Effect of the Number of Dark Days and Planting Density on the Health-Promoting Phytochemicals and Antioxidant Capacity of Mustard (Brassica juncea) Sprouts
Abstract
:1. Introduction
2. Results
2.1. Soluble Sugar and Soluble Protein
2.2. Chlorophyll and Carotenoids
2.3. Ascorbic Acid
2.4. Proanthocyanidins, Flavonoids, and Total Phenolics
2.5. Antioxidant Activity
2.6. Glucosinolates
2.7. PCA
2.8. Correlation Analysis
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Soluble Protein Content
4.3. Soluble Sugar Content
4.4. Chlorophyll and Carotenoids Content
4.5. Ascorbic Acid Content
4.6. Proanthocyanidin Content
4.7. Flavonoid Content
4.8. Total Phenolic Content
4.9. ABTS Assay
4.10. Ferric Reducing Antioxidant Power (FRAP)
4.11. Glucosinolate Composition and Content
4.12. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, B.; Tian, Y.X.; Chen, Q.; Zhang, Y.; Luo, Y.; Wang, Y.; Li, M.Y.; Gong, R.G.; Wang, X.R.; Zhang, F.; et al. Variations in the glucosinolates of the individual edible parts of three stem mustards (Brassica juncea). R. Soc. Open Sci. 2019, 6, 182054. [Google Scholar] [CrossRef]
- Oh, S.K.; Kim, K.W.; Choi, M.R. Antioxidant activity of different parts of Dolsan Leaf Mustard. Food Sci. Biotechnol. 2016, 25, 1463–1467. [Google Scholar] [CrossRef] [PubMed]
- Pant, U.; Bhajan, R.; Singh, A.; Kulshesthra, K.; Singh, A.K.; Punetha, H. Green leafy mustard: A healthy alternative. Electron. J. Plant Breed. 2020, 11, 267–270. [Google Scholar] [CrossRef]
- Sun, B.; Tian, Y.X.; Jiang, M.; Yuan, Q.; Chen, Q.; Zhang, Y.; Luo, Y.; Zhang, F.; Tang, H.R. Variation in the main health-promoting compounds and antioxidant activity of whole and individual edible parts of baby mustard (Brassica juncea var. gemmifera). RSC Adv. 2018, 8, 33845. [Google Scholar] [CrossRef] [PubMed]
- Ebert, A.W. Sprouts and Microgreens—Novel food sources for healthy diets. Plants 2022, 11, 571. [Google Scholar] [CrossRef] [PubMed]
- Artés-Hernández, F.; Castillejo, N.; Martínez-Zamora, L.; Martínez-Hernández, G.B. Phytochemical fortification in fruit and vegetable beverages with green technologies. Foods 2021, 10, 2534. [Google Scholar] [CrossRef]
- Francisco, A.H.; Daniel, M.M.F.; Venzke, K.T.; Benito, M.H.G. Enrichment of glucosinolate and carotenoid contents of mustard sprouts by using green elicitors during germination. J. Food Compos. Anal. 2022, 110, 104546. [Google Scholar] [CrossRef]
- Tian, Y.; Deng, F.M. Phytochemistry and biological activity of mustard Brassica juncea: A review. CYTA J. Food 2020, 18, 704–718. [Google Scholar] [CrossRef]
- Dunja, Š.; Valentina, L.; Radojčić, R.I.; Stjepana, F.; Branka, S. Low temperatures affect the physiological status and phytochemical content of flat leaf kale (Brassica oleracea var. acephala) sprouts. Foods 2022, 11, 264. [Google Scholar] [CrossRef]
- Chen, M.; Chory, J.; Fankhauser, C. Light Signal transduction in higher plants. Annu. Rev. Genet. 2004, 38, 87–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.L.; Li, Y.L.; Wang, L.C.; Yang, Q.C.; Guo, W.Z. Responses of butter leaf lettuce to mixed red and blue light with extended light/dark cycle period. Sci. Rep. 2022, 12, 6924. [Google Scholar] [CrossRef] [PubMed]
- Paradiso, R.; De Pascale, S. Effects of plant size, temperature, and light intensity on flowering of phalaenopsis hybrids in mediterranean greenhouses. Sci. World J. 2014, 2014, 420807. [Google Scholar] [CrossRef] [PubMed]
- Cheon, C.; Saito, T. An approach to the characterization of effects of photoperiod on vernalization in radish plants using “flower formation index”. Environ. Control Bio. 2010, 42, 75–81. [Google Scholar] [CrossRef]
- Jha, P.; Norsworthy, J.K.; Riley, M.B.; Bridges, W. Shade and plant location effects on germination and hormone content of palmer amaranth (Amaranthus palmeri) seed. Weed Sci. 2010, 58, 16–21. [Google Scholar] [CrossRef]
- Ramaraj, S.; Cheol, K.M.; Ji, Y.H.; Van, N.B.; In, S.S.; Un, P.S.; Joonyup, K. Accumulation of phenolic compounds and glucosinolates in sprouts of pale green and purple kohlrabi (Brassica oleracea var. gongylodes) under light and dark conditions. Agronomy 2021, 11, 1939. [Google Scholar] [CrossRef]
- Achard, P.; Liao, L.L.; Jiang, C.F.; Desnos, T.; Bartlett, J.; Fu, X.D.; Harberd, N.P. DELLAs contribute to plant photomorphogenesis. Plant Physiol. 2007, 143, 1163–1172. [Google Scholar] [CrossRef]
- Turbin, V.A.; Sokolov, A.S.; Kosterna, E.; Rosa, R. Effect of Plant Density on the growth, development and yield of brussels sprouts (Brassica oleracea L. var. gemmifera L.). Acta Agrobot. 2014, 67, 51–58. [Google Scholar] [CrossRef]
- Giordano, M.; El-Nakhel, C.; Colonna, E.; Pannico, A.; Maiello, R.; De Pascale, S.; Rouphael, Y. Effects of genotypes, plant density and nitrogen rates on yield and quality of spinach. Acta Hortic. 2021, 1326, 223–230. [Google Scholar] [CrossRef]
- Sinta, Z.; Garo, G. Influence of plant density and nitrogen fertilizer rates on yield and yield components of beetroot (Beta vulgaris L.). Int. J. Agron. 2021, 2021, 6670243. [Google Scholar] [CrossRef]
- Phahlane, C.J.T.; Maboko, M.M.; Soundy, P.; Sivakumar, D. Development, yield, and antioxidant content in red cabbage as affected by plant density and nitrogen rate. Int. J. Veg. Sci. 2018, 24, 160–168. [Google Scholar] [CrossRef]
- Ding, X.T.; Nie, W.F.; Qian, T.T.; He, L.Z.; Zhang, H.M.; Jin, H.J.; Cui, J.W.; Wang, H.; Zhou, Q.; Yu, J.Z. Low plant density improves fruit quality without affecting yield of cucumber in different cultivation periods in greenhouse. Agronomy 2022, 12, 1441. [Google Scholar] [CrossRef]
- Reda, T.; Thavarajah, P.; Polomski, R.; Bridges, W.; Shipe, E.; Thavarajah, D. Reaching the highest shelf: A review of organic production, nutritional quality, and shelf life of kale (Brassica oleracea var. acephala). Plants People Planet 2021, 3, 308–318. [Google Scholar] [CrossRef]
- Seluzicki, A.; Burko, Y.; Chory, J. Dancing in the dark: Darkness as a signal in plants. Plant Cell Environ. 2017, 40, 2487–2501. [Google Scholar] [CrossRef] [PubMed]
- Martin, G.; Leivar, P.; Ludevid, D.; Tepperman, J.M.; Quail, P.H.; Monte, E. Phytochrome and retrograde signalling pathways converge to antagonistically regulate a light-induced transcriptional network. Nat. Commun. 2016, 7, 11431. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.V.; Hudson, K.A. Developmental profiling of gene expression in soybean trifoliate leaves and cotyledons. BMC Plant Biol. 2015, 15, 169. [Google Scholar] [CrossRef]
- Roig-Villanova, I.; Martínez-García, J.F. Plant responses to vegetation proximity: A whole life avoiding shade. Front. Plant Sci. 2016, 7, 236. [Google Scholar] [CrossRef]
- Ishikawa, H.; Batieno, B.J.; Fatokun, C.; Boukar, O. A high plant density and the split application of chemical fertilizer increased the grain and protein content of cowpea (Vigna unguiculata) in Burkina Faso, West Africa. Agriculture 2022, 12, 199. [Google Scholar] [CrossRef]
- Frazie, M.D.; Kim, M.J.; Ku, K.M. Health-promoting phytochemicals from 11 mustard cultivars at baby leaf and mature stages. Molecules 2017, 22, 1749. [Google Scholar] [CrossRef]
- Choi, H.; Ji, J.S.; Ji, P.H.; Beom, Y.Y.; In, K.Y. Regeneration, nutritional values, and antioxidants in excised adventitious shoot of radish affected by dark treatment. J. Food Nutr. Res. 2015, 3, 365–370. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Bian, Z.H.; Yuan, X.X.; Chen, X.; Lu, C.G. A review on the effects of light-emitting diode (LED) light on the nutrients of sprouts and microgreens. Trends Food Sci. Technol. 2020, 99, 203–216. [Google Scholar] [CrossRef]
- Poór, P.; Takács, Z.; Bela, K.; Czékus, Z.; Szalai, G.; Tari, I. Prolonged dark period modulates the oxidative burst and enzymatic antioxidant systems in the leaves of salicylic acid-treated tomato. J. Plant Physiol. 2017, 213, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.M.; Gao, M.F.; He, R.; Zhang, Y.T.; Song, S.W.; Su, W.; Liu, H.C. Far-red light suppresses glucosinolate profiles of chinese kale through inhibiting genes related to glucosinolate biosynthesis. Environ. Exp. Bot. 2021, 188, 104507. [Google Scholar] [CrossRef]
- Machado, R.M.A.; Alves-Pereira, I.; Ferreira, R.M.A. Plant growth, phytochemical accumulation and antioxidant activity of substrate-grown spinach. Heliyon 2018, 4, e00751. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, A.; Samdaliri, M.; Rad, A.S.; Shahsavari, N.; Mirkale, A.M.; Jabbari, H. Effect of plant density on yield and physiological characteristics of six canola cultivars. J. Sci. Agric. 2017, 1, 249–253. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.; Purevdorj, E.; Son, Y.; Nho, C.W.; Yoo, G. Effects of long light exposure and drought stress on plant growth and glucosinolate production in pak choi (Brassica rapa subsp. chinensis). Food Chem. 2021, 340, 128167. [Google Scholar] [CrossRef] [PubMed]
- Ciska, E.; Honke, J.; Kozłowska, H. Effect of light conditions on the contents of glucosinolates in germinating seeds of white mustard, red radish, white radish, and rapeseed. J. Agric. Food Chem. 2008, 56, 9087–9093. [Google Scholar] [CrossRef]
- Kim, Y.B.; Chun, J.; Kim, H.R.; Kim, S.; Lim, Y.P.; Park, S.U. Variation of glucosinolate accumulation and gene expression of transcription factors at different stages of chinese cabbage seedlings under light and dark conditions. Nat. Prod. Commun. 2014, 9, 533–537. [Google Scholar] [CrossRef]
- McGregor, D.I. Glucosinolate content of developing rapeseed (Brassica napus L. “Midas”) seedlings. Can. J. Plant Sci. 1988, 68, 367–380. [Google Scholar] [CrossRef]
- Pérez-Balibrea, S.; Moreno, A.D.; Garcia-Viguera, C. Influence of light on health-promoting phytochemicals of broccoli sprouts. J. Sci. Food Agric. 2008, 88, 904–910. [Google Scholar] [CrossRef]
- Gigolashvili, T.; Engqvist, M.; Yatusevich, R.; Müller, C.; Flügge, U. HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana. New Phytol. 2008, 177, 627–642. [Google Scholar] [CrossRef]
- Maruyama-Nakashita, A.; Nakamura, Y.; Tohge, T.; Saito, K.; Takahashi, H. Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism. Plant Cell 2006, 18, 3235–3251. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Jo, J.S.; Choi, H.S.; Lee, J.G.; Lee, S.I.; Jeong, M.; Kim, J.A. Molecular characterization and expression analysis of MYB transcription factors involved in the glucosinolate pathway in chinese cabbage (Brassica rapa ssp. pekinensis). Agronomy 2019, 9, 807. [Google Scholar] [CrossRef]
- Wentzell, A.M.; Kliebenstein, D.J. Genotype, age, tissue, and environment regulate the structural outcome of glucosinolate activation. Plant Physiol. 2008, 147, 415–428. [Google Scholar] [CrossRef] [PubMed]
- Augustine, R.; Bisht, N.C. Biotic elicitors and mechanical damage modulate glucosinolate accumulation by co-ordinated interplay of glucosinolate biosynthesis regulators in polyploid Brassica juncea. Phytochemistry 2015, 117, 43–50. [Google Scholar] [CrossRef]
- López-Berenguer, C.; Martínez-Ballesta, M.C.; García-Viguera, C.; Carvajal, M. Leaf water balance mediated by aquaporins under salt stress and associated glucosinolate synthesis in broccoli. Plant Sci. 2007, 174, 321–328. [Google Scholar] [CrossRef]
- Schuchardt, J.P.; Hahn, A.; Greupner, T.; Wasserfurth, P.; Rosales-López, M.; Hornbacher, J.; Papenbrock, J. Watercress–cultivation methods and health effects. J. Appl. Bot. Food Qual. 2019, 92, 232–239. [Google Scholar] [CrossRef]
- Nastruzzi, C.; Cortesi, R.; Esposito, E.; Menegatti, E.; Leoni, O.; Iori, R.; Palmieri, S. In vitro cytotoxic activity of some glucosinolate-derived products generated by myrosinase hydrolysis. J. Agric. Food Chem. 1996, 44, 1014–1021. [Google Scholar] [CrossRef]
- Prior, R.L.; Fan, E.; Ji, H.P.; Howell, A.; Nio, C.; Payne, M.J.; Reed, J. Multi-laboratory validation of a standard method for quantifying proanthocyanidins in cranberry powders. J. Sci. Food Agric. 2010, 90, 1473–1478. [Google Scholar] [CrossRef]
- Sun, B.; Di, H.M.; Zhang, J.Q.; Xia, P.X.; Huang, W.L.; Jian, Y.; Zhang, C.L.; Zhang, F. Effect of light on sensory quality, health-promoting phytochemicals and antioxidant capacity in post-harvest baby mustard. Food Chem. 2021, 339, 128057. [Google Scholar] [CrossRef]
- Zhang, C.L.; Di, H.M.; Lin, P.X.; Wang, Y.T.; Li, Z.Q.; Lai, Y.S.; Li, H.X.; Sun, B.; Zhang, F. Genotypic variation of glucosinolates and their breakdown products in mustard Brassica juncea seeds. Sci. Hortic. 2022, 294, 110765. [Google Scholar] [CrossRef]
Dark Days | Soluble Sugar | Soluble Protein | Total Chlorophyll | Total Carotenoids |
---|---|---|---|---|
D1 | 142.68 ± 5.06 c | 98.47 ± 1.69 c | 6.89 ± 0.13 b | 0.64 ± 0.02 a |
D2 | 158.36 ± 2.13 a | 109.14 ± 3.98 ab | 7.29 ± 0.06 a | 0.63 ± 0.01 ab |
D3 | 149.60 ± 6.29 b | 109.68 ± 5.64 a | 6.44 ± 0.24 c | 0.61 ± 0.04 ab |
D4 | 136.87 ± 2.28 c | 103.86 ± 0.76 bc | 5.70 ± 0.14 d | 0.60 ± 0.03 b |
Planting Density | Soluble Sugar | Soluble Protein | Total Chlorophyll | Total Carotenoids |
---|---|---|---|---|
P1 | 138.74 ± 5.23 bc | 108.48 ± 4.15 ab | 6.38 ± 0.13 a | 0.63 ± 0.02 a |
P2 | 149.49 ± 8.74 ab | 107.35 ± 1.08 b | 6.30 ± 0.20 a | 0.67 ± 0.09 a |
P3 | 131.53 ± 9.44 c | 113.35 ± 4.44 a | 6.48 ± 0.08 a | 0.67 ± 0.04 a |
P4 | 152.65 ± 6.73 a | 108.09 ± 2.66 b | 6.40 ± 0.08 a | 0.68 ± 0.06 a |
Dark Days | Ascorbic Acid (mg g−1) | Proanthocyanidins (mg g−1) | Flavonoids (mg g−1) | Total Phenolics (mg g−1) | ABTS+ (%) | FRAP (mmol g−1) |
---|---|---|---|---|---|---|
D1 | 1.02 ± 0.14 b | 5.71 ± 0.12 b | 13.73 ± 0.48 ab | 16.00 ± 0.58 a | 41.26 ± 3.05 ab | 0.14 ± 0.00 ab |
D2 | 1.31 ± 0.26 a | 5.95 ± 0.14 a | 14.92 ± 0.80 a | 16.05 ± 0.35 a | 39.86 ± 4.20 b | 0.14 ± 0.01 ab |
D3 | 1.24 ± 0.20 ab | 5.59 ± 0.04 b | 13.75 ± 1.43 ab | 14.96 ± 0.30 b | 38.55 ± 1.97 b | 0.14 ± 0.00 b |
D4 | 1.41 ± 0.14 a | 4.92 ± 0.12 c | 13.38 ± 0.44 b | 15.98 ± 0.83 a | 47.97 ± 7.51 a | 0.15 ± 0.01 a |
Planting Density | Ascorbic Acid (mg g−1) | Proanthocyanidins (mg g−1) | Flavonoids (mg g−1) | Total Phenolics (mg g−1) | ABTS+ (%) | FRAP (mmol g−1) |
---|---|---|---|---|---|---|
P1 | 2.24 ± 0.21 ab | 6.32 ± 0.15 ab | 15.02 ± 0.47 a | 18.27 ± 0.47 a | 39.07 ± 3.44 a | 0.17 ± 0.00 a |
P2 | 2.07 ± 0.24 b | 6.20 ± 0.09 bc | 15.57 ± 1.64 a | 18.96 ± 0.40 a | 41.30 ± 1.77 a | 0.17 ± 0.00 a |
P3 | 2.52 ± 0.25 a | 6.39 ± 0.09 a | 14.60 ± 0.51 a | 18.90 ± 0.84 a | 42.21 ± 1.55 a | 0.17 ± 0.00 a |
P4 | 2.61 ± 0.30 a | 6.04 ± 0.13 c | 14.32 ± 0.48 a | 19.13 ± 0.94 a | 40.30 ± 3.18 a | 0.17 ± 0.00 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Di, H.; Cheng, W.; Ren, G.; Zhang, Y.; Ma, J.; Ma, W.; Yang, J.; Lian, H.; Li, X.; et al. Effect of the Number of Dark Days and Planting Density on the Health-Promoting Phytochemicals and Antioxidant Capacity of Mustard (Brassica juncea) Sprouts. Plants 2022, 11, 2515. https://doi.org/10.3390/plants11192515
Li Z, Di H, Cheng W, Ren G, Zhang Y, Ma J, Ma W, Yang J, Lian H, Li X, et al. Effect of the Number of Dark Days and Planting Density on the Health-Promoting Phytochemicals and Antioxidant Capacity of Mustard (Brassica juncea) Sprouts. Plants. 2022; 11(19):2515. https://doi.org/10.3390/plants11192515
Chicago/Turabian StyleLi, Zhiqing, Hongmei Di, Wenjuan Cheng, Guanru Ren, Yi Zhang, Jie Ma, Wei Ma, Jiao Yang, Huashan Lian, Xiaomei Li, and et al. 2022. "Effect of the Number of Dark Days and Planting Density on the Health-Promoting Phytochemicals and Antioxidant Capacity of Mustard (Brassica juncea) Sprouts" Plants 11, no. 19: 2515. https://doi.org/10.3390/plants11192515
APA StyleLi, Z., Di, H., Cheng, W., Ren, G., Zhang, Y., Ma, J., Ma, W., Yang, J., Lian, H., Li, X., Huang, Z., Tang, Y., Zheng, Y., Li, H., Zhang, F., & Sun, B. (2022). Effect of the Number of Dark Days and Planting Density on the Health-Promoting Phytochemicals and Antioxidant Capacity of Mustard (Brassica juncea) Sprouts. Plants, 11(19), 2515. https://doi.org/10.3390/plants11192515