Effect of Plant Preservative MixtureTM on Endophytic Bacteria Eradication from In Vitro-Grown Apple Shoots
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Plant Material and Growth Conditions
3.2. Isolation, Cultivation, and Identification of Endophytic Bacteria from In Vitro Plants
3.3. Elimination of Contaminant Endophytic Bacteria Using PPMTM
3.4. Assessment of the Impact of PPMTM on Shoot Multiplication
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Romadanova, N.V.; Mishustina, S.A.; Matakova, G.N.; Kuhsnarenko, S.V.; Rakhimbaev, I.R.; Reed, B.M. In vitro collection of Malus shoot cultures for cryogenic bank development in Kazakhstan. Acta Hortic. 2016, 1113, 271–277. [Google Scholar] [CrossRef]
- Delgado-Paredes, G.E.; Vásquez-Díaz, C.; Esquerre-Ibañez, B.; Bazán-Sernaqué, P.; Rojas-Idrogo, C. In vitro tissue culture in plants propagation and germplasm conservation of economically important species in Peru. Sci. Agropecu. 2021, 12, 337–349. [Google Scholar] [CrossRef]
- Dobránski, J.; da Silva, J.A.T. Micropropagation of Apple—A review. Biotechnol. Adv. 2010, 28, 462–488. [Google Scholar] [CrossRef] [PubMed]
- Şekerz, M.G.; Süzerer, V.; Elibuyuk, I.O.; Çiftçi, Y.Ö. In vitro elimination of PPV from infected apricot shoot tips via chemotherapy and cryotherapy. Int. J. Agric. Biol. 2015, 17, 1066–1070. [Google Scholar] [CrossRef]
- Romadanova, N.V.; Mishustina, S.A.; Gritsenko, D.A.; Omasheva, M.Y.; Galiakparov, N.N.; Reed, B.M.; Kushnarenko, S.V. Cryotherapy as a method for reducing the virus infection of apples (Malus sp.). Cryo Lett. 2016, 37, e386–e395. [Google Scholar] [CrossRef]
- Romadanova, N.V.; Nurmanov, M.M.; Makhmutova, I.A.; Kushnarenko, S.V. Production of super-elite planting stocks of apple varieties and clonal rootstocks. Science Bulletin of the Kazakh Agrotechnical University named after S. Seifullin 2018, 3, 4–13. Available online: http://rmebrk.kz/journals/4646/10715.pdf (accessed on 7 June 2022).
- Romadanova, N.V.; Tolegen, A.B.; Koken, T.E.; Nurmanov, M.M.; Kushnarenko, S.V. Chemotherapy of in vitro apple shoots as a method of viruses eradication. Intern. J. Biol. Chem. Sci. 2021, 14, 48–55. [Google Scholar] [CrossRef]
- Bettoni, J.C.; Mathew, L.; Pathirana, R.; Wiedow, C.; Hunter, D.A.; McLachlan, A.; Khan, S.; Tang, J.; Nadarajan, J. Eradication of Potato Virus S, Potato Virus A, and Potato Virus M from infected in vitro-grown potato shoots using in vitro therapies. Front. Plant Sci. 2022, 13, 878733. [Google Scholar] [CrossRef] [PubMed]
- Bettoni, J.C.; Bonnart, R.; Volk, G.M. Challenges in implementing plant shoot tip cryopreservation technologies. Plant Cell Tiss. Organ. Cult. 2021, 144, 21–34. [Google Scholar] [CrossRef]
- Wang, M.R.; Chen, L.; Teixeira da Silva, J.; Volk, G.M.; Wang, Q.C. Cryobiotechnology of apple (Malus spp.): Development, progress and future prospects. Plant Cell Rep. 2018, 37, 689–709. [Google Scholar] [CrossRef]
- Arab, M.A.; Yadollahi, A.; Hosseini-Mazinani, M.; Bagheri, S. Effects of antimicrobial activity of silver nanoparticles on in vitro establishment of G × N15 (hybrid of almond × peach) rootstock. J. Genet. Eng. Biotechnol. 2014, 12, 103–110. [Google Scholar] [CrossRef]
- El-Banna, A.N.; El-Mahrouk, M.E.; Dewir, Y.H.; Farid, M.A.; Elyazid, D.M.A.; Schumacher, H.M. Endophytic Bacteria in Banana In Vitro Cultures: Molecular Identification, Antibiotic Susceptibility, and Plant Survival. Horticulturae 2021, 7, 526. [Google Scholar] [CrossRef]
- Orlikowska, T.; Nowak, K.; Reed, B. Bacteria in the plant tissue culture environment. Plant Cell Tiss. Organ. Cult. 2016, 128, 487–508. [Google Scholar] [CrossRef]
- Gunson, H.E.; Spencer-Phillips, P.T.N. Latent bacterial infections: Epiphytes and endophytes as contaminants of micropropagated plants. In Physiology, Growth and Development of Plants in Culture; Lumsden, P.J., Nicholas, J.R., Davies, W.J., Eds.; Springer Nature: Cham, Switzerland, 1994; pp. 379–396. [Google Scholar] [CrossRef]
- Thomas, P. Plant tissue cultures ubiquitously harbor endophytic microorganisms. Acta Hortic. 2010, 865, 231–239. [Google Scholar] [CrossRef]
- Izarra, M.L.; Panta, A.L.; Maza, C.R.; Zea, B.C.; Cruzado, J.; Gutarra, L.R.; Riveira, C.R.; Ellis, D.; Kreuze, J.F. Identification and control of latenc bacteria in in vitro cultures of sweet potato [Ipomoea batatas (L.) Lam]. Front. Plant Sci. 2020, 11, 903. [Google Scholar] [CrossRef] [PubMed]
- Patle, P.N.; Navnage, N.P.; Ramteke, P.R. Endophytes in plant system: Roles in growth promotion, mechanism and their potentiality in achieving agriculture sustainability. Int. J. Chem. Stud. 2018, 6, 270–274. [Google Scholar]
- Yadav, A.N. Beneficial role of extremophilic microbes for plant health and soil fertility. J. Agric. Sci. Bot. 2017, 01, 30–33. [Google Scholar] [CrossRef]
- Siddique, S.; Naveed, M.; Yaseen, M.; Shahbaz, M. Exploring potential of seed endophytic bacteria for enhancing drought stress resilience in maize (Zea mays L.). Sustainability 2022, 14, 673. [Google Scholar] [CrossRef]
- Vaishnav, A.; Shukla, A.K.; Sharma, A.; Kumar, R.; Choudhary, D.K. Endophytic bacteria in plant salt stress tolerance: Current and future prospects. J. Plant Growth Regul. 2019, 38, 650–668. [Google Scholar] [CrossRef]
- Pathak, P.; Rai, V.K.; Can, H.; Singh, S.K.; Kumar, D.; Bhardwaj, N.; Roychowdhury, R.; de Azevedo, L.C.B.; Kaushalendra; Verma, H.; et al. Plant-endophyte interaction during biotic stress management. Plants 2022, 11, 2203. [Google Scholar] [CrossRef]
- Singh, M.; Kumar, A.; Singh, R.; Pandey, K.D. Endophytic bacteria: A new source of bioactive compounds. 3Biotech 2017, 7, 315. [Google Scholar] [CrossRef] [PubMed]
- Quambusch, M.; Brümmer, J.; Haller, K.; Winkelmann, T.; Bartsch, M. Dynamics of endophytic bacteria in plant in vitro culture: Quantification of three bacterial strains in Prunus avium in different plant organs and in vitro culture phases. Plant Cell Tiss. Organ. Cult. 2016, 126, 305–317. [Google Scholar] [CrossRef]
- Reed, B.M.; Mentzer, J.; Tanprasert, P.; Yu, X. Internal bacterial contamination of micropropagated hazelnut: Identification andantibiotic treatment. In Pathogen and Microbial Contamination Management in Micropropagation. Developments in Plant Pathology; Cassells, A.C., Ed.; Springer: Dordrecht, The Netherlands, 1997; pp. 169–174. [Google Scholar] [CrossRef]
- Kaluzna, M.; Mikicińsk, A.; Sobiczewski, P.; Zawadzka, M.; Zenkteler, E.; Orlikowska, T. Detection, isolation, and preliminary characterization of bacteria contaminating plant tissue cultures. Acta Agrobot. 2013, 66, 81–92. [Google Scholar] [CrossRef] [Green Version]
- Souza, J.A.; Bettoni, J.C.; Dalla Costa, M.; Baldissera, T.C.; dos Passos, J.M.; Primieri, S. In vitro rooting and acclimatization of ‘Marubakaido’ apple rootstock using indole-3-acetic acid from rhizobacteria. Communication in Plant Sciences 2022, 12, 16–23. [Google Scholar] [CrossRef]
- Pohjanen, J.; Koskimäki, J.J.; Sutela, S.; Ardanov, P.; Suorsa, M.; Niemi, K.; Sarjala, T.; Häggman, H.; Pirttilä, A.M. Interaction with ectomycorrhizal fungi and endophytic Methylobacterium affects nutrient uptake and growth of pine seedlings in vitro. Tree Physiol. 2014, 34, 993–1005. [Google Scholar] [CrossRef]
- Cantabella, D.; Dolcet-Sanjuan, R.; Teixidó, N. Using plant growth-promoting microorganisms (PGPMs) to improve plant development under in vitro culture conditions. Planta 2022, 255, 117. [Google Scholar] [CrossRef]
- Kushnarenko, S.; Aralbayeva, M.; Rymkhanova, N.; Reed, B.M. Initiation pretreatment with Plant Preservative MixtureTM increases the percentage of aseptic walnut shoots. Vitr. Cell. Dev. Biol. Plant 2022, 58. [Google Scholar] [CrossRef]
- Köpnick, C.; Grübe, M.; Stock, J.; Senula, A.; Mock, H.P.; Nagel, M. Changes of soluble sugars and ATP content during DMSO droplet freezing and PVS3 droplet vitrification of potato shoot tips. Cryobiology 2018, 85, 79–86. [Google Scholar] [CrossRef]
- Bajerski, F.; Nagel, M.; Overmann, J. Microbial occurrence in liquid nitrogen storage tanks: A challenge for cryobanking? Appl. Microbiol. Biotechnol. 2021, 105, 7635–7650. [Google Scholar] [CrossRef]
- Volk, G.M.; Bonnart, R.; Araújo de Oliveira, A.C.; Henk, A.D. Minimizing the deleterious effects of endophytes in plant shoot tip cryopreservation. Appl. Plant Sci. 2022, 10, e11489. [Google Scholar] [CrossRef]
- Senula, A.; Keller, E.R.J. Cryopreservation of mint—Routine application in a genebank, experience and problems. Acta Hortic. 2011, 908, 467–475. [Google Scholar] [CrossRef]
- Leone, G.F.; Andrade, P.A.M.; Vieira de Almeida, C.; Vieira de Almeida, C.; Andreote, F.D.; Almeida, M. Use of antibiotics to control endophytic bacterial growth migration onto culture medium in Eucalyptus cloeziana F. Muell.: A micropropagation approach. Vitr. Cell. Dev. Biol. Plant 2019, 55, 421–432. [Google Scholar] [CrossRef]
- Liang, C.; Wu, R.; Han, Y.; Wan, T.; Cai, Y. Optimizing suitable antibiotics of bacterium control in micropropagation of cherry rootstock using a modified leaf disk diffusion method and E test. Plants 2019, 8, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanprasert, P.; Reed, B.M. Determination of minimal bactericidal and effective antibiotic treatment concentrations for bacterial contaminants from micropropagated strawberries. Vitr. Cell. Dev. Biol. Plant 1997, 33, 227–230. [Google Scholar] [CrossRef]
- Cheong, E.U.; Na, M.; Jeong, U. The effect of endophytic bacteria on in vitro shoot growth of Prunus yedoensis and its identification and elimination. Vitr. Cell. Dev. Biol. Plant. 2020, 56, 200–206. [Google Scholar] [CrossRef]
- Davies, J.; Davies, D. Origins and Evolution of Antibiotic Resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef] [Green Version]
- Thomas, P. In vitro decline in plant cultures: Detection of a legion of covert bacteria as the cause for degeneration of long-term micropropagated triploid watermelon cultures. Plant Cell Tiss. Organ. Cult. 2004, 77, 173–179. [Google Scholar] [CrossRef]
- Relier, S.; Yazdani, L.; Ayad, O.; Choquet, A.; Bourgaux, J.F.; Prudhomme, M.; Pannequin, J.; Macari, F.; David, A. Antibiotics inhibit sphere-forming ability in suspension culture. Cancer Cell Int. 2016, 16, 6. [Google Scholar] [CrossRef] [Green Version]
- Cell Culture Contamination. Available online: https://www.thermofisher.com/nz/en/home/references/gibco-cell-culture-basics/biological-contamination.html (accessed on 15 May 2022).
- Reed, B.M.; Tanprasert, P. Detection and control of bacterial contaminants of plant tissue cultures. A review of recent literature. Plant Tissue Cult. Biotechnol. 1995, 3, 137–142. [Google Scholar]
- Miyazaki, J.; Tan, B.H.; Errington, S.G. Eradication of endophytic bacteria via treatment for axillary buds of Petunia hybrid using Plant Preservative Mixture (PPMTM). Plant Cell Tiss. Organ. Cult. 2010, 102, 365–372. [Google Scholar] [CrossRef]
- Plant Preservative Mixture. Available online: https://www.plantcelltechnology.com/plant-preservative-mixture-ppm-1/ (accessed on 7 June 2022).
- Compton, M.; Koch, J.M. Influence of Plant Preservative Mixture (PPM)TM on adventitious organogenesis in melon, petunia, and tobacco. Vitr. Cell. Dev. Biol. Plant 2001, 37, 259–261. [Google Scholar] [CrossRef]
- Lunghusen, J. An effective biocide for plant tissue culture. Aust Hortic. 1998, 96, 46–48. [Google Scholar]
- Digonzelli, P.; Díaz, L.; Carrizo de Bellone, S. Uso de PPM (Plant Preservative Mixture) para controlar contaminantes bacterianos en la multiplicación in vitro de caña de azúcar. Rev. Fac. Agron. 2005, 22, 23–33. [Google Scholar]
- Thomas, P.; Agrawal, M.; Bharathkumar, C.B. Use of Plant Preservative Mixture™ for establishing in vitro cultures from field plants: Experience with papaya reveals several PPM™ tolerant endophytic bacteria. Plant Cell Rep. 2017, 36, 1717–1730. [Google Scholar] [CrossRef]
- Bettoni, J.C.; Bonnart, R.; Shepherd, A.; Kretzschmar, A.A.; Volk, G.M. Cryopreservation of grapevine (Vitis spp.) shoot tips from growth chamber-sourced plants and histological observations. Vitis 2019, 58, 71–78. [Google Scholar] [CrossRef]
- Huh, Y.S.; Lee, J.K.; Kim, I.J.; Kang, B.G.; Lee, K.Y. Effect of biocide addition on plantlet growth and contamination occurrence during the in vitro culture of blueberry. J. Plant Biotechnol. 2015, 42, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Niedz, R.P.; Bausher, M.G. Control of in vitro contamination of explants from greenhouse- and field-grown trees. Vitr. Cell. Dev. Biol. Plant 2002, 38, 468–471. [Google Scholar] [CrossRef]
- Karjadi, A.; Gunaeni, N. Effect of added PPM on Murashige and Skoog media for shallot meristematic proliferation. IOP Conf. Ser. Earth Environ. Sci. 2021, 752, 012010. [Google Scholar] [CrossRef]
- Viss, P.R.; Brooks, E.M.; Driver, J.A. A simplified method for the control of bacterial contamination in woody plant tissue culture. Vitr. Cell. Dev. Biol. Plant 1991, 27, 42. [Google Scholar] [CrossRef]
- Hennerty, M.J.; Upton, M.E.; Furlong, P.A.; James, D.J.; Harris, D.P.; Eaton, R.A. Microbial contamination of in vitro cultures of apple rootstocks M26 and M9. Acta Hortic. 1988, 225, 129–138. [Google Scholar] [CrossRef]
- Leifert, C.; Cassells, A.C. Microbial hazards in plant tissue and cell cultures. Vitr. Cell. Dev. Biol. Plant 2001, 37, 129–138. [Google Scholar] [CrossRef]
- Grzebelus, E.; Skop, L. Effect of β-lactam antibiotics on plant regeneration in carrot protoplast cultures. Vitr. Cell. Dev. Biol. Plant 2014, 50, 568–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollock, K.; Barfield, D.G.; Shields, R. The toxicity of antibiotics to plant cell cultures. Plant Cell Rep. 1983, 2, 36–39. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.H.; da Silva, J.A.T.; Bi, J.H.; Zhang, S.L.; Hu, G.B. Response of in vitro strawberry to antibiotics. Plant Growth Regul. 2011, 65, 183–193. [Google Scholar] [CrossRef]
- Nascimento, F.X.; Hernández, A.G.; Glick, B.R.; Rossi, M.J. Plant growth-promoting activities and genomic analysis of the stress-resistant Bacillus megaterium STB1, a bacterium of agricultural and biotechnological interest. Biotechnol. Rep. 2020, 25, e00406. [Google Scholar] [CrossRef]
- Goswami, G.; Panda, D.; Samanta, R.; Boro, R.C.; Modi, M.K.; Bujarbaruah, K.M.; Barooah, M. Bacillus megaterium adapts to acid stress condition through a network of genes: Insight from a genome-wide transcriptome analysis. Sci. Rep. 2018, 8, 16105. [Google Scholar] [CrossRef] [Green Version]
- De Bary, A. Vergleichende Morphologie und Biologie der Pilze, Mycetozoen, und Bacterien; Wilhelm Engelmann: Leipzig, Germany, 1884. [Google Scholar]
- Kalsi, N.; Uchida, A.; Purbojati, R.W.; Houghton, J.N.I.; Chénard, C.; Wong, A.; Clare, M.E.; Kushwaha, K.K.; Putra, A.; Gaultier, N.E.; et al. Whole-genome sequence of Bacillus megaterium strain SGAir0080, isolated from an indoor air sample. Microbiol. Resour. Announc. 2019, 8, e01249-e19. [Google Scholar] [CrossRef] [Green Version]
- Vary, S.P.; Biedendieck, R.; Fuerch, T.; Meinhardt, F.; Rohde, M.; Deckwer, W.D.; Jahn, D. Bacillus megaterium—from simple soil bacterium to industrial protein production host. Appl. Microbial Biotechnol. 2007, 76, 957–967. [Google Scholar] [CrossRef]
- McInroy, J.A.; Kloepper, J.W. Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 1995, 173, 337–342. [Google Scholar] [CrossRef]
- Nunes, F.V.; de Melo, I.S. Isolation and characterization of endophytic bacteria of coffee plants and their potential in caffeine degradation. In Environmental Toxicology 293; Kungolos, A.G., Ed.; WIT Press: Southampton, UK, 2006; pp. 293–297. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Chen, Z.; Ma, G.H.; Du, B.H.; Shen, D.; Ding, Y.Q.; Xu, K. Diversity and potential application of endophytic bacteria in ginger. Genet. Mol. Res. 2014, 4, 4918–4931. [Google Scholar] [CrossRef]
- Munjal, V.; Nadakkakath, A.V.; Sheorana, N.; Kunduc, A.; Venugopald, V.; Subaharand, K.; Rajammab, S.; Eapen, S.J.; Kumar, A. Genotyping and identification of broad spectrum antimicrobial volatiles in black pepper root endophytic biocontrol agent, Bacillus megaterium BP17. Biol. Control 2016, 92, 66–76. [Google Scholar] [CrossRef]
- Grunennvaldt, R.L.; Degenhardt-Goldbach, J.; Tomasi, J.C.; dos Santos, G.D.; Vicente, V.A.; Deschamps, C. Bacillus megaterium: An endophytic bacteria from callus of Ilex paraguariensis with growth promotion activities. Biotecnol. Veg. 2018, 18, 3–13. [Google Scholar]
- Wang, X.Q.; Zhao, D.L.; Shen, L.L.; Jing, C.L.; Zhang, C.S. Application and mechanisms of Bacillus subtilis in biological control of plant disease. In Role of Rhizospheric Microbes in Soil; Meena, V., Ed.; Springer: Singapore, 2018; pp. 225–250. [Google Scholar] [CrossRef]
- Choudhhary, D.K.; Johri, B.N. Interactions of Bacillus spp. and plants—With special reference to induced systemic resistance (ISR). Microbiol. Res. 2009, 164, 493–513. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.; Wang, C.; Song, X.; Ding, X.; Wu, L.; Wu, H.; Gao, X.; Borriss, R. Bacillus velezensis FZB42 in 2018: The Gram-positive model strain for plant growth promotion and biocontrol. Front. Microbiol. 2018, 9, 2491. [Google Scholar] [CrossRef] [Green Version]
- López-Bucio, J.; Campos-Cuevas, J.C.; Hernández-Calderón, E.; Velásquez-Becerra, C.; Farías-Rodríguez, R.; Macías-Rodríguez, L.I.; Valencia-Cantero, E. Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin-and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol. Plant Microbe Interact. 2007, 20, 207–217. [Google Scholar] [CrossRef] [Green Version]
- Ryu, C.M.; Hu, C.H.; Locy, R.D.; Kloepper, J.W. Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant Soil 2005, 268, 285–292. [Google Scholar] [CrossRef]
- Zou, C.; Li, Z.; Yu, D. Bacillus megaterium strain XTBG34 promotes plant growth by producing 2-pentylfuran. J. Microbiol. 2010, 48, 460–466. [Google Scholar] [CrossRef]
- Çakmakçi, R.; Dönmez, F.; Aydınd, A.; Şahin, F. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol. Biochem. 2006, 38, 1482–1487. [Google Scholar] [CrossRef]
- Acurio Vásconez, R.D.; Tenorio Moya, E.M.; Collaguazo Yépez, L.A.; Chiluisa-Utreras, V.P.; Vaca Suquillo, I.d.l.Á. Evaluation of bacillus megaterium strain AB4 as a potential biocontrol agent of alternaria japonica, a mycopathogen of Brassica oleracea var. italica. Biotechnol. Rep. 2020, 26, e00454. [Google Scholar] [CrossRef]
- De Vos, P.; Garrity, G.M.; Jones, D.; Krieg, N.R.; Ludwig, W.; Rainey, F.A.; Schleifer, K.H.; Whitman, W.B. Bergey’s Manual of Systematic Bacteriology, 3rd ed.; Springer: New York, NY, USA, 2009; p. 1450. [Google Scholar] [CrossRef]
- Islam, K.Z.; Nandi, B. Control of brown spot of rice by Bacillus megaterium. J. Plant Dis. Prot. 1985, 92, 241–246. [Google Scholar]
- Aravind, R.; Kumar, A.; Eapen, S.J. Pre-plant bacterisation: A strategy for delivery of beneficial endophytic bacteria and production of disease-free plantlets of black pepper (Pipernigrum L.). Arch. Phytopathol. Plant Protect. 2012, 45, 1115–1126. [Google Scholar] [CrossRef]
- Kildea, S.; Ransbortyn, V.; Khan, M.R.; Fagan, B.; Leonard, G.; Mullins, E.; Doohan, F.M. Bacillus megaterium shows potential for the biocontrol of septoria tritici blotch of wheat. Biol. Control. 2008, 47, 37–45. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, J.; Zhang, C.; Wang, L.; Gao, W.; Jiang, J. Bacillus megaterium WL-3 lipopeptides collaborate against Phytophthora infestans to control potato late blight and promote potato plant growth. Front. Microbiol. 2020, 11, 1602. [Google Scholar] [CrossRef] [PubMed]
- Ou, T.; Zhang, M.; Huang, Y.; Wang, L.; Wang, F.; Wang, R.; Liu, X.; Zhou, Z.; Xie, J.; Xiang, Z. Role of rhizospheric Bacillus megaterium HGS7 in maintaining mulberry growth under extremely abiotic stress in hydro-fluctuation Belt of Three Gorges Reservoir. Front. Plant Sci. 2022, 13, 880125. [Google Scholar] [CrossRef] [PubMed]
- Samarina, L.S.; Malyarovskaya, V.I.; Rogozhina, E.V.; Malyukova, L.S. Endophytes, as promotors of microorganisms in vitro plant growth. Selskokhozyaystvennaya Biol. 2017, 52, 917–927. [Google Scholar] [CrossRef]
- Inácio, M.C.; Paz, T.A.; Soares Pereira, A.M.; Furlan, M. Endophytic Bacillus megaterium and exogenous stimuli affect the quinonemethide triterpenes production in adventitious roots of Peritassa campestris (Celastraceae). Plant Cell Tiss. Organ. Cult. 2017, 131, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Salomon, M.V.; Bottini, R.; de Souza Filho, G.A.; Cohen, A.C.; Moreno, D.; Gil, M.; Piccoli, P. Bacteria isolated from roots and rhizosphere of Vitis vinifera retard water losses, induce abscisic acid accumulation and synthesis of defense-related terpenes in in vitro cultured grapevine. Physiol. Plant. 2014, 151, 359–374. [Google Scholar] [CrossRef]
- Miliute, I.; Buzaite, O.; Gelvonauskiene, D.; Sasnauskas, A.; Stanys, V.; Baniulis, D. Plant growth promoting and antagonistic properties of endophytic bacteria isolated from domestic apple. Zemdirbyste-Agriculture 2016, 103, 77–82. [Google Scholar] [CrossRef]
- Tamošiuné, I.; Staniené, G.; Haimi, P.; Stanys, V.; Rugienius, R.; Baniulis, D. Endophytic Bacillus and Pseudomonas spp. modulate apple shoot growth, cellular redox balance, and protein expression under in vitro conditions. Front. Plant Sci. 2018, 9, 889. [Google Scholar] [CrossRef] [Green Version]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant 1962, 15, 473–479. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, W.; Saha, M.C.; Udvardi, M.K.; Kang, y. Improved node culture methods for rapid vegetative propagation of switchgrass (Panicum virgatum L.). BMC Plant Biol. 2021, 21, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ledo, A.S.; do Amaral, A.L.; Jenderek, M.M.; Harrison, M.; Manter, D.K. Sterilization procedures and Plant Preservative Mixture on in vitro establishment of Miscanthus sinensis Andersson. Plant Cell Cult. Micropropag. 2019, 15, 27–32. [Google Scholar] [CrossRef]
- Bausher, M.G.; Neidz, R.P. A discussion of in vitro contamination control of explants from greenhouse and field grown trees. Proc. Fla. State Hortic. Soc. 1988, 111, 260–263. [Google Scholar]
- Faizy, H.S.; AL-Zubaydi, S.R.; Nair, M. Effect of plant preservative mixture PPMTM on the shoot regeneration of water cress (Nasturtium officinale). Sci. J. Univ. Zakho 2017, 5, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Orlikowska, T.; Zawadzka, M.; Zenkteler, E.; Sobiczewski, P. Influence of the biocides PPMTM and vitrofural on bacteria isolated from contaminated plant tissue cultures and on plant microshoots grown on various media. J. Hortic. Sci. Biotechnol. 2015, 87, 223–230. [Google Scholar] [CrossRef]
- Paul, A.L.; Semer, C.; Kucharek, T.; Ferl, R.J. The fungicidal and phytotoxic properties of benomyl and PPM in supplemented agar media supporting transgenic arabidopsis plants for a Space Shuttle flight experiment. Appl. Microbiol. Biotechnol. 2001, 55, 480–485. [Google Scholar] [CrossRef] [PubMed]
- George, M.W.; Tripepi, R.R. Plant preservative mixtureTM can affect shoot regeneration from leaf explants of Chrysanthemum, European Birch, and Rhododendron. HortSciene 2001, 36, 768–769. [Google Scholar] [CrossRef]
- Romadanova, N.; Kushnarenko, S.; Karasholakova, L. Development of a common PVS2 vitrification method for cryopreservation of several fruit. Vitr. Cell. Dev. Biol. Plant 2017, 53, 382–393. [Google Scholar] [CrossRef]
- Kado, C.I.; Heskett, M.G. Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas, and Xanthomonas. Phytopathology 1970, 60, 969–976. [Google Scholar] [CrossRef]
- Amies, C.R. A modified formula for the preparation of Stuart’s transport medium. Can. J. Public Health 1967, 58, 296–300. [Google Scholar]
- Kozhakhmetova, S.; Zholdybayeva, E.; Tarlykov, P.; Atavliyeva, S.; Syzdykov, T.; Daniyarova, A.; Mukhtarova, K.; Ramankulov, Y. Determinants of resistance in Bacteroides fragilis strain BFR_KZ01 isolated from a patient with peritonitis in Kazakhstan. J. Glob. Antimicrob. Resist. 2021, 25, 1–4. [Google Scholar] [CrossRef] [PubMed]
- SYSTAT. SYSTAT 12.0, Statistics Software; SYSTAT Software, Inc.: San Jose, CA, USA, 2007; Available online: https://systatsoftware.com/ (accessed on 5 June 2022).
Species | Genotypes | Aseptic Shoots (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Control z | Experiment 1 (E1) | Experiment 2 (E2) | ||||||||
M. sieversii | ‘KG 7’ | 0.0 | ± | 0.0 a | 62.5 x | ± | 3.6 b | 0.0 | ± | 0.0 c |
M. domestica | ‘Aport krovavo-krasnyi’ | 0.0 | ± | 0.0 a | 87.5 | ± | 2.9 b | 75.0 | ± | 3.2 b |
M. domestica | ‘Golden Delicious’ | 0.0 | ± | 0.0 a | 100.0 | ± | 0.0 a | 100.0 | ± | 0.0 a |
M. domestica | ‘Gold Rush’ | 0.0 | ± | 0.0 a | 87.5 | ± | 2.9 b | 0.0 | ± | 0.0 c |
M. domestica | ‘Landsberger Renette’ | 0.0 | ± | 0.0 a | 75.0 | ± | 3.2 b | 100.0 | ± | 0.0 a |
M. domestica | ‘Suislepper’ | 0.0 | ± | 0.0 a | 62.5 | ± | 3.6 b | 62.5 | ± | 3.6 b |
Mean | 0.0 | ± | 0.0 | 79.2 | ± | 3.8 | 56.3 | ± | 6.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romadanova, N.V.; Tolegen, A.B.; Kushnarenko, S.V.; Zholdybayeva, E.V.; Bettoni, J.C. Effect of Plant Preservative MixtureTM on Endophytic Bacteria Eradication from In Vitro-Grown Apple Shoots. Plants 2022, 11, 2624. https://doi.org/10.3390/plants11192624
Romadanova NV, Tolegen AB, Kushnarenko SV, Zholdybayeva EV, Bettoni JC. Effect of Plant Preservative MixtureTM on Endophytic Bacteria Eradication from In Vitro-Grown Apple Shoots. Plants. 2022; 11(19):2624. https://doi.org/10.3390/plants11192624
Chicago/Turabian StyleRomadanova, Natalya V., Arman B. Tolegen, Svetlana V. Kushnarenko, Elena V. Zholdybayeva, and Jean Carlos Bettoni. 2022. "Effect of Plant Preservative MixtureTM on Endophytic Bacteria Eradication from In Vitro-Grown Apple Shoots" Plants 11, no. 19: 2624. https://doi.org/10.3390/plants11192624
APA StyleRomadanova, N. V., Tolegen, A. B., Kushnarenko, S. V., Zholdybayeva, E. V., & Bettoni, J. C. (2022). Effect of Plant Preservative MixtureTM on Endophytic Bacteria Eradication from In Vitro-Grown Apple Shoots. Plants, 11(19), 2624. https://doi.org/10.3390/plants11192624