Antifeeding and Oviposition Deterrent Effect of Ludwigia spp. (Onagraceae) against Plutella xylostella (Lepidoptera: Plutellidae)
Abstract
:1. Introduction
2. Results
2.1. Feeding Preference
2.2. Oviposition
3. Discussion
4. Materials and Methods
4.1. Collection of Botanical Material
4.2. Preparation of Botanical Material
4.3. Preparation of Ethanolic Extracts
4.4. Breeding of Plutella xylostella
4.5. Bioassay of Antifeedant Activity in P. xylostella
4.6. Plutella xylostella Oviposition Deterrent Bioassay
4.7. Phytochemical Analysis of the Extract
4.7.1. Phenolic Compounds, Flavonoids, and Tannins
4.7.2. Determination of Alkaloid Content
4.7.3. Determination of Antioxidant Activity
4.8. Statistical Analysis
4.8.1. Feeding Bioassay
4.8.2. Antifeedant Index (AI)
4.8.3. Oviposition Bioassay
4.8.4. Oviposition Deterrent Index (ODI)
4.8.5. Chemical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gautam, M.P.; Singh, H.; Kumar, S.; Kumar, V.; Singh, G.; Singh, S.N. Diamondback moth, Plutella xylostella (Linnaeus) (Insecta: Lepidoptera: Plutellidae) a major insect of cabbage in India: A review. J. Entomol. Zool. Stud. 2018, 6, 1394–1399. [Google Scholar]
- Srinivasan, R.; Lin, M.Y. Effects of sub-lethal doses of Bacillus thuringiensis (Bt) δ-endotoxins against natural enemies of diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). In Proceedings of the Sixth International Workshop on Management of the Diamondback Moth and Other Crucifer Insect Pests, Nakhon Pathom, Thailand, 21–25 March 2011; AVRDC-The World Vegetable Center: Shanhua, Tainan, 2011; pp. 188–196. [Google Scholar]
- Monnerat, R.G.; Leal-Bertioli, S.C.M.; Bertioli, D.J.; Butt, T.M.; Bordat, D. Caracterização de populações geograficamente distintas da traça-das-crucíferas por susceptibilidade ao Bacillus thuringiensis Berliner e RAPD-PCR. Hortic. Bras. 2004, 22, 607–609. [Google Scholar] [CrossRef]
- Hurst, M.R.H.; Jones, S.A.; Beattie, A.; Van Koten, C.; Shelton, A.M.; Collins, H.L.; Brownbridge, M. Assessment of Yersinia entomophaga as a control agent of the diamondback moth Plutella xylostella. J. Invertebr. Pathol. 2019, 162, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Furlong, M.J.; Wright, D.J.; Dosdall, L.M. Diamondback Moth Ecology and Management: Problems, Progress, and Prospects. Annu. Rev. Entomol. 2013, 58, 517–541. [Google Scholar] [CrossRef] [PubMed]
- APRD Arthropod Pesticide, Resistance Database. Available online: http://www.pesticideresistance.org/display.php?page=species&luc=571 (accessed on 8 June 2022).
- Cerda, H.; Carpio, C.; Ledezma-Carrizalez, A.C.; Sánchez, J.; Ramos, L.; Muñoz-Shugulí, C.; Andino, M.; Chiurato, M. Effects of Aqueous Extracts from Amazon Plants on Plutella xylostella (Lepidoptera: Plutellidae) and Brevicoryne brassicae (Homoptera: Aphididae) in Laboratory, Semifield, and field trials. J. Insect Sci. 2019, 19, 8. [Google Scholar] [CrossRef] [PubMed]
- Peres, L.L.S.; Sobreiro, A.I.; Couto, I.F.S.; Silva, R.M.; Pereira, F.F.; Heredia-Vieira, S.C.; Cardoso, C.A.L.; Mauad, M.; Scalon, S.P.Q.; Verza, S.S.; et al. Chemical Compounds and Bioactivity of Aqueous Extracts of Alibertia spp. in the Control of Plutella xylostella L. (Lepidoptera: Plutellidae). Insects 2017, 8, 125. [Google Scholar] [CrossRef] [Green Version]
- Couto, I.F.S.; Silva, S.V.; Valente, F.I.; Araújo, B.S.; Souza, S.A.; Mauad, M.; Scalon, S.P.Q.; Mussury, R.M. Botanical Extracts of the Brazilian Savannah Affect Feeding and Oviposition of Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae). J. Agric. Sci. 2019, 11, 322–333. [Google Scholar] [CrossRef]
- Ferreira, E.A.; de Souza, S.A.; Domingues, A.; da Silva, M.M.M.; Padial, I.M.P.M.; de Carvalho, E.M.; Cardoso, C.A.L.; da Silva, S.V.; Mussury, R.M. Phytochemical Screening and Bioactivity of Ludwigia spp. in the Control of Plutella xylostella (Lepidoptera: Plutellidae). Insects 2020, 11, 596. [Google Scholar] [CrossRef]
- Jacobson, M. Botanical pesticides, past, present and future. In Insecticides of Plant Origin; Arnason, J.J., Philogene, B.R., Morand, P., Eds.; ACS Symposium Series; ACS Publications: Washington, DC, USA, 1989; pp. 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ascher, K.R.S. Nonconventional insecticidal effects of pesticides available from the neem tree, Azadirachta indica. Arch. Insect Biochem. Physiol. 1993, 22, 433–449. [Google Scholar] [CrossRef]
- Schmutterer, H. The Neem Tree Azadirachta Indica A. Juss and Other Maliaceous Plant Sources of Unique Natural Products of Integrated Pest Management Medicine, Industry and Other Purposes; VCH: Hoboken, NJ, USA, 1995. [Google Scholar]
- Miresmailli, S.; Isman, M.B. Botanical insecticides inspired by plant–herbivore chemical interactions. Trends Plant Sci. 2014, 19, 29–35. [Google Scholar] [CrossRef]
- Schneider, D. Insect antennae. Annu. Rev. Entomol. 1964, 9, 103–122. [Google Scholar] [CrossRef]
- Souza, V.C.; Lorenzi, H. Botânica Sistemática: Guia ilustrado para Identificação das Famílias de Angiospermas da Flora Brasileira, Baseado em APGII; Nova Odessa, Instituto Plantarum de Estudos da Flora: São Paulo, Brasil, 2005. [Google Scholar]
- Pott, V.J.; Pott, A. Plantas Aquáticas do Pantanal; EMBRAPA Comunicação para Transferência de Tecnologia: Brasília, Brasil, 2000. [Google Scholar]
- Yakob, H.K.; Uyub, A.M.; Sulaiman, S.F. Toxicological evaluation of 80% methanol extract of Ludwigia octovalvis (Jacq.) PH Raven leaves (Onagraceae) in BALB/c mice. J. Ethnopharmacol. 2012, 142, 663–668. [Google Scholar] [CrossRef]
- Mabou, F.D.; Jean, D.D.T.; Ngnokam, D.; Voutquenne-Nazabadioko, L.; Kuiate, J.R.; Bag, P.K. Complex secondary metabolites from Ludwigia leptocarpa with potent antibacterial and antioxidant activities. Drug Discov. Ther. 2016, 10, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Oyedeji, O.; Oziegbe, M.; Taiwo, F.O. Antibacterial, antifungal and phytochemical analysis of crude extracts from the leaves of Ludwigia abyssinica A. Rich. and Ludwigia decurrens Walter. J. Med. Plants Res. 2011, 5, 1192–1199. [Google Scholar]
- Ahmed, F.; Selim, M.S.T.; Shilpi, J. Antibacterial activity of Ludwigia adscendens. Fitoterapia 2005, 76, 473–475. [Google Scholar] [CrossRef] [PubMed]
- Tanzubil, P.B.; Mccaffery, A.R. Effects of azadirachtin and aqueous neem seed extracts on survival, growth and development of the African armyworm, Spodoptera exempta. Crop Prot. 1990, 9, 383–386. [Google Scholar] [CrossRef]
- Stamp, N.E.; Skrobola, C.M. Failure to avoid rutin diets results in altered food utilization and reduced growth rate of Manduca sexta larvae. Entomol. Exp. Appl. 1993, 68, 127–142. [Google Scholar] [CrossRef]
- Silva, T.R.F.B.; Almeida, A.C.S.; Moura, T.L.; Silva, A.R.; Freitas, S.S.; Jesus, F.G. Effect of the flavonoid rutin on the biology of Spodoptera frugiperda (Lepidoptera: Noctuidae) Acta Sci. Agron. 2016, 38, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Appel, H.M. Phenolics in ecological interactions: The importance of oxidation. J. Chem. Ecol. 1993, 19, 1521–1552. [Google Scholar] [CrossRef]
- Baldin, E.L.L.; Vendramim, J.D.; Lourenção, A.L. Resistência de Plantas a Insetos: Fundamentos e Aplicações; FEALQ: Piracicaba, Brasil, 2019; p. 493. [Google Scholar]
- Smith, C.M. Plant Resistance to Arthropods: Molecular and Conventional Approaches; Springer: Manhattan, NY, USA, 2008; p. 42. [Google Scholar]
- Averett, J.E.; Zardini, E.M.; Hoch, P.C. Flavonoid systematics of ten sections of Ludwigia (Onagraceae). Biochem. Syst. Ecol. 1990, 18, 529–532. [Google Scholar] [CrossRef]
- Diaz Napal, G.N.; Defagó, M.T.; Valladares, G.R.; Palacios, S.M. Response of Epilachna paenulata to two flavonoids, pinocembrin and quercetin, in a comparative study. J. Chem. Ecol. 2010, 36, 898–904. [Google Scholar] [CrossRef]
- Ferreira, E.A. Triagem fitoquímica e bioatividade de extratos aquosos e etanólicos de Ludwigia spp. sobre Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae). Ph.D. Thesis, Universidade Federal da Grande Dourados, Dourados, Brazil, 2021. [Google Scholar]
- Onyilagha, J.C.; Gruber, M.Y.; Hallett, R.H.; Holowachuk, J.; Buckner, A.; Soroka, J.J. Constitutive flavonoids deter flea beetle insect feeding in Camelina sativa L. Biochem. Syst. Ecol. 2012, 42, 128–133. [Google Scholar] [CrossRef]
- Gullan, P.J.; Cranston, P.S. Os Insetos: Um Resumo de Entomologia, 3rd ed.; Rocca: São Paulo, Brasil, 2014. [Google Scholar]
- Vats, T.K.; Rawal, V.; Mullick, S.; Devi, M.R.; Singh, P.; Singh, A.K. Bioactivity of Ageratum conyzoides (L.) (Asteraceae) on feeding and oviposition behaviour of diamondback moth Plutella xylostella (L.) (Lepidoptera: Plutellidae). Int. J. Trop. Insect Sci. 2019, 39, 311–318. [Google Scholar] [CrossRef]
- Charleston, D.S.; Kfir, R.; Vet, L.; Dicke, M. Behavioural responses of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae) to extracts derived from Melia azedarach and Azadirachta indica. Bull. Entomol. Res. 2005, 95, 457–465. [Google Scholar] [CrossRef] [Green Version]
- Basukriadi, A.; Wilkins, R.M. Oviposition deterrent activities of Pachyrhizus erosus sed extract and other natural products on Plutella xylostella (Lepidoptera: Plutellidae). J. Insect Sci. 2014, 14, 244. [Google Scholar] [CrossRef]
- Barros, R.; Thuler, R.T.; Pereira, F.F. Técnica de criação de Plutella xylostella (L. 1758) (Lepidoptera: Yponomeutidae). In Técnicas de Criação de Pragas de Importância Agrícola, em Dietas Naturais, 1st ed.; Pratissoli, D., Ed.; Edufes: Vitória, Brasil, 2012; pp. 65–84. [Google Scholar]
- Matias da Silva, R.; Fioratti, C.A.G.; Silva, G.B.; Cardoso, C.A.L.; Miranda, L.O.; Mauad, M.; Mussury, R.M. Antibiose do extrato foliar de Duguetia furfuracea sobre Plutella xylostella (Lepidoptera: Plutellidae). In Temas Atuais em Ecologia Comportamental e Interações. Anais do II BecInt—Behavioral Ecology and Interactions Symposium, 1st ed.; Calixto, E.S., Toreza-Silingardi, H.M., Eds.; Editora Composer: Uberlândia, Brasil, 2017; Volume 1, pp. 52–69. ISBN 978-85-8324-057-0. (In Portuguese) [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Isman, M.B.; Koul, O.; Luczynski, A.; Kaminski, J. Insecticidal and antifeedant bioactivities of neem oils and their relationship to azadirachtin content. J. Agric. Food Chem. 1990, 38, 1406–1411. [Google Scholar] [CrossRef]
- Mehboob, A.; Zaka, S.M.; Sarmad, M.; Bajwa, M. Feeding and Oviposition Deterrence of Murraya paniculata, Piper nigrum and Moringa oleifera Extracts against Spodoptera litura (F). Pak. J. Zool. 2019, 51, 567. [Google Scholar] [CrossRef]
- Huang, X.; Renwick, J.A.A. Relative activities of glucosinolates as oviposition stimulants for Pieris rapae and P. napi oleracea. J. Chem. Ecol. 1994, 20, 1025–1037. [Google Scholar] [CrossRef]
- Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N. Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds. Food Chem. 2006, 97, 654–660. [Google Scholar] [CrossRef]
- Broadhurst, R.B.; Jones, W.T. Analysis of condensed tannins using acidified vanillin. J. Sci. Food Agric. 1978, 29, 788–794. [Google Scholar] [CrossRef]
- Oliveira, M.A.C.; Albuquerque, M.M.; Xavier, H.S.; Strattmann, R.R.; Grangeiro Júnior, S.; Queiroz, A.T. Development and validation of a method for the quantification of total alkaloids as berbeine in an herbal medicine containing Berberis vulgaris L. Rev. Bras. Farmacogn. 2006, 16, 357–364. [Google Scholar] [CrossRef]
- Kumaran, A.; Karunakaranm, R.J. 2006. Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chem. 2006, 97, 109–114. [Google Scholar] [CrossRef]
- Badenes-Pérez, F.R.; Reichelt, M.; Gershenzon, J.; Heckel, D.G. Phylloplane location of glucosinolatos in Barbarea spp. (Brassicaceae) and misleading assessment of host suitability by a specialist herbivore. New Phytol. 2011, 189, 549–556. [Google Scholar] [CrossRef]
Treatment | Leaf Area Consumed (cm2) | p-Value | AI % | Classification | |
---|---|---|---|---|---|
AQUEOUS EXTRACT | |||||
Choice Bioassay | |||||
Control | Extract | ||||
L. tomentosa | 0.42 ± 0.12 A | 0.08 ± 0.03 B | 0.0088 | 52.13 | Phagodeterrent |
L. longifolia | 0.15 ± 0.07 A | 0.09 ± 0.02 A | 0.8451 | (−)15.53 | Phagostimulant |
L. sericea | 0.21 ± 0.06 A | 0.10 ± 0.03 A | 0.3254 | 11.49 | Phagodeterrent |
L. nervosa | 0.11 ± 0.03 A | 0.23 ± 0.06 A | 0.1387 | (−) 27.58 | Phagostimulant |
ETHANOLIC EXTRACT | |||||
ChoiceBioassay | |||||
Control | Extract | ||||
L. tomentosa | 0.31 ± 0.10 A | 0.23 ± 0.06 A | 0.7617 | 8.18 | Phagodeterrent |
L. longifolia | 0.28 ± 0.05 A | 0.22 ± 0.07 A | 0.3442 | 23.79 | Phagodeterrent |
L. sericea | 0.52 ± 0.09 A | 0.32 ± 0.11 A | 0.1506 | 29.42 | Phagodeterrent |
L. nervosa | 0.42 ± 0.13 A | 0.36 ± 0.09 A | 0.9705 | (−) 2.16 | Phagostimulant |
Treatment | Number of Eggs ± SE | p-Value | ODI % | Classification |
---|---|---|---|---|
AQUEOUS EXTRACT | ||||
Choice Bioassay | ||||
Control | 49.40 ± 17.07 a | 0.0335 | - - | |
L. tomentosa | 4.30 ± 2.02 b | 70.69 | Deterrent | |
L. longifolia | 1.40 ± 0.65 b | 76.42 | Deterrent | |
L. sericea | 9.20 ± 3.74 b | 61.23 | Deterrent | |
L. nervosa | 6.00 ± 2.85 b | 66.88 | Deterrent | |
ETHANOLIC EXTRACT | ||||
Choice Bioassay | ||||
Control | 64.70 ± 14.56 a | 0.0182 | - - | |
L. tomentosa | 14.90 ± 6.33 b | 60.02 | Deterrent | |
L. longifolia | 5.70 ± 1.96 b | 73.70 | Deterrent | |
L. sericea | 15.8 ± 5.80 b | 49.64 | Deterrent | |
L. nervosa | 12.1 ± 4.90 b | 41.73 | Deterrent |
Extract | Antioxidant Activity | Phenolic Compounds | Flavonoids | Condensed Tannins | Alkaloids |
---|---|---|---|---|---|
IC50 (μg mL−1) | (mg g−1) | (mg g−1) | (mg g−1) | (mg g−1) | |
L. tomentosa | 44.7 ±0.4 | 189.8 ±2.8 | 123.7 ±1.3 | 33.8 ±0.3 | 15.9 ±0.2 |
L. longifolia | 49.7 ± 0.2 | 182.4 ±1.1 | 101.1 ± 1.1 | 30.1 ± 0.4 | 14.8 ±0.2 |
L. sericea | 47.8 ± 0.5 | 179.6 ± 1.3 | 117.6 ± 0.9 | 32.3± 0.7 | 15.3 ± 0.3 |
L. nervosa | 41.4 ± 0.5 | 201.1 ± 2.1 | 132.9 ± 1.2 | 34.9 ± 0.6 | 16.7 ± 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, E.A.; Faca, E.C.; de Souza, S.A.; Fioratti, C.A.G.; Mauad, J.R.C.; Cardoso, C.A.L.; Mauad, M.; Mussury, R.M. Antifeeding and Oviposition Deterrent Effect of Ludwigia spp. (Onagraceae) against Plutella xylostella (Lepidoptera: Plutellidae). Plants 2022, 11, 2656. https://doi.org/10.3390/plants11192656
Ferreira EA, Faca EC, de Souza SA, Fioratti CAG, Mauad JRC, Cardoso CAL, Mauad M, Mussury RM. Antifeeding and Oviposition Deterrent Effect of Ludwigia spp. (Onagraceae) against Plutella xylostella (Lepidoptera: Plutellidae). Plants. 2022; 11(19):2656. https://doi.org/10.3390/plants11192656
Chicago/Turabian StyleFerreira, Eliana Aparecida, Eduardo Carvalho Faca, Silvana Aparecida de Souza, Claudemir Antonio Garcia Fioratti, Juliana Rosa Carrijo Mauad, Claudia Andrea Lima Cardoso, Munir Mauad, and Rosilda Mara Mussury. 2022. "Antifeeding and Oviposition Deterrent Effect of Ludwigia spp. (Onagraceae) against Plutella xylostella (Lepidoptera: Plutellidae)" Plants 11, no. 19: 2656. https://doi.org/10.3390/plants11192656