Phenolic Composition and Antioxidant Activity of Alchemilla Species
Abstract
1. Introduction
2. Methodology of Evidence Acquisition
3. Phenolic Compounds in the Alchemilla Species
4. Antioxidant Activity
5. Conclusions and Research Gaps/Future Investigations
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Sepp, S.; Paal, J. Taxonomic continuum of Alchemilla (Rosaceae) in Estonia. Nord. J. Bot. 1998, 18, 519–535. [Google Scholar] [CrossRef]
- Perry, L.M. A tentative revision of Alchemilla § Lachemilla. Contrib. Gray Herb. Harv. Univ. 1929, 84, 1–57. [Google Scholar] [CrossRef]
- Ergene, B.; Bahadir Acikara, Ö.; Bakar, F.; Saltan, G.; Nebioǧlu, S. Antioxidant activity and phytochemical analysis of Alchemilla persica Rothm. Ankara Univ. Eczac. Fak. Derg. 2010, 39, 145–154. [Google Scholar] [CrossRef]
- Available online: http://theplantlist.org/1.1/browse/A/Rosaceae/Alchemilla/ (accessed on 31 August 2022).
- Ozbek, H.; Acikara, O.B.; Keskin, I.; Kirmizi, N.I.; Ozbilgin, S.; Oz, B.E.; Kurtul, E.; Ozrenk, B.C.; Tekin, M.; Saltan, G. Evaluation of hepatoprotective and antidiabetic activity of Alchemilla mollis. Biomed. Pharmacother. 2017, 86, 172–176. [Google Scholar] [CrossRef]
- Afshar, F.H.; Maggi, F.; Ferrari, S.; Peron, G.; Dall’Acqua, S. Secondary metabolites of Alchemilla persica growing in Iran (East Azarbaijan). Nat. Prod. Commun. 2015, 10, 1705–1708. [Google Scholar] [CrossRef]
- Choi, J.; Park, Y.G.; Yun, M.S.; Seol, J.W. Effect of herbal mixture composed of Alchemilla vulgaris and Mimosa on wound healing process. Biomed. Pharmacother. 2018, 106, 326–332. [Google Scholar] [CrossRef]
- Jarić, S.; Mačukanović-Jocić, M.; Djurdjević, L.; Mitrović, M.; Kostić, O.; Karadžić, B.; Pavlović, P. An ethnobotanical survey of traditionally used plants on Suva planina mountain (south-eastern Serbia). J. Ethnopharmacol. 2015, 175, 93–108. [Google Scholar] [CrossRef]
- Masullo, M.; Montoro, P.; Mari, A.; Pizza, C.; Piacente, S. Medicinal plants in the treatment of women’s disorders: Analytical strategies to assure quality, safety and efficacy. J. Pharm. Biomed. 2015, 113, 189–211. [Google Scholar] [CrossRef]
- Karaoglan, E.S.; Bayir, Y.; Albayrak, A.; Toktay, E.; Ozgen, U.; Kazaz, C.; Kahramanlar, A.; Cadirci, E. Isolation of major compounds and gastroprotective activity of Alchemilla caucasica on indomethacin induced gastric ulcers in rats. Eurasian J. Med. 2020, 52, 249–253. [Google Scholar] [CrossRef]
- Boroja, T.; Mihailović, V.; Katanić, J.; Pan, S.P.; Nikles, S.; Imbimbo, P.; Monti, D.M.; Stanković, N.; Stanković, M.S.; Bauer, R. The biological activities of roots and aerial parts of Alchemilla vulgaris L. S. Afr. J. Bot. 2018, 116, 175–184. [Google Scholar] [CrossRef]
- European Pharmacopoeia 6.0 (Volume 2) Alchemillae herba; Druckerei C. H. Beck: Nördlingen, Germany, 2008; p. 1123.
- Ondrejovıč, M.; Ondrıgová, Z.; Kubincová, J. Isolation of antioxidants from Alchemilla xanthochlora. Nova Biotechnol. Chim. 2009, 9, 313–318. [Google Scholar] [CrossRef]
- Usta, C.; Yildirim, A.B.; Turker, A.U. Antibacterial and antitumour activities of some plants grown in Turkey. Biotechnol. Biotechnol. Equip. 2014, 28, 306–315. [Google Scholar] [CrossRef]
- Karaoglan, E.S.; Yilmaz, B. Identification of bioactive compounds of Alchemilla caucasica using gas chromatography-mass spectrometry. Int. J. Pharmacogn. 2018, 5, 287–293. [Google Scholar]
- Shrivastava, R.; Cucuat, N.; John, G.W. Effects of Alchemilla vulgaris and glycerine on epithelial and myofibroblast cell growth and cutaneus lesion healing in rats. Phytother. Res. 2007, 21, 369–373. [Google Scholar] [CrossRef]
- Lattanzio, V. Phenolic compounds: Introduction 50. Nat. Prod. 2013, 1543–1580. [Google Scholar] [CrossRef]
- Harborne, J.B. Plant phenolics. In Encyclopedia of Plant Physiology. Secondary Plant Products; Bell, E.A., Charlwood, B.V., Eds.; Springer: Berlin, Germany, 1980; Volume 8, pp. 329–402. [Google Scholar]
- Shilova, I.V.; Suslov, N.I.; Samylina, I.A.; Baeva, V.M.; Lazareva, N.B.; Mazin, E.V. Neuroprotective properties of common lady’s mantle infusion. Pharm. Chem. J. 2020, 53, 1059–1062. [Google Scholar] [CrossRef]
- D’Agostino, M.; Dini, I.; Ramundo, E.; Senatore, F. Flavonoid glycosides of Alchemilla vulgaris L. Phyther. Res. 1998, 12, 1997–1998. [Google Scholar] [CrossRef]
- Felser, C.; Schimmer, O. Flavonoid glycosides from Alchemilla speciosa. Planta Med. 1999, 65, 1987–1989. [Google Scholar] [CrossRef]
- Kaya, B.; Menemen, Y.; Saltan, F.Z. Flavonoid compounds identified in Alchemilla L. species collected in the north-eastern Black Sea region of Turkey. Afr. J. Tradit. Complement. Altern. Med. 2012, 9, 418–425. [Google Scholar] [CrossRef]
- Kaya, B.; Menemen, Y.; Saltan, F.Z. Flavonoids in the endemic species of Alchemilla L., (section Alchemilla L. subsection Calycanthum Rothm. Ser. Elatae Rothm.) from north-east Black Sea region in Turkey. Pakistan J. Bot. 2012, 44, 595–597. [Google Scholar]
- Lamaison, J.L.; Carnat, A.; Petitjean-Freytet, C.; Carnat, A.P. Quercetin-3-glucuronide, the main flavonoid of Lady’s Mantle, Alchemilla xanthochlora Rothm. (Rosaceae). Ann. Pharm. Fr. 1991, 49, 186–189. [Google Scholar]
- Renda, G.; Özel, A.; Barut, B.; Korkmaz, B.; Šoral, M.; Kandemir, Ü.; Liptaj, T. Bioassay guided isolation of active compounds from Alchemilla barbatiflora Juz. Rec. Nat. Prod. 2018, 12, 76–85. [Google Scholar] [CrossRef]
- Trendafilova, A.; Todorova, M.; Gavrilova, A.; Vitkova, A. Flavonoid glycosides from Bulgarian endemic Alchemilla achtarowii Pawl. Biochem. Syst. Ecol. 2012, 43, 156–158. [Google Scholar] [CrossRef]
- Trendafilova, A.; Todorova, M.; Nikolova, M.; Gavrilova, A.; Vitkova, A. Flavonoid constituents and free radical scavenging activity of Alchemilla mollis. Nat. Prod. Commun. 2011, 6, 1851–1854. [Google Scholar] [CrossRef]
- Mandrone, M.; Coqueiro, A.; Poli, F.; Antognoni, F.; Choi, Y.H. Identification of a collagenase-inhibiting flavonoid from Alchemilla vulgaris using NMR-based metabolomics. Planta Med. 2018, 84, 941–946. [Google Scholar] [CrossRef]
- Fraisse, D.; Carnat, A.; Carnat, A.P.; Lamaison, J.L. Standardisation des parties aériennes d’alchémille. Ann. Pharm. Fr. 1999, 57, 401–405. [Google Scholar]
- Fraisse, D.; Heitz, A.; Carnat, A.; Carnat, A.P.; Lamaison, J.L. Quercetin 3-arabinopyranoside, a major flavonoid compound from Alchemilla xanthochlora. Fitoterapia 2000, 71, 463–464. [Google Scholar] [CrossRef]
- Neagu, E.; Paun, G.; Albu, C.; Radu, G.L. Assessment of acetylcholinesterase and tyrosinase inhibitory and antioxidant activity of Alchemilla vulgaris and Filipendula ulmaria extracts. J. Taiwan Inst. Chem. Eng. 2015, 52, 1–6. [Google Scholar] [CrossRef]
- Denev, P.; Kratchanova, M.; Ciz, M.; Lojek, A.; Vasicek, O.; Blazheva, D.; Nedelcheva, P.; Vojtek, L.; Hyrsl, P. Antioxidant, antimicrobial and neutrophil-modulating activities of herb extracts. Acta Biochim. Pol. 2014, 61, 359–367. [Google Scholar] [CrossRef]
- Akkol, E.K.; Demirel, M.A.; Acıkara, O.B.; Süntar, I.; Ergene, B.; Ilhan, M.; Ozbilgin, S.; Saltan, G.; Keleş, H.; Tekin, M. Phytochemical analyses and effects of Alchemilla mollis (Buser) Rothm. and Alchemilla persica Rothm. in rat endometriosis model. Arch. Gynecol. Obstet. 2015, 292, 619–628. [Google Scholar] [CrossRef]
- Duckstein, S.M.; Lotter, E.M.; Meyer, U.; Lindequist, U.; Stintzing, F.C. Phenolic constituents from Alchemilla vulgaris L. and Alchemilla mollis (Buser) Rothm. at different dates of harvest. Zeitschrift Naturforsch. Sect. C J. Biosci. 2012, 67, 529–540. [Google Scholar] [CrossRef]
- Filippova, E.I. Antiviral activity of Lady’s Mantle (Alchemilla vulgaris L.) extracts against Orthopoxviruses. Bull. Exp. Biol. Med. 2017, 163, 374–377. [Google Scholar] [CrossRef]
- Karatoprak, G.S.; Ilgun, S.; Kosar, M. Phenolic composition, anti-inflammatory, antioxidant, and antimicrobial activities of Alchemilla mollis (Buser) Rothm. Chem. Biodivers. 2017, 14, e1700150. [Google Scholar] [CrossRef]
- El-Hadidy, E.M.; Refat, O.G.; Halaby, M.S.; Elmetwaly, E.M.; Omar, A.A. Effect of Lion’s Foot (Alchemilla vulgaris) on liver and renal functions in rats induced by CCl4. Food Nutr. Sci. 2018, 09, 46–62. [Google Scholar] [CrossRef][Green Version]
- Tasić-Kostov, M.; Arsić, I.; Pavlović, D.; Stojanović, S.; Najman, S.; Naumović, S.; Tadić, V. Towards a modern approach to traditional use: In vitro and in vivo evaluation of Alchemilla vulgaris L. gel wound healing potential. J. Ethnopharmacol. 2019, 238, 111789. [Google Scholar] [CrossRef]
- Vlaisavljević, S.; Jelača, S.; Zengin, G.; Mimica-Dukić, N.; Berežni, S.; Miljić, M.; Stevanović, Z.D. Alchemilla vulgaris agg. (Lady’s mantle) from central Balkan: Antioxidant, anticancer and enzyme inhibition properties. RSC Adv. 2019, 9, 37474–37483. [Google Scholar] [CrossRef]
- Dos Santos Szewczyk, K.; Pietrzak, W.; Klimek, K.; Gogacz, M. LC-ESI-MS/MS identification of biologically active phenolics in different extracts of Alchemilla acutiloba Opiz. Molecules 2022, 27, 621. [Google Scholar] [CrossRef]
- Radović, J.; Suručić, R.; Niketić, M.; Kundaković-Vasović, T. Alchemilla viridiflora Rothm.: The potent natural inhibitor of angiotensin I converting enzyme. Moll. Cell. Biochem. 2022, 477, 1893–1903. [Google Scholar] [CrossRef]
- Geiger, C.; Scholz, E.; Rimpler, H. Ellagitannins from Alchemilla xanthochlora and Potentilla erecta. Planta Med. 1994, 60, 384–385. [Google Scholar] [CrossRef]
- Nikolova, M.; Dincheva, I.; Vitkova, A.; Badjakov, I. Phenolic acids and free radical scavenging activity of Bulgarian endemic—Alchemilla jumrukczalica Pawl. Planta Med. 2011, 77, 802–804. [Google Scholar] [CrossRef]
- Ilić-Stojanović, S.; Nikolić, V.; Kundaković, T.; Savić, I.; Savić-Gajić, I.; Jocić, E.; Nikolić, L. Thermosensitive hydrogels for modified release of ellagic acid obtained from Alchemilla vulgaris L. extract. Int. J. Polym. Mater. Polym. Biomater. 2018, 67, 553–563. [Google Scholar] [CrossRef]
- Condrat, D.; Mosoarca, C.; Zamfir, A.D.; Crişan, F.; Szabo, M.R.; Lupea, A.X. Qualitative and quantitative analysis of gallic acid in Alchemilla vulgaris, Allium ursinum, Acorus calamus and Solidago virga-aurea by chip-electrospray ionization mass spectrometry and high performance liquid chromatography. Cent. Eur. J. Chem. 2010, 8, 530–535. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef]
- Inci, Ş.; Eren, A.; Kirbağ, S. Determination of antimicrobial and antioxidant activity of Alchemilla alpina L. Turk J. Food Agric. Sci. 2021, 9, 2260–2264. [Google Scholar]
- Hazar, A.; Raed, A.; Nidal, J.; Motasem, M. Evaluation of phytochemical and pharmacological activities of Taraxacum syriacum and Alchemilla arvensis. Jordan J. Pharm. Sci. 2021, 14, 457–471. [Google Scholar]
- Vitkova, A.; Nikolova, M.; Delcheva, M.; Tashev, A.; Gavrilova, A.; Aneva, I.; Dimitrov, D. Influence of species composition on total phenolic content and antioxidant properties of Herba Alchemillae. Bulg. J. Agric. Sci. 2015, 21, 990–997. [Google Scholar]
- Acet, T.; Özcan, K. Determination of antioxidant and antimicrobial properties of lady’s mantle (Alchemilla ellenbergiana) extracts. GÜFBED/GUSTIJ 2018, 8, 113–121. [Google Scholar] [CrossRef]
- Uçar Sözmen, E.; Eruygur, N.; Akpolat, A.; Çetin, M.D.; Durukan, H.; Demirbaş, A.; Karaköy, T. Sivas İli Doğal Florasından Toplanan Sarı Kantaron (Hypericum scabrum L.) ve Aslan Pençesi (Alchemilla mollis (Buser) Rothm) Bitkilerinin Bazı Kalite Kriterlerinin Belirlenmesi. J. Inst. Sci. Tech. 2020, 10, 1410–1418. [Google Scholar] [CrossRef]
- Stanilova, M.; Gorgorov, R.; Trendafilova, A.; Nikolova, M.; Vitkova, A. Influence of nutrient medium composition on in vitro growth, polyphenolic content and antioxidant activity of Alchemilla mollis. Nat. Prod. Commun. 2012, 7, 761–766. [Google Scholar]
- Hwang, E.; Ngo, H.T.T.; Seo, S.A.; Park, B.; Zhang, M.; Yi, T.-H. Protective effect of dietary Alchemilla mollis on UVB-irradiated premature skin aging through regulation of transcription factor NFATc1 and Nrf2/ARE pathways. Phytomedicine 2018, 39, 125–136. [Google Scholar] [CrossRef]
- Karatoprak, G.S.; Ilgun, S.; Kosar, M. Antiradical, antimicrobial and cytotoxic activity evaluations of Alchemilla mollis (Buser) Rothm. Int. J. Herb. Med. 2018, 6, 33–38. [Google Scholar]
- Nedyalkov, P.; Kaneva, M.; Mihaylova, D.; Kostov, G.; Kemilev, S. Influence of the ethanol concentration on the antioxidant capacity and polyphenol content of Alchemilla mollis extracts. Comptes Rendus Acad. Bulg. Sci. Sci. Math. Nat. 2015, 68, 1491–1502. [Google Scholar]
- Shafaghat, A. Chemical constituents, antioxidant and antibacterial activities of the hexane extract of Alchemilla sericata Reichenb. J. Food Biochem. 2019, 43, 9–14. [Google Scholar] [CrossRef]
- Oktyabrsky, O.; Vysochina, G.; Muzyka, N.; Samoilova, Z.; Kukushkina, T.; Smirnova, G. Assessment of antioxidant activity of plant extracts using microbial test systems. J. Appl. Microbiol. 2009, 106, 1175–1183. [Google Scholar] [CrossRef]
- Boroja, T.; Mihailović, V.; Katanić, J.; Stanković, N.; Mladenović, M. Alchemilla vulgaris L. as a potential source of natural antioxidants. Zb. Rad. 2014, 19, 233–237. [Google Scholar]
- Hamid, K.; Azman, N.; Sharaani, S.; Zain, N.; Ahmad, N.; Sulaiman, A.; Chik, S.; Ishak, W.; Pablos, M. Alchemilla vulgaris and Filipendula ulmaria extracts as potential natural preservatives in beef patties. Malaysian J. Anal. Sci. 2017, 21, 986–995. [Google Scholar] [CrossRef][Green Version]
- Tadić, V.; Krgović, N.; Žugić, A. Lady’s mantle (Alchemilla vulgaris L., Rosaceae): A review of traditional uses, phytochemical profile, and biological properties. Lek. Sirovine 2020, 40, 66–74. [Google Scholar] [CrossRef]
Compound | R | R1 | R2 | R3 | MW (g/mol) |
---|---|---|---|---|---|
1 | OH | H | H | H | 286 |
2 | O-glc | H | H | H | 448 |
3 | p-coumaroyl-robinobioside | H | H | H | 918 |
4 | xyl | H | H | H | 418 |
5 | 2″-O-α-L-rha-β-D-glc | H | H | H | 594 |
6 | glcA | H | H | H | 462 |
7 | 6″-O-(E)-p-coumaroyl)glc | H | H | H | 594 |
8 | O-rha-glc | H | H | H | 594 |
51 | O-rha | H | rha | H | 578 |
53 | 2-p-coumaroyl-glc | H | H | H | 594 |
Compound | R1 | R2 | R3 | R4 | R5 | R6 | R7 | MW (g/mol) |
---|---|---|---|---|---|---|---|---|
9 | H | OH | H | H | OH | H | H | 302 |
10 | H | H | H | OH | O-α-L-ara | H | H | 434 |
11 | H | OH | H | H | O- glc(6→1)rha | H | H | 610 |
12 | H | H | H | OH | O-glucuronide | H | H | 478 |
13 | H | OH | H | H | O- gal | H | H | 464 |
14 | H | OH | H | H | O- glc | H | H | 464 |
15 | H | OH | H | H | O- rha | H | H | 448 |
19 | H | OH | H | H | O-β-D-xyl-(2→1)- β-D-glc | H | H | 596 |
20 | H | OH | H | H | O-β-D-xyl-(2→1)- β-D-glc | glc | H | 758 |
21 | H | OH | H | H | O- α-D-ara-furanoside | H | H | 434 |
54 | H | OH | H | H | OH | CH3 | H | 316 |
56 | H | OH | H | H | O-ara-furanoside | H | H | 434 |
Compound | R1 | R2 | R3 | R4 | R5 | R6 | R7 | MW (g/mol) |
---|---|---|---|---|---|---|---|---|
24 | H | OH | H | H | H | H | H | 286 |
25 | H | OH | H | H | H | H | C-β-D-glc | 448 |
26 | H | OH | H | H | H | O-β-D-glc | H | 448 |
27 | H | OH | H | H | H | rha-glc | H | 594 |
28 | H | OCH3 | H | H | OH | H | H | 316 |
29 | H | OCH3 | H | H | O-glc | H | H | 478 |
30 | H | OCH3 | H | H | O-rha glc | H | H | 624 |
42 | H | OCH3 | H | H | H | H | H | 300 |
Compound | R1 | R2 | R3 | MW (g/mol) |
---|---|---|---|---|
34 | H | OH | 290 | |
35 | H | OH | 290 |
Compound | R1 | R2 | R3 | R4 | R5 | R6 | MW (g/mol) |
---|---|---|---|---|---|---|---|
31 | OH | H | H | H | H | OH | 270 |
32 | OH | H | H | glc | H | OH | 432 |
33 | OH | H | glc | H | H | OH | 432 |
57 | OH | H | H | H | H | OCH3 | 284 |
Compound | R1 | R2 | R3 | R4 | MW (g/mol) |
---|---|---|---|---|---|
43 | H | H | OH | H | 272 |
44 | H | OH | OH | H | 288 |
Constituent Name | Species | Part of Plant | References |
---|---|---|---|
1. Kaempferol | A. acutiloba | aerial parts, roots | [40] |
A. vulgaris | aerial parts | [31,35,37,38,39] | |
2. Astragalin | A. acutiloba | aerial parts, roots | [40] |
A. achtarowii | aerial parts | [26] | |
A. speciosa | leaves | [21] | |
A. viridiflora | aerial parts | [41] | |
A. vulgaris | aerial parts | [38,39] | |
3. Variabiloside G | A. achtarowii | aerial parts | [26] |
4. Kaempferol-3-O-β-D-xylopyranoside | A. barbatiflora | aerial parts | [25] |
5. Kaempferol 3-O-β-(2″-O-α-L-rhamnopyranosyl)-glucopyranoside uronic acid | A. speciosa | leaves | [21] |
6. Kaempferol 3-O-β-D-glucuronide | A. speciosa | leaves | [21] |
7. Kaempferol 3-O-β-D-(6”-O-(E)-p-coumaroyl) glucopyranoside | A. achtarowii | aerial parts | [26] |
A. barbatiflora | aerial parts | [25] | |
A. mollis | aerial parts | [27] | |
A. speciosa | aerial parts | [21] | |
A. viridiflora | aerial parts | [41] | |
A. vulgaris | aerial parts | [20,38] | |
8. Nicotiflorin | A. acutiloba | aerial parts, roots | [40] |
A. persica | aerial parts | [6] | |
9. Quercetin | A. acutiloba | aerial parts, roots | [40] |
A. vulgaris | aerial parts leaves | [31,35,37,38,39] | |
10. Guaijaverin | A. achtarowii | aerial parts | [26] |
A. barbatiflora | aerial parts | [25] | |
A. xanthochlora | aerial parts | [30] | |
11. Rutin | A. acutiloba | aerial parts | [40] |
A. hirtipedicellata A. procerrima A. sericata A. stricta | leaves | [22] | |
A. glabra | aerial parts | [32] | |
A. bursensis A. cimilensis A. hirsutiflora A. ikizdereensis A. orduensis A. oriturcica | aerial parts | [23] | |
A. mollis | aerial parts | [27,36] | |
A. speciosa | aerial parts | [21] | |
A. viridiflora | aerial parts | [41] | |
A. vulgaris | aerial parts | [20,31,35,37,38,39] | |
12. Miquelianin | A. barbatiflora | aerial parts | [25] |
A. caucasica | aerial parts | [10] | |
A. achtarowii | aerial parts | [26] | |
A. mollis | aerial parts | [27] | |
A. persica | aerial parts | [6] | |
A. speciosa | aerial parts | [21] | |
A. viridiflora | aerial parts | [41] | |
A. vulgaris | aerial parts | [28] | |
A. xanthochlora | aerial parts | [24] | |
13. Hyperoside | A. achtarowii | aerial parts | [26] |
A. acutiloba | aerial parts, roots | [40] | |
A. hirtipedicellata A. procerrima A. sericata A. stricta | leaves | [22] | |
A. barbatiflora | aerial parts | [25] | |
A. coriacea A. filicaulis A. glabra | aerial parts | [29] | |
A. armeniaca A. bursensis A. cimilensis A. hirsutiflora A. ikizdereensis A. orduensis A. oriturcica | aerial parts | [23] | |
A. mollis | aerial parts | [27,33] | |
A. persica | aerial parts | [33] | |
A. speciosa | leaves | [21] | |
A. viridiflora | aerial parts | [41] | |
A. vulgaris | aerial parts | [38] | |
14. Isoquercitrin | A. achtarowii | aerial parts | [26] |
A. acutiloba | aerial parts, roots | [40] | |
A. hirtipedicellata A. procerrima A. sericata A. stricta | leaves | [22] | |
A. bursensis A. cimilensis A. erzincanensis A. orduensis A. oriturcica | aerial parts | [23] | |
A. mollis | aerial parts | [27,33] | |
A. persica | aerial parts | [33] | |
A. speciosa | aerial parts | [21] | |
A. viridiflora | aerial parts | [41] | |
A. vulgaris | aerial parts | [20,31,38] | |
15. Quercitrin | A. acutiloba | aerial parts, roots | [40] |
A. hirtipedicellata A. procerrima A. sericata A. stricta | leaves | [22] | |
A. hirsutiflora A. orduensis | aerial parts | [23] | |
A. speciosa | aerial parts | [21] | |
A. vulgaris | aerial parts | [39] | |
16. Methyl-quercetin glucuronide | A. mollis | leaves | [34] |
A. viridiflora | aerial parts | [41] | |
17. Quercetin hexoside | A. mollis | leaves | [34] |
18. Quercetin 3-O-β-(2″-O-α-L-rhamnopyranosyl)-glucopyranoside uronic acid | A. speciosa | leaves | [21] |
19. Quercetin 3-O-β-D-sambubioside | A. speciosa | leaves | [21] |
20. Quercetin 3-O-β-ʋ-sambubioside-7-O-β-D-glucoside | A. speciosa | leaves | [21] |
21. Quercetin-3-O-α-D-arabinofuranoside | A. vulgaris | aerial parts | [20] |
22. Quercetin-feruloyl hexose | A. vulgaris | leaves | [34] |
23. Quercetin hexoside-deoxyhexoside | A. vulgaris | leaves | [34] |
24. Luteolin | A. acutiloba | aerial parts, roots | [40] |
A. vulgaris | aerial parts | [31,37,38,39] | |
25. Orientin | A. hirtipedicellata A. procerrima A. sericata A. stricta | leaves | [22] |
A. armeniaca A. cimilensis A. hirsutiflora A. ikizdereensis A. orduensis | aerial parts | [23] | |
26. Cynaroside | A. mollis | aerial parts | [36] |
A. speciosa | aerial parts | [21] | |
A. vulgaris | aerial parts | [38,39] | |
27. Scolymoside | A. speciosa | aerial parts | [21] |
28. Isorhamnetin | A. acutiloba | aerial parts, roots | [40] |
29. Isorhamnetin-3-glucoside | A. acutiloba | aerial parts | [40] |
30. Narcissoside | A. acutiloba | aerial parts, roots | [40] |
31. Apigenin | A. caucasica | aerial parts | [10] |
A. vulgaris | aerial parts leaves | [37,39] | |
32. Vitexin | A. hirtipedicellata A. procerrima A. sericata A. stricta | leaves | [22] |
A. armeniaca A. erzincanensis A. ikizdereensis A. orduensis | aerial parts | [23] | |
33. Cosmosiin | A. mollis | aerial parts | [36] |
A. vulgaris | aerial parts | [38,39] | |
leaves | [37] | ||
34. Catechin | A. barbatiflora | aerial parts | [25] |
A. caucasica | aerial parts | [10] | |
A. glabra | aerial parts | [32] | |
A. mollis | aerial parts | [36] | |
A. persica | aerial parts | [6] | |
A. vulgaris | aerial parts leaves roots | [35,37,39] | |
35. Epicatechin | A. glabra | aerial parts | [32] |
A. mollis | aerial parts | [36] | |
A. persica | aerial parts | [6] | |
A. vulgaris | aerial parts leaves | [31,37] | |
36. Rhodiolgin | A. mollis | aerial parts | [27] |
37. Gossypetin-3-O-β-D-galactopyranosyl-7-O-α-L-rhamnopyranoside | A. mollis | aerial parts | [27] |
38. Myricetin | A. vulgaris | aerial parts | [31] |
39. Genistein | A. vulgaris | aerial parts | [31,39] |
40. Daidzein | A. vulgaris | aerial parts | [31] |
41. Morin | A. vulgaris | aerial parts | [38] |
42. Chrysoeriol | A. vulgaris | aerial parts | [39] |
43. Naringenin | A. vulgaris | aerial partsleaves | [37,39] |
44. Eriodictyol | A. acutiloba | aerial parts | [40] |
45. Sinocrassoside D2 | A. mollis | aerial parts | [27] |
46. Luteolin 6-arabinose 8-glucose | A. vulgaris | leaves | [37] |
47. Luteolin 6-glucose 8-arabinose | A. vulgaris | leaves | [37] |
48. Apigenin 6-arabinose 8-galactose | A. vulgaris | leaves | [37] |
49. Apigenin 6-rhamnose 8-glucose | A. vulgaris | leaves | [37] |
50. Apigenin 7-O-neohesperidoside | A. vulgaris | leaves | [37] |
51. Kaempferol 3,7-dirhamoside | A. vulgaris | leaves | [37] |
52. Hesperetin | A. vulgaris | leaves | [37] |
53. Kaempferol 3-(2-p-comaroyl)glucose | A. vulgaris | leaves | [37] |
54. Rhamnetin | A. vulgaris | leaves | [37] |
55. Aromadendrin glucoside | A. persica | aerial parts | [6] |
56. Avicularin | A. vulgaris | aerial parts | [35] |
57. Acacetin | A. vulgaris | leaves | [37] |
58. Agrimoniin | A. mollis | leaves | [34] |
A. persica | aerial parts | [6] | |
A. viridiflora | aerial parts | [41] | |
A. vulgaris | leaves | [34] | |
A. xanthochlora | aerial parts | [42] | |
59. Pedunculagin | A. mollis | leaves | [34] |
A. persica | aerial parts | [6] | |
A. vulgaris | leaves | [34] | |
A. viridiflora | aerial parts | [41] | |
A. xanthochlora | aerial parts | [42] | |
60. Laevigatin F | A. xanthochlora | aerial part | [42] |
61. Castalagin/vescalagin isomer | A. mollis | leaves | [34] |
A. vulgaris | leaves | [34] | |
62. Galloyl-HHDP hexose | A. mollis | leaves | [34] |
A. persica | aerial parts | [6] | |
A. vulgaris | leaves | [34] | |
63. Trigalloyl hexose | A. mollis | leaves | [34] |
64. Sanguiin | A. mollis | leaves | [34] |
A. persica | aerial parts | [6] | |
A. viridiflora | aerial parts | [41] | |
A. vulgaris | leaves | [34] | |
65. Methyl gallate | A. mollis | aerial parts | [36] |
A. persica | aerial parts | [6] | |
66. Casuarictin | A. persica | aerial parts | [6] |
67. Digalloyl-galloyl galloside | A. persica | aerial parts | [6] |
68. HHDP-hexoside | A. viridiflora | aerial parts | [41] |
69. Brevifolincarboxylic acid | A. viridiflora | aerial parts | [41] |
70. Tellimagrandin I | A. viridiflora | aerial parts | [41] |
71. Tellimagrandin II | A. viridiflora | aerial parts | [41] |
72. Benzoic acid | A. vulgaris | leaves | [37,43] |
A. jumrukczalica | leaves | [43] | |
73. Caffeic acid | A. acutiloba | aerial parts, roots | [40] |
A. glabra | aerial parts | [32] | |
A. jumrukczalica | leaves | [43] | |
A. mollis | aerial parts | [36] | |
A. vulgaris | aerial parts leaves | [37,39,43] | |
74. Chlorogenic acid | A. glabra | aerial parts | [32] |
A. mollis | leaves | [34] | |
A. persica | aerial parts | [6] | |
A. vulgaris | aerial parts leaves | [31,34,37,39] | |
75. 2,5-Dihydroxybenzoic acid | A. vulgaris | aerial parts | [39] |
76. 3,4-Dihydroxybenzoic acid | A. glabra | aerial parts | [32] |
77. Ellagic acid | A. mollis | leaves | [34] |
A. persica | aerial parts | [6] | |
A. vulgaris | aerial parts leaves | [31,38,44] [31,34,37] | |
78. Ferulic acid | A. acutiloba | aerial parts | [40] |
A. vulgaris | aerial parts leaves | [37,38,39] | |
79. Gallic acid | A. acutiloba | aerial parts roots | [40] |
A. glabra | aerial parts | [32] | |
A. jumrukczalica | leaves | [43] | |
A. mollis | aerial parts leaves | [34,36] | |
A. persica | aerial parts | [6] | |
A. vulgaris | aerial parts leaves roots | [31,34,35] [37,39,43] [45] | |
80. Gentisic acid | A. acutiloba | aerial parts, roots | [40] |
A. jumrukczalica | leaves | [43] | |
A. mollis | aerial parts | [36] | |
A. vulgaris | leaves | [43] | |
81. Protocatechuic acid | A. acutiloba | aerial parts, roots | [40] |
A. jumrukczalica | leaves | [43] | |
A. vulgaris | aerial parts leaves | [37,39,43] | |
82. p-Coumaric acid | A. acutiloba | aerial parts roots | [40] |
A. jumrukczalica | leaves | [43] | |
A. vulgaris | aerial parts leaves | [31,37,39,43] | |
83. 4-Hydroxybenzoic acid | A. acutiloba | aerial parts roots | [40] |
A. jumrukczalica | leaves | [43] | |
A. vulgaris | aerial parts leaves | [37,39,43] | |
84. Mandelic acid | A. jumrukczalica | leaves | [43] |
A. vulgaris | leaves | [43] | |
85. 3,4,5-Methoxycinnamic acid | A. vulgaris | leaves | [37] |
86. β-Resorcylic acid | A. jumrukczalica | leaves | [43] |
A. vulgaris | leaves | [43] | |
87. Rosmarinic acid | A. acutiloba | aerial parts roots | [40] |
A. vulgaris | aerial parts leaves | [31,37] | |
88. Salicylic acid | A. acutiloba | aerial parts roots | [40] |
A. jumrukczalica | leaves | [43] | |
A. vulgaris | leaves | [37,43] | |
89. Sinapic acid | A. jumrukczalica | leaves | [43] |
A. vulgaris | aerial parts leaves | [31,43] | |
90. Syringic acid | A. acutiloba | aerial parts roots | [40] |
A. jumrukczalica | leaves | [43] | |
A. vulgaris | leaves | [43] | |
91. Trans-cinnamic acid | A. jumrukczalica | leaves | [43] |
A. vulgaris | leaves | [37,43] | |
92. 3,4,5-Trimethoxymandelic acid | A. jumrukczalica | leaves | [43] |
A. vulgaris | leaves | [43] | |
93. Vanillic acid | A. acutiloba | aerial parts roots | [40] |
A. jumrukczalica | leaves | [43] | |
A. vulgaris | leaves | [37,43] | |
94. Quinic acid | A. vulgaris | aerial parts | [39] |
Compound | R1 | R2 | R3 | R4 | R5 | MW |
---|---|---|---|---|---|---|
73 | H | OH | OH | H | H | 180 |
78 | H | OCH3 | H | OH | H | 194 |
82 | H | H | OH | H | H | 164 |
85 | H | OCH3 | OCH3 | OCH3 | H | 238 |
89 | H | OCH3 | OH | OCH3 | H | 224 |
91 | H | H | H | H | H | 148 |
Compound | R1 | R2 | R3 | R4 | R5 | MW |
---|---|---|---|---|---|---|
72 | H | H | H | H | H | 122 |
79 | H | OH | OH | OH | H | 170 |
80 | OH | H | H | OH | H | 154 |
81 | H | OH | OH | H | H | 154 |
83 | H | H | OH | H | H | 138 |
86 | OH | H | OH | H | H | 154 |
88 | OH | H | H | H | H | 138 |
90 | OH | OCH3 | OH | OCH3 | H | 198 |
93 | H | OCH3 | OH | H | H | 168 |
Species | Plant Part/Extract | Antioxidant Assay | Antioxidant Effect | References |
---|---|---|---|---|
A. acutiloba | aerial parts, 60% methanol | DPPH | IC50 = 18.69 µg/mL DE | [40] |
aerial parts, 60% methanol | ABTS | IC50 = 6.17 µg/mL DE | ||
aerial parts, 60% methanol | CHEL | IC50 = 21.60 µg/mL DE | ||
roots, 60% methanol | DPPH | IC50 = 29.87 µg/mL DE | ||
roots, 60% methanol | ABTS | IC50 = 14.29 µg/mL DE | ||
roots, 60% methanol | CHEL | IC50 = 25.76 µg/mL DE | ||
aerial parts, butanol fraction | DPPH | IC50 = 8.96 µg/mL DE | ||
aerial parts, butanol fraction | ABTS | IC50 = 1.42 µg/mL DE | ||
aerial parts, butanol fraction | CHEL | IC50 = 11.43 µg/mL DE | ||
roots, butanol fraction | DPPH | IC50 = 12.08 µg/mL DE | ||
roots, butanol fraction | ABTS | IC50 = 8.78 µg/mL DE | ||
roots, butanol fraction | CHEL | IC50 = 12.33 µg/mL DE | ||
aerial parts, diethyl acetate fraction | DPPH | IC50 = 8.83 µg/mL DE | ||
aerial parts, diethyl acetate fraction | ABTS | IC50 = 6.54 µg/mL DE | ||
aerial parts, diethyl acetate fraction | CHEL | IC50 = 18.89 µg/mL DE | ||
roots, diethyl acetate fraction | DPPH | IC50 = 15.37 µg/mL DE | ||
roots, diethyl acetate fraction | ABTS | IC50 =10.39 µg/mL DE | ||
roots, diethyl acetate fraction | CHEL | IC50 = 19.30 µg/mL DE | ||
aerial parts, diethyl ether fraction | DPPH | IC50 = 41.46 µg/mL DE | ||
aerial parts, diethyl ether fraction | ABTS | IC50 = 16.28 µg/mL DE | ||
aerial parts, diethyl ether fraction | CHEL | IC50 = 25.51 µg/mL DE | ||
roots, diethyl ether fraction | DPPH | IC50 = 51.42 µg/mL DE | ||
roots, diethyl ether fraction | ABTS | IC50 = 24.82 µg/mL DE | ||
roots, diethyl ether fraction | CHEL | IC50 = 44.12 µg/mL DE | ||
A. alpina | aerial parts, methanol | DPPH | % Inhibition = 45.4–94.4% | [47] |
A. arvensis | leaves, methanol | DPPH | IC50 = 97.72 µg/mL | [48] |
leaves, hexane | IC50 = 11.22 µg/mL | |||
leaves, acetone | IC50 = 4.86 µg/mL | |||
A. barbatiflora | aerial parts, methanol | DPPH | % Inhibition = 83.44–95.35% | [25] |
aerial parts, hexane fraction | % Inhibition = 18.6–59.62% | |||
aerial parts, chloroform fraction | % Inhibition = 67.17–91.11% | |||
aerial parts, water fraction | % Inhibition = 83.06–97.17% | |||
aerial parts, methanol | SOD | % Inhibition = 83.34–85.83% | ||
aerial parts, hexane fraction | % Inhibition = 9.80% | |||
aerial parts, chloroform fraction | % Inhibition = 12.84–42.73% | |||
aerial parts, water fraction | % Inhibition = 81.07% | |||
aerial parts, methanol | PRA | Absorbance 0.932–1.280 | ||
aerial parts, hexane fraction | Absorbance 0.355–0.612 | |||
aerial parts, chloroform fraction | Absorbance 0.640–0.820 | |||
aerial parts, water fraction | Absorbance 1.158–1.516 | |||
aerial parts, methanol | FRAP | 44.32 mg BHAE/g DE | ||
aerial parts, chloroform fraction | 15.76 mg BHAE/g DE | |||
aerial parts, water fraction | 93.46 mg BHAE/g DE | |||
A. bulgarica | aerial parts, 80% methanol | DPPH | IC50 = 75.63 µg/mL | [49] |
A. crinita | aerial parts, 80% methanol | DPPH | IC50 = 46.03 µg/mL | [49] |
A. ellenbergiana | aerial parts, hexane | DPPH | IC50 = 7.1 µg/mL | [50] |
A. ellenbergiana | aerial parts, ethanol | DPPH | IC50 = 243.6 µg/mL | [51] |
aerial parts, methanol | IC50 = 243.1 µg/mL | |||
A. erythropoda | aerial parts, 80% methanol | DPPH | IC50 = 30.67 µg/mL | [50] |
A. glabra | aerial parts, 80% acetone in 0.2% formic acid | ORAC | IC50 = 1337 μmol TE/g | [32] |
TRAP | IC50 = 1815 μmol TE/g | |||
HORAC | IC50 = 1999 μmol GAE/g | |||
A. glabra | aerial parts, 80% methanol | DPPH | IC50 = 34.89 µg/mL | [49] |
A. glaucescens | aerial parts, 80% methanol | DPPH | IC50 = 36.10 µg/mL | [49] |
A. jumrukczalica | leaves, 80% methanol | DPPH | IC50 = 12.09 µg/mL | [43] |
A. mollis | shoots grown in vitro on different nutrient media | DPPH | IC50 = 18.6–38.1 μg/mL | [52] |
leaves of ex vitro adapted plants in Bulgarian mountains Vitosha | IC50 = 13.1 μg/mL | |||
one year old in vivo plantsgrown in Bulgarian mountains Viotsha | IC50 = 27.5 μg/mL | |||
one year old in vivo plantsgrown in Bulgarian mountains Rhodopes | IC50 = 22.2 μg/mL | |||
A. mollis | leaves, 50% ethanol | DPPH | IC50 = 42.4 μg/mL | [53] |
ABTS | IC50 = 7.8 μg/mL | |||
A. mollis | aerial parts, water | DPPH | IC50 = 0.264 mg/mL | [54] |
aerial parts, deodorized water | IC50 = 0.146 mg/mL | |||
aerial parts, 50% methanol | IC50 = 0.161 mg/mL | |||
aerial parts, water | ABTS | 0.90 mmol/L/Trolox | ||
aerial parts,deodorized water | 0.4 mmol/L/Trolox | |||
aerial parts,50% methanol | 0.4 mmol/L/Trolox | |||
A. mollis | aerial parts, 70% methanol | DPPH | IC50 = 0.21 mg/mL | [36] |
aerial parts,water | IC50 = 0.24 mg/mL | |||
aerial parts, 70% methanol | ABTS | TEAC = 0.75 mmol/Trolox | ||
aerial parts,water | TEAC = 0.83 mmol/Trolox | |||
aerial parts,hexane, ethyl acetate, methanol, butanol, 70% methanol, water | Inhibition of β-carotene/linoleic acid co-oxidation | no data | ||
A. mollis | dry stalks, aqueous ethanol | FRAP | TEAC = 382.78 mmol TE/g DW | [55] |
dry stalks, aqueous ethanol | CUPRAC | TEAC = 363.79 mmol TE/g DW | ||
dry stalks, aqueous ethanol | DPPH | TEAC = 247.58 mmol TE/g DW | ||
dry stalks, aqueous ethanol | ABTS | TEAC = 308.44 mmol TE/g DW | ||
A. mollis | aerial parts, methanol | DPPH | IC50 = 31.7 μg/mL | [27] |
aerial parts, ethyl acetate fraction | IC50 = 9.8 μg/mL | |||
aerial parts, petroleum fraction | IC50 = > 200 μg/mL | |||
aerial parts, chloroform fraction | IC50 = > 200 μg/mL | |||
aerial parts, water residue fraction | IC50 = 42.5 μg/mL | |||
A. persica | aerial parts, 80% methanol | DPPH | IC50 = 0.055 M | [3] |
roots, 80% methanol | IC50 = 0.151 M | |||
aerial parts, 80% methanol | TBARS | MDA = 5.9 nmol/mL | ||
roots, 80% methanol | MDA = 19.08 nmol/mL | |||
A. monticola | aerial parts, 80% methanol | DPPH | IC50 = 32.72 μg/mL | [49] |
A. obtusa | aerial parts, 80% methanol | DPPH | IC50 = 26.35 μg/mL | [49] |
A. sericata | aerial parts, hexane | DPPH | IC50 = 185 μg/mL | [56] |
A. vulgaris | leaves, 50% ethanol | DPPH | % Inhibition = 71.8% | [57] |
A. vulgaris | aerial parts, methanol | DPPH | IC50 = 5.40 µg/mL | [58] |
ABTS | IC50 = 60.10 µg/mL | |||
A. vulgaris | aerial parts, methanol | DPPH | IC50 = 5.96 µg/mL | [11] |
roots, methanol | IC50 = 11.86 µg/mL | |||
aerial parts, methanol | ABTS | IC50 = 14.80 µg/mL | ||
roots, methanol | IC50 = 32.49 µg/mL | |||
aerial parts, methanol | Hydroxyl radical scavenging activity | IC50 = 13.06 µg/mL | ||
roots, methanol | IC50 = 18.44 µg/mL | |||
aerial parts, methanol | Inhibition of lipid peroxidation | IC50 = 31.91 µg/mL | ||
roots, methanol | IC50 = 475.13 µg/mL | |||
aerial parts, methanol | Reducing power | IC50 = 632.99 mg TE/g DE | ||
roots, methanol | IC50 = 607.52 mg TE/g DE | |||
aerial parts, methanol | Total antioxidant activity | IC50 = 265.62 mg AA/g DE | ||
roots, methanol | IC50 = 316.47 mg AA/g DE | |||
A. vulgaris | leaves, 80% ethanol | DPPH | % inhibition = 131.74% | [37] |
A. vulgaris | roots, 50% ethanol | TEAC | 68.21 mmol TE/g DW | [59] |
FRAP | 40.12 mmol TE/g DW | |||
A. vulgaris | aerial parts, cyclohexane | DPPH | IC50 = 23.12 µg/mL | [44] |
A. vulgaris | aerial parts, 80% methanol | DPPH | 153.30 mg TE/g DE | [39] |
ABTS | 143.55 mg TE/g DE | |||
CUPRAC | 216.14 mg TE/g DE | |||
PRAP | 1.77 mmol TE/g DE | |||
CHEL | 42.58 mg EDTAE/g DE | |||
FRAP | 7899.45 mg AAE/g DE | |||
aerial parts, 70% ethanol | DPPH | 95.99 mg TE/g DE | ||
ABTS | 119.62 mg TE/g DE | |||
CUPRAC | 203.53 mg TE/g DE | |||
PRAP | 1.57 mmol TE/g of DE | |||
CHEL | 42.32 mg EDTAE/g DE | |||
FRAP | 6405.75 mg AAE/g DE | |||
aerial parts, 70% ethyl-acetate | DPPH | 502.56 mg TE/g DE | ||
ABTS | 174.05 mg TE/g DE | |||
CUPRAC | 283.16 mg TE/g DE | |||
PRAP | 2.22 mmol TE/g DE | |||
CHEL | 37.96 mg EDTAE/g DE | |||
FRAP | 8745.31 AAE/g DE | |||
aerial parts, water | DPPH | 89.25 mg TE/g DE | ||
ABTS | 37.50 mg TE/g DE | |||
CUPRAC | 78.56 mg TE/g DE | |||
PRAP | 0.53 mmol TE/g DE | |||
CHEL | 39.23 mg EDTAE/g DE | |||
FRAP | 3240.09 mg AAE/g DE | |||
A. vulgaris | aerial parts, ethanol | DPPH | IC50 = 0.11 μg/mL | [38] |
aerial parts, water | IC50 = 27.22 μg/mL | |||
aerial parts, propylene glycolic | IC50 = 2.88 μL/mL | |||
A. vulgaris | aerial parts, 70% ethanol | DPPH | 87.95% (at 3 mg/mL) and 80.71% (at 1.5 mg/mL) | [31] |
A. vulgaris | leaves, 80% methanol | DPPH | IC50 = 19.62 µg/mL | [43] |
A. xanthochlora | aerial parts, 80% methanol | DPPH | IC50 = 41.78 µg/mL | [49] |
A. xanthochlora | leaves,hexane | TLC-DPPH analysis, DPPH | no data | [13] |
leaves, chloroform | no data | |||
leaves, ethylacetate | no data | |||
leaves, methanol | no data | |||
leaves, water | no data |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanak, S.; Krzemińska, B.; Celiński, R.; Bakalczuk, M.; Dos Santos Szewczyk, K. Phenolic Composition and Antioxidant Activity of Alchemilla Species. Plants 2022, 11, 2709. https://doi.org/10.3390/plants11202709
Kanak S, Krzemińska B, Celiński R, Bakalczuk M, Dos Santos Szewczyk K. Phenolic Composition and Antioxidant Activity of Alchemilla Species. Plants. 2022; 11(20):2709. https://doi.org/10.3390/plants11202709
Chicago/Turabian StyleKanak, Sebastian, Barbara Krzemińska, Rafał Celiński, Magdalena Bakalczuk, and Katarzyna Dos Santos Szewczyk. 2022. "Phenolic Composition and Antioxidant Activity of Alchemilla Species" Plants 11, no. 20: 2709. https://doi.org/10.3390/plants11202709
APA StyleKanak, S., Krzemińska, B., Celiński, R., Bakalczuk, M., & Dos Santos Szewczyk, K. (2022). Phenolic Composition and Antioxidant Activity of Alchemilla Species. Plants, 11(20), 2709. https://doi.org/10.3390/plants11202709