Effects of Fertilization Approaches on Plant Development and Fertilizer Use of Citrus
Abstract
:1. Introduction
2. Results
2.1. Effects of Fertilization Approaches on Citrus Plant Growth and Fruit Quality
2.2. Effects of Fertilization Approaches on NPK Leaching and Runoff Losses
2.3. Soil N Mobility under Different Fertilization Approaches
2.4. Nitrogen Use Efficiency in Citrus Plant with Different Fertilization Approaches
2.5. Effects of Reducing Fertilizer on Citrus Plant Development
3. Discussion
3.1. Citrus Growth, Mineral Nutrition and Fruit Quality
3.2. Fertilizer Loss
3.3. Nitrogen Use Efficiency
3.4. Fertilizer Amount
4. Materials and Methods
4.1. Material and Plant Growth Conditions
4.2. Experimental Design for Fertilization Approach Experiment and Isotopic Experiment
4.3. Experimental Designs for Fertilizer Reducing Experiment
4.4. Determinations of Mineral Nutrition and Fruit Quality
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
N | nitrogen |
P | phosphorus |
K | potassium |
Ca | calcium |
Mg | magnesium |
Fe | iron |
Mn | manganese |
Cu | copper |
Zn | zinc |
B | boron |
DF | drip fertigation |
HF | hole fertilization |
PF | pour fertilization |
CK+ | broadcast fertilization |
CK− | Without fertilization |
FUE | fertilizer use efficiency |
NUE | nitrogen use efficiency |
TSS | total soluble solids |
TA | titratable acidity |
Ndff | nitrogen derived from fertilizer |
References
- Wu, G.A.; Terol, J.; Ibanez, V.; Lopez-Garcia, A.; Perez-Roman, E.; Borreda, C.; Domingo, C.; Tadeo, F.R.; Carbonell-Caballero, J.; Alonso, R.; et al. Genomics of the origin and evolution of Citrus. Nature. 2018, 554, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Hippler, F.W.; Boaretto, R.M.; Dovis, V.L.; Gomes, G.O.; Quaggio, J.A.; Quinones, A.; Mattos-Jr, D. Revisiting nutrient management for Citrus production: To what extent does molybdenum affect nitrogen assimilation of trees? Sci. Hortic. 2017, 225, 462–470. [Google Scholar] [CrossRef]
- Alva, A.; Paramasivam, S.; Obreza, T.; Schumann, A. Nitrogen best management practice for citrus trees: I. Fruit yield, quality, and leaf nutritional status. Sci. Hortic. 2006, 107, 233–244. [Google Scholar] [CrossRef]
- Ashkevari, A.S.; Hoseinzadeh, S.H.; Miransari, M. Effects of Different Nitrogen, Phosphorus, Potassium Rates on the Quality and Quantity of Citrus Plants, Variety Thomson Novel under Rainfed and Irrigated Conditions. J. Plant Nutr. 2013, 36, 1412–1423. [Google Scholar] [CrossRef]
- Li, Y.J.; Yang, M.; Zhang, Z.Z.; Li, W.L.; Guo, C.Y.; Chen, X.P.; Shi, X.J.; Zhou, P.; Tang, X.D.; Zhang, Y.Q. An Ecological Research on Potential for Zero-growth of Chemical Fertilizer Use in Citrus Production in China. Ekoloji. 2019, 28, 1049–1059. [Google Scholar]
- Lockhart, K.M.; King, A.M.; Harter, T. Identifying sources of groundwater nitrate contamination in a large alluvial groundwater basin with highly diversified intensive agricultural production. J. Contam. Hydrol. 2013, 151, 140–154. [Google Scholar] [CrossRef]
- Le, C.; Zha, Y.; Li, Y.; Sun, D.; Lu, H.; Yin, B. Eutrophication of lake waters in China: Cost, causes, and control. Environ. Manage. 2010, 45, 662–668. [Google Scholar] [CrossRef]
- Litalien, A.; Zeeb, B. Curing the earth: A review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation. Sci. Total Environ. 2020, 698, 134235. [Google Scholar] [CrossRef]
- Bar-Yosef, B. Advances in Fertigation. Adv. Agron. 1999, 65, 1–77. [Google Scholar]
- Zotarelli, L.; Dukes, M.D.; Scholberg, J.; Munoz-Carpena, R.; Icerman, J. Tomato nitrogen accumulation and fertilizer use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling. Agric. Water Manag. 2009, 96, 1247–1258. [Google Scholar] [CrossRef]
- Casamali, B.; Van Iersel, M.W.; Chavez, D.J. Plant Growth and Physiological Responses to Improved Irrigation and Fertilization Management for Young Peach Trees in the Southeastern United States. Hortscience 2021, 56, 336–346. [Google Scholar] [CrossRef]
- Yu, Y.; Jiao, Y.; Yang, W.; Song, C.; Zhang, J.; Liu, Y. Mechanisms underlying nitrous oxide emissions and nitrogen leaching from potato fields under drip irrigation and furrow irrigation. Agric. Water Manag. 2022, 260, 107270. [Google Scholar] [CrossRef]
- Boman, B.J. Fertigation versus conventional fertilization of flatwoods grapefruit. Fert. Res. 1995, 44, 123–128. [Google Scholar] [CrossRef]
- Hebbar, S.S.; Ramachandrappa, B.K.; Nanjappa, H.V.; Prabhakar, M. Studies on NPK drip fertigation in field grown tomato (Lycopersicon esculentum Mill.). Europ. J. Agron. 2004, 21, 117–127. [Google Scholar] [CrossRef]
- Kumar, P.; Suman, S.; Spehia, R.; Kumar, V.; Kaith, N. Studies on method and rate of fertilizer application in apple under mulch in north-western Himalayas. J. Plant Nutr. 2016, 39, 219–226. [Google Scholar] [CrossRef]
- Al-Qurashi, A.D.; Awad, M.A.; Ismail, S.M. Yield, fruit quality and nutrient uptake of ‘Nabbut-Ahmar’date palm grown in sandy loam soil as affected by NPK fertigation. J. Plant Nutr. 2016, 39, 268–278. [Google Scholar] [CrossRef]
- López-Marín, J.; Gálvez, A.; Del Amor, F.M.; Albacete, A.; Fernández, J.A.; Egea-Gilabert, C.; Pérez-Alfocea, F. Selecting vegetative/generative/dwarfing rootstocks for improving fruit yield and quality in water stressed sweet peppers. Sci. Hortic. 2017, 214, 9–17. [Google Scholar] [CrossRef]
- Qin, W.; Assinck, F.B.T.; Heinen, M.; Oenema, O. Water and nitrogen use efficiencies in citrus production: A meta-analysis. Agr. Ecosyst. Environ. 2016, 222, 103–111. [Google Scholar] [CrossRef]
- Yan, X.L.; Dai, T.F.; Jia, L.M. Evaluation of the cumulative effect of drip irrigation and fertigation on productivity in a poplar plantation. Ann. Forest Sci. 2018, 75, 5. [Google Scholar] [CrossRef]
- Wu, D.; Xu, X.; Chen, Y.; Shao, H.; Sokolowski, E.; Mi, G. Effect of different drip fertigation methods on maize yield, nutrient and water productivity in two-soils in Northeast China. Agric. Water Manag. 2019, 213, 200–211. [Google Scholar] [CrossRef]
- Yang, Q.L.; Zhang, F.C.; Li, F.S. Effect of different drip irrigation methods and fertilization on growth, physiology and water use of young apple tree. Sci. Hortic. 2011, 129, 119–126. [Google Scholar] [CrossRef]
- Ayankojo, I.T.; Morgan, K.T.; Ozores-Hampton, M.; Migliaccio, K.W. Effects of Real-time Location-specific Drip Irrigation Scheduling on Water Use, Plant Growth, Nutrient Accumulation, and Yield of Florida Fresh-market Tomato. HortScience. 2018, 53, 1372–1378. [Google Scholar] [CrossRef] [Green Version]
- Singandhupe, R.B.; Rao, G.; Patil, N.G.; Brahmanand, P.S. Fertigation studies and irrigation scheduling in drip irrigation system in tomato crop (Lycopersicon esculentum L.). Eur. J. Agron. 2003, 19, 327–340. [Google Scholar] [CrossRef]
- Pramanik, S.; Lai, S.; Ray, R.; Patra, S.K. Effect of Drip Fertigation on Yield, Water Use Efficiency, and Nutrients Availability in Banana in West Bengal, India. Commun. Soil Sci. Plan. 2016, 47, 1691–1700. [Google Scholar] [CrossRef]
- Kadyampakeni, D.M.; Morgan, K.T.; Schumann, A.W. Biomass, nutrient accumulation and tree size relationships for drip- and microsprinkler-irrigated orange trees. J. Plant Nutr. 2016, 39, 589–599. [Google Scholar] [CrossRef]
- Beckles, D.M. Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit—ScienceDirect. Postharvest Biol. Technol. 2012, 63, 129–140. [Google Scholar] [CrossRef]
- Fernandes, D.R.; Moreira, R.A.; Cruz, M.; Rabelo, J.M.; Oliveira, J.d. Improvement of production and fruit quality of pitayas with potassium fertilization. Acta. Sci-Agron. 2018, 40, 35290. [Google Scholar] [CrossRef]
- Lu, Y.L.; Gao, Y.M.; Tong, Y.A.; Yang, X.L.; Lin, W. Effects of fertigation on yield and quality of Fuji apple in Weibei dry-land region. China Soils Fert. 2013, 1, 48–52. [Google Scholar]
- Panigrahi, P.; Srivastava, A. Water and nutrient management effects on water use and yield of drip irrigated citrus in vertisol under a sub-humid region. J. Integr. Agr. 2017, 16, 1184–1194. [Google Scholar] [CrossRef]
- Liao, L.; Dong, T.; Qiu, X.; Rong, Y.; Wang, Z.; Zhu, J. Nitrogen nutrition is a key modulator of the sugar and organic acid content in citrus fruit. PLoS One 2019, 14, e0223356. [Google Scholar] [CrossRef]
- Ju, X.T.; Xing, G.X.; Chen, X.P.; Zhang, S.L.; Zhang, L.J.; Liu, X.J.; Cui, Z.L.; Yin, B.; Christie, P.; Zhu, Z.L. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. P. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef]
- Ongley, E.D.; Zhang, X.L.; Yu, T. Current status of agricultural and rural non-point source Pollution assessment in China. Environ. Pollut. 2010, 158, 1159–1168. [Google Scholar] [CrossRef]
- Sete, P.B.; Comin, J.J.; Ciotta, N.; Salume, J.A.; Brunetto, G. Nitrogen fertilization affects yield and fruit quality in pear. Sci. Hortic. 2019, 258, 108782. [Google Scholar] [CrossRef]
- Latati, M.; Dokukin, P.; Aouiche, A.; Rebouh, N.Y.; Takouachet, R.; Hafnaoui, E.; Hamdani, F.Z.; Bacha, F.; Ounane, S.M. Species Interactions Improve Above-Ground Biomass and Land Use Efficiency in Intercropped Wheat and Chickpea under Low Soil Inputs. Agronomy 2019, 9, 765. [Google Scholar] [CrossRef]
- Martínez-Alcántara, B.; Quiñones, A.; Legaz, F.; Primo-Millo, E. Nitrogen-use efficiency of young citrus trees as influenced by the timing of fertilizer application. J. Plant Nutr. Soil Sc. 2012, 175, 282–292. [Google Scholar] [CrossRef]
- Aujla, M.S.; Thind, H.S.; Buttar, G.S. Fruit yield and water use efficiency of eggplant (Solanum melongema L.) as influenced by different quantities of nitrogen and water applied through drip and furrow irrigation. Sci. Hortic. 2007, 112, 142–148. [Google Scholar] [CrossRef]
- Wu, D.; Köster, J.R.; Cárdenas, L.M.; Brüggemann, N.; Lewicka-Szczebak, D.; Bol, R. N2O source partitioning in soils using 15N site preference values corrected for the N2O reduction effect. Rapid. Commun. Mass Sp. 2016, 30, 620–626. [Google Scholar] [CrossRef]
- Xiong, H.; Ma, H.; Hu, B.; Zhao, H.; Wang, J.; Rennenberg, H.; Shi, X.; Zhang, Y. Nitrogen fertilization stimulates nitrogen assimilation and modifies nitrogen partitioning in the spring shoot leaves of citrus (Citrus reticulata Blanco) trees. J. Plant. Physiol. 2021, 267, 153556. [Google Scholar] [CrossRef]
- Li, Y.; Han, M.Q.; Lin, F.; Ten, Y.; Lin, J.; Zhu, D.H.; Guo, P.; Weng, Y.B.; Chen, L.S. Soil chemical properties, ‘Guanximiyou’ pummelo leaf mineral nutrient status and fruit quality in the southern region of Fujian province, China. J. Soil Sci. Plant Nut. 2015, 15, 615–628. [Google Scholar] [CrossRef]
- Xing, W.; Han, Y.; Guo, Z.; Zhou, Y. Quantitative study on redistribution of nitrogen and phosphorus by wetland plants under different water quality conditions. Environ. Pollut. 2020, 261, 114086. [Google Scholar] [CrossRef]
- Kılıç Altun, S.; Dinç, H.; Paksoy, N.; Temamoğulları, F.K.; Savrunlu, M. Analyses of mineral content and heavy metal of honey samples from south and east region of Turkey by using ICP-MS. Int. J. Anal. Chem. 2017, 2017, 6391454. [Google Scholar] [CrossRef]
- Liu, S.H.; Xie, Y.H.; Ji, X.H.; Huang, J.; Bocharnikova, E.A.; Matichenkov, V.V. Microwave digestion for colorimetric determination of total Si in plant and mineral samples. Commun. Soil Sci. Plan. 2018, 49, 840–847. [Google Scholar]
- Ates, F.; Kaya, O. The Relationship Between Iron and Nitrogen Concentrations Based On Kjeldahl Method and SPAD-502 Readings in Grapevine (Vitis vinifera L. cv. ‘Sultana Seedless’). Erwerbs-Obstbau 2021, 63, 53–59. [Google Scholar] [CrossRef]
- Pestana, M.; Beja, P.; Correia, P.J.; De Varennes, A.; Faria, E.A. Relationships between nutrient composition of flowers and fruit quality in orange trees grown in calcareous soil. Tree Physiol. 2005, 25, 761–767. [Google Scholar] [CrossRef] [Green Version]
- Enders, A.; Lehmann, J. Comparison of Wet-Digestion and Dry-Ashing Methods for Total Elemental Analysis of Biochar. Commun. Soil Sci. Plant Anal. 2012, 43, 1042–1052. [Google Scholar] [CrossRef]
- Maher, W.; Krikowa, F.; Wruck, D.; Louie, H.; Nguyen, T.; Huang, W. Determination of total phosphorus and nitrogen in turbid waters by oxidation with alkaline potassium peroxodisulfate and low pressure microwave digestion, autoclave heating or the use of closed vessels in a hot water bath: Comparison with Kjeldahl digestion. Anal. Chim. Acta. 2002, 463, 283–293. [Google Scholar]
- Sanghamitra, K.; Rao, P.; Naidu, G. Uptake of Zn (II) by an Invasive Weed Species Parthenium Hysterophorus L. Appl. Ecol. Env. Res. 2012, 10, 267–290. [Google Scholar] [CrossRef]
- Liu, E.T.; Wang, G.S.; Li, Y.Y.; Shen, X.; Chen, X.S.; Song, F.H.; Wu, S.J.; Chen, Q.; Mao, Z.Q. Replanting Affects the Tree Growth and Fruit Quality of Gala Apple. J. Integr. Agric. 2014, 13, 1699–1706. [Google Scholar] [CrossRef]
- Hernández, Y.; Lobo, M.G.; González, M. Determination of vitamin C in tropical fruits: A comparative evaluation of methods—ScienceDirect. Food Chem. 2006, 96, 654–664. [Google Scholar] [CrossRef]
Treatment | Root (g/Plant) | Stem (g/Plant) | Leaf (g/Plant) | Fruit (g/Plant) | Total (g/Plant) | |
---|---|---|---|---|---|---|
N | CK+ | 9.10 ± 1.11 a | 3.49 ± 0.37 b | 5.97 ± 0.59 a | 3.75 ± 0.29 ab | 20.02 ± 4.13 b |
DF | 10.22 ± 0.55 a | 6.26 ± 0.23 a | 5.12 ± 0.60 a | 4.43 ± 0.55 a | 27.18 ± 2.29 a | |
HF | 7.09 ± 0.53 b | 3.28 ± 0.26 b | 3.83 ± 0.21 b | 2.98 ± 0.16 b | 18.18 ± 1.12 b | |
PF | 10.08 ± 0.60 a | 4.33 ± 1.52 b | 5.29 ± 0.35 a | 3.85 ± 0.93 ab | 20.21 ± 0.47 b | |
CK− | 1.94 ± 0.18 c | 0.98 ± 0.06 c | 0.92 ± 0.18 c | 1.46 ± 0.40 c | 6.67 ± 0.17 c | |
P | CK+ | 0.44 ± 0.12 a | 0.24 ± 0.02 bc | 0.28 ± 0.02 a | 0.38 ± 0.04 b | 1.47 ± 0.02 ab |
DF | 0.44 ± 0.07 a | 0.47 ± 0.03 a | 0.23 ± 0.02 b | 0.53 ± 0.07 a | 1.66 ± 0.19 a | |
HF | 0.46 ± 0.07 a | 0.22 ± 0.003 c | 0.18 ± 0.02 c | 0.29 ± 0.07 bc | 1.16 ± 0.01 b | |
PF | 0.47 ± 0.05 a | 0.36 ± 0.10 ab | 0.25 ± 0.02 ab | 0.30 ± 0.07 bc | 1.18 ± 0.06 b | |
CK− | 0.22 ± 0.06 b | 0.16 ± 0.03 c | 0.08 ± 0.01 d | 0.24 ± 0.03 c | 0.70 ± 0.14 c | |
K | CK+ | 0.81 ± 0.21 b | 0.88 ± 0.18 ab | 4.16 ± 0.26 a | 3.05 ± 0.09 b | 8.53 ± 1.80 ab |
DF | 1.68 ± 0.25 a | 1.83 ± 0.70 a | 2.40 ± 0.30 bc | 4.20 ± 0.58 a | 10.85 ± 2.17 a | |
HF | 0.78 ± 0.13 b | 0.79 ± 0.001 b | 1.97 ± 0.47 c | 3.16 ± 0.41 b | 7.26 ± 0.64 b | |
PF | 2.03 ± 0.48 a | 1.54 ± 0.03 ab | 2.90 ± 0.28 b | 3.20 ± 0.32 b | 9.15 ± 0.01 ab | |
CK− | 0.33 ± 0.09 b | 0.77 ± 0.07 b | 0.73 ± 0.06 d | 1.76 ± 0.35 c | 3.37 ± 0.79 c |
Treatment | Total Leaching Loss in Yield Cycle (mg) | leaching Loss Efficiency (%) (1) | Total Runoff Loss in Yield Cycle (mg) | Runoff Loss Efficiency (%) (1) | |
---|---|---|---|---|---|
N | CK+ | 94.19 × 102 ± 4.74 × 102 b | 10.38 ± 0.63 b | 7.26 × 102 ± 0.81 × 102 a | 0.28 ± 0.11 a |
DF | 85.73 × 102 ± 1.44 × 102 b | 9.26 ± 0.19 b | 7.03 × 102 ± 0.08 × 102 a | 0.25 ± 0.01 a | |
HF | 130.09 × 102 ± 12.45 × 102 a | 15.17 ± 1.66 a | 7.06 × 102 ± 0.22 × 102 a | 0.26 ± 0.03 a | |
PF | 89.88 × 102 ± 2.14 × 102 b | 9.81 ± 0.29 b | 8.26 × 102 ± 0.48 × 102 a | 0.42 ± 0.06 a | |
CK− | 16.28 × 102 ± 1.70 × 102 c | 5.13 × 102 ± 0.46 × 102 b | |||
P | CK+ | 20.17 ± 1.92 d | 1.80 × 10−2 ± 0.30 × 10−2 c | 9.24 ± 0.45 b | 0.90 × 10−2 ± 0.10 × 10−2 b |
DF | 31.00 ± 0.47 c | 3.20 × 10−2 ± 0.10 × 10−2 b | 18.69 ± 1.38 a | 2.20 × 10−2 ± 0.20 × 10−2 a | |
HF | 50.59 ± 4.88 b | 5.90 × 10−2 ± 0.70 × 10−2 a | 2.26 ± 0.08 c | - | |
PF | 58.91 ± 6.31 a | 7.00 × 10−2 ± 0.80 × 10−2 a | 18.19 ± 3.00 a | 2.10 × 10−2 ± 0.40 × 10−2 a | |
CK− | 6.51 ± 0.63 e | 2.49 ± 0.30 c | |||
K | CK+ | 33.06 × 102 ± 1.40 × 102 c | 4.22 ± 0.19 c | 54.48 ± 5.89 a | 6.90 × 10−2 ± 0.80 × 10−2 a |
DF | 31.83 × 102 ± 1.84 × 102 c | 4.05 ± 0.25 c | 31.26 ± 4.51 c | 3.80 × 10−2 ± 0.60 × 10−2 b | |
HF | 42.60 × 102 ± 2.17 × 102 a | 5.49 ± 0.29 a | 25.14 ± 4.55 c | 3.00 × 10−2 ± 0.60 × 10−2 b | |
PF | 36.58 × 102 ± 0.59 × 102 b | 4.69 ± 0.08 b | 45.81 ± 3.55 b | 5.80 × 10−2 ± 0.50 × 10−2 a | |
CK− | 1.42 × 102 ± 0.14 × 102 d | 2.61 ± 0.37 d |
Root Ndff% 1 | Stem Ndff% | Leaf Ndff% | Fruit Ndff% | 15 N Content (g/Plant) | 15 N Use Efficiency (%) 2 | |
---|---|---|---|---|---|---|
CK+ | 19.00 × 10−2 ± 1.10 × 10−2 a | 21.20 × 10−2 ± 1.50 × 10−2 ab | 26.00 × 10−2 ± 1.00 × 10−2 ab | 32.80 × 10−2 ± 1.60 × 10−2 b | 5.60 × 10−2 ± 1.70 × 10−2 ab | 11.29 ± 3.40 ab |
DF | 18.70 × 10−2 ± 0.80 × 10−2 a | 19.80 × 10−2 ± 0.80 × 10−2 b | 24.50 × 10−2 ± 0.30 × 10−2 b | 35.70 × 10−2 ± 0.50 × 10−2 a | 6.80 × 10−2 ± 0.20 × 10−2 a | 13.61 ± 0.43 a |
HF | 17.40 × 10−2 ± 0.50 × 10−2 a | 21.50 × 10−2 ± 0.60 × 10−2 ab | 22.00 × 10−2 ± 0.80 × 10−2 c | 25.80 × 10−2 ± 0.20 × 10−2 c | 3.80 × 10−2 ± 0.30 × 10−2 b | 7.64 ± 0.61 b |
PF | 19.40 × 10−2 ± 0.10 × 10−2 a | 23.30 × 10−2 ± 0.50 × 10−2 a | 26.90 × 10−2 ± 1.00 × 10−2 a | 32.40 × 10−2 ± 01.70 × 10−2 b | 5.90 × 10−2 ± 0.60 × 10−2 ab | 11.79 ± 1.23 ab |
Plant Height (cm) | Stem Diameter (mm) | Plant Dry Weight (g) | Spring Shoot Number | Summer Shoot Number | Autumn Shoot Number | Spring Shoot Stem Diameter | Summer Shoot Stem Diameter | Autumn Shoot Stem Diameter | |
---|---|---|---|---|---|---|---|---|---|
DF-337.5 | 105.23 ± 15.04 a | 13.06 ± 1.05 b | 177.66 ± 37.00 c | 21.60 ± 9.07 a | 16.60 ± 5.85 a | 18.50 ± 10.52 a | 2.64 ± 0.21 b | 2.82 ± 0.35 ab | 3.22 ± 0.51 ab |
DF-270 | 115.53 ± 4.35 a | 13.63 ± 0.62 b | 202.45 ± 37.08 bc | 20.40 ± 8.33 a | 18.80 ± 9.09 a | 18.75 ± 8.79 a | 3.02 ± 0.34 a | 2.84 ± 0.25 ab | 3.66 ± 1.40 ab |
DF-202.5 | 117.43 ± 6.01 a | 12.74 ± 0.47 b | 254.28 ± 36.14 b | 29.20 ± 16.38 a | 25.00 ± 10.02 a | 29.00 ± 7.35 a | 2.75 ± 0.25 ab | 3.02 ± 0.22 a | 3.31 ± 0.25 ab |
DF-135 | 125.60 ± 11.79 a | 15.07 ± 0.50 a | 377.43 ± 23.79 a | 13.80 ± 9.91 a | 17.40 ± 4.03 a | 20.80 ± 3.97 a | 2.71 ± 0.15 ab | 2.90 ± 0.29 ab | 4.02 ± 0.29 a |
CK+ | 107.60 ± 7.93 a | 12.95 ± 0.23 b | 183.43 ± 21.37 c | 24.40 ± 16.62 a | 7.40 ± 7.17 b | 20.75 ± 13.92 a | 2.53 ± 0.15 b | 2.59 ± 0.15 b | 2.76 ± 0.40 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Li, F.; Chen, Y.; Chang, Y.; Lian, X.; Li, Y.; Ye, L.; Yin, T.; Lu, X. Effects of Fertilization Approaches on Plant Development and Fertilizer Use of Citrus. Plants 2022, 11, 2547. https://doi.org/10.3390/plants11192547
Ma X, Li F, Chen Y, Chang Y, Lian X, Li Y, Ye L, Yin T, Lu X. Effects of Fertilization Approaches on Plant Development and Fertilizer Use of Citrus. Plants. 2022; 11(19):2547. https://doi.org/10.3390/plants11192547
Chicago/Turabian StyleMa, Xiaochuan, Feifei Li, Yuewen Chen, Yuanyuan Chang, Xuefei Lian, Yunsong Li, Li Ye, Tao Yin, and Xiaopeng Lu. 2022. "Effects of Fertilization Approaches on Plant Development and Fertilizer Use of Citrus" Plants 11, no. 19: 2547. https://doi.org/10.3390/plants11192547
APA StyleMa, X., Li, F., Chen, Y., Chang, Y., Lian, X., Li, Y., Ye, L., Yin, T., & Lu, X. (2022). Effects of Fertilization Approaches on Plant Development and Fertilizer Use of Citrus. Plants, 11(19), 2547. https://doi.org/10.3390/plants11192547