2–136.7 | 2.465 | 4 | 0.144 |
Aframomum citratum | 48.9 | 43.5–65.7 | 373.5 | 301.8–421.7 | 2,574 | 5 | 0.253 | 80.5 | 69.7–91.5 | 160.2 | 155.7–189.5 | 2.215 | 4 | 0.286 |
Xylopia aethiopica | 30.7 | 22.5–40.8 | 164.2 | 135.7–178.9 | 1.682 | 3 | 0.641 | 61.5 | 55.7–65.7 | 178.5 | 156.7–192.9 | 5.125 | 4 | 0.562 |
Major compounds | ||||||||||||||
Geraniol | 151.5 | 111.5–182.7 | 288.7 | 232.5–302.8 | 3.455 | 3 | 0.452 | 23.5 | 17.6–29.3 | 126.1 | 111.5–148.9 | 1.518 | 3 | 0.687 |
Sabinene | 109.7 | 85.7–122.5 | 213.8 | 195.7–252.7 | 3.452 | 3 | 0.652 | 10.4 | 8.2–15.9 | 117.5 | 98.6–135.9 | 2.452 | 3 | 0.128 |
α-Pinene | 69.7 | 51.5–78.8 | 254.7 | 212.2–278.9 | 2.751 | 3 | 0.428 | 8.6 | 7.2–15.9 | 100.2 | 87.5–120.9 | 4.256 | 3 | 0.318 |
p-Cymene | 28.4 | 16.5–31.9 | 131.7 | 118.5–145.7 | 5.123 | 4 | 0.251 | 32.6 | 28.9–51.6 | 145.6 | 126.9–158.7 | 2.246 | 3 | 0.257 |
α-Phellandrene | 43.5 | 35.5–48.9 | 187.9 | 175.7–201.5 | 3.456 | 4 | 0.425 | 46.7 | 39.7–56.2 | 178.9 | 156.8–193.3 | 1.152 | 3 | 0.562 |
β-Pinene | 56.1 | 42.8–65.3 | 316.5 | 289.7–324.7 | 2.245 | 4 | 0.156 | 39.7 | 33.5–42.8 | 189.7 | 165.9–195.5 | 2.852 | 4 | 0.349 |
LC50 (µg larva−1) | CI95 | LC90 (µg larva−1) | CI95 | χ2 | df | p-Value | |
---|---|---|---|---|---|---|---|
Essential oils | |||||||
Monodora myristica | 29.3 | 21.5–37.1 | 123.5 | 102.5–148.7 | 1.663 | 3 | 0.645 |
Aframomum citratum | 31.1 | 23.6–39.7 | 130.2 | 118.7–142.6 | 1.076 | 3 | 0.782 |
Xylopia aethiopica | 60.3 | 52.8–71.5 | 155.6 | 128.7–165.5 | 1.721 | 3 | 0.632 |
Major compounds | |||||||
Geraniol | 25.2 | 19.7–28.6 | 83.2 | 72.9–105.6 | 1.478 | 3 | 0.687 |
Sabinene | 45.1 | 38.9–52.3 | 240.4 | 201.8–259.7 | 1.378 | 3 | 0.711 |
α-Pinene | 123.5 | 111.5–138.7 | 198.7 | 179.6–222.1 | 2.528 | 3 | 0.477 |
p-Cymene | 52.3 | 44.1–60.5 | 112.2 | 98.7–125.9 | 2.147 | 3 | 0.542 |
α-Phellandrene | 54.6 | 43.7–66.1 | 143.7 | 132.6–169.5 | 1.642 | 3 | 0.649 |
β-Pinene | 84.5 | 72.8–101.8 | 226.5 | 212.5–257.8 | 3.458 | 3 | 0.117 |
LC50 (µg mL−1) | CI95 | LC90 (µg mL−1) | CI95 | χ2 | df | p-Value | |
---|---|---|---|---|---|---|---|
Essential oils | |||||||
Monodora myristica | 35.3 | 25.1–42.3 | 66.1 | 55.8–72,4 | 3.236 | 3 | 0.356 |
Aframomum citratum | 82.7 | 75.1–90.3 | 160.1 | 149.8–196.5 | 3.003 | 3 | 0.391 |
Xylopia aethiopica | 47.0 | 38.7–52.2 | 78.4 | 63.9–92.7 | 5.245 | 3 | 0.079 |
Major compounds | |||||||
Geraniol | 98.1 | 91.5–104.8 | 153.3 | 138.9–165.7 | 1.011 | 3 | 0.798 |
Sabinene | 64.4 | 60.1–68.5 | 102.3 | 93.5–116.7 | 0.311 | 3 | 0.998 |
α-Pinene | 74.5 | 66.1–81.5 | 144.7 | 128.5–172.7 | 1.183 | 3 | 0.686 |
p-Cymene | 26.8 | 21.5–37.9 | 56.5 | 42.7–75.9 | 3.526 | 3 | 0.161 |
α-Phellandrene | 36.8 | 25.7–51.3 | 85.1 | 72.8–95.9 | 3.512 | 3 | 0.318 |
β-Pinene | 66.1 | 61.3–70.5 | 109.3 | 100.2–123.1 | 0.089 | 4 | 0.999 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wandjou, J.G.N.; Baldassarri, C.; Ferrati, M.; Maggi, F.; Pavela, R.; Tsabang, N.; Petrelli, R.; Ricciardi, R.; Desneux, N.; Benelli, G. Essential Oils from Cameroonian Aromatic Plants as Effective Insecticides against Mosquitoes, Houseflies, and Moths. Plants 2022, 11, 2353. https://doi.org/10.3390/plants11182353
Wandjou JGN, Baldassarri C, Ferrati M, Maggi F, Pavela R, Tsabang N, Petrelli R, Ricciardi R, Desneux N, Benelli G. Essential Oils from Cameroonian Aromatic Plants as Effective Insecticides against Mosquitoes, Houseflies, and Moths. Plants. 2022; 11(18):2353. https://doi.org/10.3390/plants11182353
Chicago/Turabian StyleWandjou, Joice G. Nkuimi, Cecilia Baldassarri, Marta Ferrati, Filippo Maggi, Roman Pavela, Nole Tsabang, Riccardo Petrelli, Renato Ricciardi, Nicolas Desneux, and Giovanni Benelli. 2022. "Essential Oils from Cameroonian Aromatic Plants as Effective Insecticides against Mosquitoes, Houseflies, and Moths" Plants 11, no. 18: 2353. https://doi.org/10.3390/plants11182353
APA StyleWandjou, J. G. N., Baldassarri, C., Ferrati, M., Maggi, F., Pavela, R., Tsabang, N., Petrelli, R., Ricciardi, R., Desneux, N., & Benelli, G. (2022). Essential Oils from Cameroonian Aromatic Plants as Effective Insecticides against Mosquitoes, Houseflies, and Moths. Plants, 11(18), 2353. https://doi.org/10.3390/plants11182353