A Mini Review of Citrus Rootstocks and Their Role in High-Density Orchards
Abstract
:1. Introduction
2. Dwarfing Citrus Rootstocks
2.1. Dwarfing by Chemical Treatments
2.2. Dwarfing by Citrus Dwarfing Viroid (CDVd)
2.3. Dwarfing by Using Interstocks
2.4. Dwarfing by Using Tetraploid Rootstocks
3. Dwarfing Mechanism of Scion Reduction
4. Type of Dwarf Rootstock
4.1. Tree Size and Vigor
4.2. Precocity
5. Planting Density for Citrus Rootstocks
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hayat, F.; Li, J.; Liu, W.; Li, C.; Song, W.; Iqbal, S.; Khan, U.; Umer Javed, H.; Ahsan Altaf, M.; Tu, P. Influence of Citrus Rootstocks on Scion Growth, Hormone Levels, and Metabolites Profile of ‘Shatangju’Mandarin (Citrus reticulata Blanco). Horticulturae 2022, 8, 608. [Google Scholar] [CrossRef]
- Khan, M.N.; Hayat, F.; Asim, M.; Iqbal, S.; Ashraf, T.; Asghar, S. Influence of citrus rootstocks on growth performance and leaf mineral nutrition of “Salustiana” sweet orange [Citrus sinensis (L.). obsek]. J. Pure Appl. Agric 2020, 5, 2617–8680. [Google Scholar]
- Shireen, F.; Jaskani, M.; Nawaz, M.; Hayat, F. Exogenous application of naphthalene acetic acid improves fruit size and quality of Kinnow mandarin (Citrus reticulata) through regulating fruit load. JAPS: J. Anim. Plant Sci. 2018, 28, 1080–1084. [Google Scholar]
- Hayat, F.; Nawaz Khan, M.; Zafar, S.; Balal, R.; Azher Nawaz, M.; Malik, A.; Saleem, B. Surface coating and modified atmosphere packaging enhances storage life and quality of ‘Kaghzi lime’. J. Agric. Sci. Technol. 2017, 19, 1151–1160. [Google Scholar]
- Prasad, H.; Thakur, M.; Gupta, A.K.; Prasad, D. Effect of Foliar Application of 2, 4-D, Urea and Zinc Sulphate on Fruit Drop, Yield and Fruit Quality of Kinnow Mandarin. Int. J. Bio-Resour. Stress Manag. 2015, 6, 619–622. [Google Scholar] [CrossRef] [Green Version]
- Shahid, M.B.; Nadeem, M.; Murtaza, M.A.; Rukh, L.; Shaukat, A.; Riaz, M.N. Impact of thermo-sonication on antioxidant potential in juices of selected citrus varieties. Asian J. Agric. Biol. 2022, 2, 202104174. [Google Scholar]
- Khan, M.; Muhammad, A.; Abid, M.; Tehseen, A.; Naveeda, A.; Hayat, F.; Raza, S.; Abdullah, J.; Rafi, Q. Characterization and comparative nutritional study of three strains of Kinnow mandarin (Citrus reticulata Blanco). Asian J. Agric. Biol. 2020, 8, 299–307. [Google Scholar] [CrossRef]
- Idris, I.; Yuliar, Y. Potential application of Bacillus amyloliquefaciens EB13 inoculant for improving soil fertility and Citrus sinensis growth. Asian J. Agric. Biol. 2022, 1, 202102069. [Google Scholar]
- Castle, W.S. A career perspective on citrus rootstocks, their development, and commercialization. HortScience 2010, 45, 11–15. [Google Scholar] [CrossRef] [Green Version]
- Hayat, F.; Iqbal, S.; Coulibaly, D.; Razzaq, M.K.; Nawaz, M.A.; Jiang, W.; Shi, T.; Gao, Z. An insight into dwarfing mechanism: Contribution of scion-rootstock interactions toward fruit crop improvement. Fruit Res. 2021, 1, 1–11. [Google Scholar] [CrossRef]
- Kazemi, S.; Zakerin, A.; Abdossi, V.; Moradi, P. Fruit yield and quality of the grafted tomatoes under different drought stress conditions. Asian J. Agric. Biol. 2021, 1, 1–14. [Google Scholar]
- Albacete, A.; Martínez-Andújar, C.; Martínez-Pérez, A.; Thompson, A.J.; Dodd, I.C.; Pérez-Alfocea, F. Unravelling rootstock×scion interactions to improve food security. J. Exp. Bot. 2015, 66, 2211–2226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ladaniya, M.; Marathe, R.; Murkute, A.; Huchche, A.; Das, A.; George, A.; Kolwadkar, J. Response of Nagpur mandarin (Citrus reticulata Blanco) to high density planting systems. Sci. Rep. 2021, 11, 1–11. [Google Scholar]
- Haque, M.A.; Sakimin, S.Z. Planting Arrangement and Effects of Planting Density on Tropical Fruit Crops—A Review. Horticulturae 2022, 8, 485. [Google Scholar] [CrossRef]
- Hayat, F.; Asghar, S.; Yanmin, Z.; Xue, T.; Nawaz, M.A.; Xu, X.; Wang, Y.; Wu, T.; Zhang, X.; Qiu, C. Rootstock Induced Vigour is Associated with Physiological, Biochemical and Molecular Changes in ‘Red Fuji’ Apple. Int. J. Agric. Biol. 2020, 24, 1823–1834. [Google Scholar]
- Hayat, F.; Ma, C.; Iqbal, S.; Huang, X.; Omondi, O.K.; Ni, Z.; Shi, T.; Tariq, R.; Khan, U.; Gao, Z. Rootstock-Mediated Transcriptional Changes Associated with Cold Tolerance in Prunus mume Leaves. Horticulturae 2021, 7, 572. [Google Scholar] [CrossRef]
- Pereira Costa, D.; Sanches Stuchi, E.; Girardi, E.A.; Moreira, A.S.; da Silva Gesteira, A.; Coelho Filho, M.A.; da Silva Ledo, C.A.; da Silva, A.L.V.; de Leão, H.C.; Sampaio Passos, O. Less is more: A hard way to get potential dwarfing hybrid rootstocks for Valencia sweet orange. Agriculture 2021, 11, 354. [Google Scholar] [CrossRef]
- Hasan, M.U.; Saleem, B.A.; Khan, S.A.; Khalid, M.S.; Hayat, F.; Salik, R. Evaluating the Response of Insecticides and Fungicides for Rind Blemishes Management in Kinnow Mandarin (Citrus nobilis Lour× Citrus deliciosa Tenora) Fruits Caused by Biotic Factors. J. Hortic. Sci. Technol. 2021, 4, 102–108. [Google Scholar] [CrossRef]
- Bitters, W.; Cole, D.; McCarty, C. Facts about dwarf citrus trees. Citrograph 1979, 64, 54–56. [Google Scholar]
- Moreira, A.S.; Stuchi, E.S.; Silva, P.R.; Bassanezi, R.B.; Girardi, E.A.; Laranjeira, F.F. Could tree density play a role in managing Citrus Huanglongbing epidemics? Trop. Plant Pathol. 2019, 44, 268–274. [Google Scholar] [CrossRef]
- Stuchi, E.S.; Donadio, L.C.; Sempionato, O.R. Performance of Tahiti lime on Poncirus trifoliata var. monstrosa Flying Dragon in four densities. Fruits 2003, 58, 13–17. [Google Scholar] [CrossRef] [Green Version]
- De Negri, J.D.; Blasco, E. Planejamento e implantação de um pomar cítrico. Citric. Bras. 1991, 2, 318–332. [Google Scholar]
- Tachibana, S.; Morioka, S.; Nakai, S. Effect of planting density on fruit yield under different cultural treatments in Satsuma mandarin tree. J. Jpn. Soc. Hortic. Sci. 1987, 56, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Tachibana, S.; Nakai, S. Effect of planting density and some cultural treatments on the crown density in Wase Satsuma Mandarin (Citrus unshiu Marc. var. praecox Tanaka) tree. J. Jpn. Soc. Hortic. Sci. 1989, 58, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Lavagi-Craddock, I.; Dang, T.; Comstock, S.; Osman, F.; Bodaghi, S.; Vidalakis, G. Transcriptome Analysis of Citrus Dwarfing Viroid Induced Dwarfing Phenotype of Sweet Orange on Trifoliate Orange Rootstock. Microorganisms 2022, 10, 1144. [Google Scholar] [CrossRef] [PubMed]
- Arenas-Arenas, F.J.; Durán-Vila, N.; Quinto, J.; Hervalejo, A. Is the presence of Trioza erytreae, vector of huanglongbing disease, endangering the Mediterranean citrus industry? Survey of its population density and geographical spread over the last years. J. Plant Pathol. 2018, 100, 567–574. [Google Scholar] [CrossRef]
- Adiga, D.; Veena, G.; Thondaiman, V.; Babli, M. An overview of canopy management in cashew (Anacardium occidentale L.). J. Hortic. Sci. 2020, 15, 127–135. [Google Scholar] [CrossRef]
- Díez, C.M.; Moral, J.; Cabello, D.; Morello, P.; Rallo, L.; Barranco, D. Cultivar and tree density as key factors in the long-term performance of super high-density olive orchards. Front. Plant Sci. 2016, 7, 1226. [Google Scholar] [CrossRef] [Green Version]
- Reig, G.; Lordan, J.; Sazo, M.M.; Hoying, S.; Fargione, M.; Reginato, G.; Donahue, D.J.; Francescatto, P.; Fazio, G.; Robinson, T. Long-term performance of ‘Gala’, ’Fuji’and ‘Honeycrisp’apple trees grafted on Geneva® rootstocks and trained to four production systems under New York State climatic conditions. Sci. Hortic. 2019, 244, 277–293. [Google Scholar] [CrossRef]
- Mademba-Sy, F.; Lemerre-Desprez, Z.; Lebegin, S. Use of Flying Dragon trifoliate orange as dwarfing rootstock for citrus under tropical climatic conditions. HortScience 2012, 47, 11–17. [Google Scholar] [CrossRef]
- Girardi, E.A.; Sola, J.G.P.; Scapin, M.d.S.; Moreira, A.S.; Bassanezi, R.B.; Ayres, A.J.; Peña, L. The Perfect Match: Adjusting High Tree Density to Rootstock Vigor for Improving Cropping and Land Use Efficiency of Sweet Orange. Agronomy 2021, 11, 2569. [Google Scholar] [CrossRef]
- Hervalejo, A.; Arjona-López, J.M.; Romero-Rodríguez, E.; Arenas-Arenas, F.J. Suitability of two dwarfing citrus rootstocks for ‘Salustiana’orange trees grown under super-high-density conditions with mechanical harvesting. N. Z. J. Crop Hortic. Sci. 2022, 1–12. [Google Scholar] [CrossRef]
- Schinor, E.H.; Cristofani-Yaly, M.; Bastianel, M.; Machado, M.A. Sunki mandarin vs Poncirus trifoliata hybrids as rootstocks for Pera sweet orange. J. Agric. Sci. 2013, 5, 190. [Google Scholar] [CrossRef]
- Fagoaga, C.; Tadeo, F.R.; Iglesias, D.J.; Huerta, L.; Lliso, I.; Vidal, A.M.; Talon, M.; Navarro, L.; García-Martínez, J.L.; Pena, L. Engineering of gibberellin levels in citrus by sense and antisense overexpression of a GA 20-oxidase gene modifies plant architecture. J. Exp. Bot. 2007, 58, 1407–1420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, F.S.; Roose, M.L. Origin and inheritance of dwarfing by the citrus rootstock Poncirus trifoliata ’Flying dragon’. J. Am. Soc. Hortic. Sci. 1995, 120, 286–291. [Google Scholar] [CrossRef]
- Martínez-Ballesta, M.C.; Alcaraz-López, C.; Muries, B.; Mota-Cadenas, C.; Carvajal, M. Physiological aspects of rootstock–scion interactions. Sci. Hortic. 2010, 127, 112–118. [Google Scholar] [CrossRef]
- Marques, A.; Nijveen, H.; Somi, C.; Ligterink, W.; Hilhorst, H. Induction of desiccation tolerance in desiccation sensitive Citrus limon seeds. J. Integr. Plant Biol. 2019, 61, 624–638. [Google Scholar] [CrossRef] [Green Version]
- Bowman, K.; Joubert, J. Citrus rootstocks. In The Genus Citrus; Elsevier: Amsterdam, Netherlands, 2020. [Google Scholar]
- Dong, T.; Xiong, B.; Huang, S.; Liao, L.; Qiu, X.; Sun, G.; He, Y.; Duan, C.; Wang, X.; Zhang, X. Investigation of the cause of reduced sugar content in Kiyomi tangor fruit of Ziyang xiangcheng (Citrus junos Sieb. ex Tanaka) rootstock. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.-Y.; Li, J.; Liu, M.-M.; Yao, Q.; Chen, J.-Z. Transcriptome profiling to understand the effect of citrus rootstocks on the growth of ‘Shatangju’mandarin. PLoS ONE 2017, 12, e0169897. [Google Scholar]
- Zhu, S.; Wang, F.; Shen, W.; Jiang, D.; Hong, Q.; Zhao, X. Genetic diversity of Poncirus and phylogenetic relationships with its relatives revealed by SSR and SNP/InDel markers. Acta Physiol. Plant. 2015, 37, 1–11. [Google Scholar] [CrossRef]
- Rademacher, W. Growth retardants: Effects on gibberellin biosynthesis and other metabolic pathways. Annu. Rev. Plant Biol. 2000, 51, 501–531. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, V. Chemical control of tree vigour and the promotion of flowering and fruiting in mango (Mangifera indica L.) using paclobutrazol. J. Hortic. Sci. 1988, 63, 557–566. [Google Scholar] [CrossRef]
- Mog, B.; Janani, P.; Nayak, M.; Adiga, J.; Meena, R. Manipulation of vegetative growth and improvement of yield potential of cashew (Anacardium occidentale L.) by Paclobutrazol. Sci. Hortic. 2019, 257, 108748. [Google Scholar] [CrossRef]
- Le Roux, S.; Barry, G.H. Vegetative growth responses of citrus nursery trees to various growth retardants. HortTechnology 2010, 20, 197–201. [Google Scholar] [CrossRef] [Green Version]
- Topp, S.H.; Rasmussen, S.K. Evaluating the potential of SHI expression as a compacting tool for ornamental plants. Plant Sci. 2012, 187, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Garner, L.; Zheng, Y.; Khuong, T.; Lovatt, C. Prohexadione Calcium affects shoot growth of evergreen subtropical woody perennials differently than deciduous temperate zone woody perennials-Is it a case of apples and oranges. Acta Hortic. 2010, 884, 249–256. [Google Scholar] [CrossRef]
- Flores, R.; Hernández, C.; Alba, A.E.M.d.; Daròs, J.-A.; Serio, F.D. Viroids and viroid-host interactions. Annu. Rev. Phytopathol. 2005, 43, 117–139. [Google Scholar] [CrossRef]
- Murcia, N.; Hashemian, S.B.; Serra, P.; Pina, J.A.; Durán-Vila, N. Citrus viroids: Symptom expression and performance of Washington navel sweet orange trees grafted on Carrizo citrange. Plant Dis. 2015, 99, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Moreshet, S.; Cohen, S.; Assor, Z.; Bar-Joseph, M. Water relations of citrus exocortis viroid-infected grapefruit trees in the field. J. Exp. Bot. 1998, 49, 1421–1430. [Google Scholar] [CrossRef]
- Lavagi-Craddock, I.; Campos, R.; Pagliaccia, D.; Kapaun, T.; Lovatt, C.; Vidalakis, G. Citrus dwarfing viroid reduces canopy volume by affecting shoot apical growth of navel orange trees grown on trifoliate orange rootstock. J. Citrus Pathol. 2020, 7, 1–6. [Google Scholar] [CrossRef]
- Semancik, J.; Rakowski, A.; Bash, J.; Gumpf, D. Application of selected viroids for dwarfing and enhancement of production of ‘Valencia’orange. J. Hortic. Sci. 1997, 72, 563–570. [Google Scholar] [CrossRef]
- Tessitori, M.; Maria, G.; Capasso, C.; Catara, G.; Rizza, S.; De Luca, V.; Catara, A.; Capasso, A.; Carginale, V. Differential display analysis of gene expression in Etrog citron leaves infected by Citrus viroid III. Biochim. Et Biophys. Acta (BBA)-Gene Struct. Expr. 2007, 1769, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Vidalakis, G.; Pagliaccia, D.; Bash, J.; Afunian, M.; Semancik, J. Citrus dwarfing viroid: Effects on tree size and scion performance specific to Poncirus trifoliata rootstock for high-density planting. Ann. Appl. Biol. 2011, 158, 204–217. [Google Scholar] [CrossRef]
- Gillings, M.; Broadbent, P.; Gollnow, B. Viroids in Australian citrus: Relationship to exocortis, cachexia and citrus dwarfing. Funct. Plant Biol. 1991, 18, 559–570. [Google Scholar] [CrossRef]
- Vidalakis, G.; Pagliaccia, D.; Bash, J.; Semancik, J. Effects of mixtures of citrus viroids as transmissible small nuclear RNA on tree dwarfing and commercial scion performance on Carrizo citrange rootstock. Ann. Appl. Biol. 2010, 157, 415–423. [Google Scholar] [CrossRef]
- Almqvist, C. Interstock effects on topgraft vitality and strobili production after topgrafting in Pinus sylvestris. Can. J. For. Res. 2013, 43, 584–588. [Google Scholar] [CrossRef]
- Seleznyova, A.N.; Tustin, D.S.; Thorp, T.G. Apple dwarfing rootstocks and interstocks affect the type of growth units produced during the annual growth cycle: Precocious transition to flowering affects the composition and vigour of annual shoots. Ann. Bot. 2008, 101, 679–687. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Hayat, F.; Yao, J.; Tian, X.; Wang, Y. Size-controlling interstocks affect growth vigour by downregulating photosynthesis in eight-year-old ’Red Fuji’ apple trees. Eur. J. Hortic. Sci. 2021, 86, 146–155. [Google Scholar] [CrossRef]
- Shokrollah, H.; Lee Abdullah, T.; Sijam, K.; Abdullah, S.N.A. Identification of physical and biochemical characteristic of mandarin (Citrus reticulata) fruit infected by huanglongbing (HLB). Aust. J. Crop Sci. 2011, 5, 181–186. [Google Scholar]
- Roose, M. Porta-enxertos de citros na Califórnia. Semin. Int. De Citros-Porta-Enxertos 1990, 1, 51–60. [Google Scholar]
- Wang, T.; Xiong, B.; Tan, L.; Yang, Y.; Zhang, Y.; Ma, M.; Xu, Y.; Liao, L.; Sun, G.; Liang, D. Effects of interstocks on growth and photosynthetic characteristics in ‘Yuanxiaochun’ Citrus seedlings. Funct. Plant Biol. 2020, 47, 977–987. [Google Scholar] [CrossRef] [PubMed]
- Adams, S.W. The Effects of Rootstock, Scion, Grafting Method and Plant Growth Regulators on Flexural Strength and Hydraulic Resistance of Apple; Utah State University: Logan, UT, USA, 2016. [Google Scholar]
- Arp, W. Effects of source sink relations on photosynthetic acclimation to elevated CO2. Plant Cell Environ. 1991, 14, 869–875. [Google Scholar] [CrossRef]
- Williams, L.E.; Retzlaff, W.A.; Yang, W.; Biscay, P.J.; Ebisuda, N. Effect of girdling on leaf gas exchange, water status, and non-structural carbohydrates of field-grown Vitis vinifera L.(cv. Flame Seedless). Am. J. Enol. Vitic. 2000, 51, 49–54. [Google Scholar]
- Yahia, M.M.; El Wakeel, H.; Samaan, M.; Elgamaal, O. Effect of interstock on growth and leaf mineral content of navel orange transplants. Arab Univ. J. Agric. Sci. 2019, 27, 727–736. [Google Scholar] [CrossRef]
- Medina-Urrutia, V.M.; Robles-González, M.M.; Manzanilla-Ramírez, M.; Velázquez-Monreal, J.J.; Reyes-Hernández, J.E. Interstocks improve the performance of ‘Mexican’ lime on Citrus macrophylla rootstock in calcareous soil. Acta Hortic. 2015, 1065, 335–344. [Google Scholar] [CrossRef]
- Yonemoto, Y.; Matsumoto, K.; Furukawa, T.; Asakawa, M.; Okuda, H.; Takahara, T. Effects of rootstock and crop load on sap flow rate in branches of ‘Shirakawa Satsuma’ mandarin (Citrus unshiu Marc.). Sci. Hortic. 2004, 102, 295–300. [Google Scholar] [CrossRef]
- Cámara, J.; Garcia-Sanchez, F.; Nieves, M.; Cerda, A. Effect of interstock (’Salustiano’ orange) on growth, leaf mineral composition and water relations of one year old citrus under saline conditions. J. Hortic. Sci. Biotechnol. 2003, 78, 161–167. [Google Scholar] [CrossRef]
- Lee, L.S. Citrus polyploidy-origins and potential for cultivar improvement. Aust. J. Agric. Res. 1988, 39, 735–747. [Google Scholar] [CrossRef]
- Ruiz, M.; Quinones, A.; Martínez-Alcántara, B.; Aleza, P.; Morillon, R.; Navarro, L.; Primo-Millo, E.; Martínez-Cuenca, M.-R. Effects of salinity on diploid (2x) and doubled diploid (4x) Citrus macrophylla genotypes. Sci. Hortic. 2016, 207, 33–40. [Google Scholar] [CrossRef]
- Guerra, D.; Wittmann, M.T.S.; Schwarz, S.F.; Souza, P.V.D.d.; Gonzatto, M.P.; Weiler, R.L. Comparison between diploid and tetraploid citrus rootstocks: Morphological characterization and growth evaluation. Bragantia 2014, 73, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Doyle, J.J.; Coate, J.E. Polyploidy, the nucleotype, and novelty: The impact of genome doubling on the biology of the cell. Int. J. Plant Sci. 2019, 180, 1–52. [Google Scholar] [CrossRef]
- Hussain, S.; Curk, F.; Dhuique-Mayer, C.; Urban, L.; Ollitrault, P.; Luro, F.; Morillon, R. Autotetraploid trifoliate orange (Poncirus trifoliata) rootstocks do not impact clementine quality but reduce fruit yields and highly modify rootstock/scion physiology. Sci. Hortic. 2012, 134, 100–107. [Google Scholar] [CrossRef]
- Allario, T.; Brumos, J.; Colmenero-Flores, J.M.; Tadeo, F.; Froelicher, Y.; Talon, M.; Navarro, L.; Ollitrault, P.; Morillon, R. Large changes in anatomy and physiology between diploid Rangpur lime (Citrus limonia) and its autotetraploid are not associated with large changes in leaf gene expression. J. Exp. Bot. 2011, 62, 2507–2519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syvertsen, J.; Lee, L.; Grosser, J. Limitations on growth and net gas exchange of diploid and tetraploid Citrus rootstock cultivars grown at elevated CO2. J. Am. Soc. Hortic. Sci. 2000, 125, 228–234. [Google Scholar] [CrossRef]
- Hayat, F.; Qiu, C.; Xu, X.; Wang, Y.; Wu, T.; Zhang, X.; Nawaz, M.A.; Han, Z. Rootstocks influence morphological and biochemical changes in young ‘Red Fuji’ apple plants. Int. J. Agric. Biol. 2019, 21, 1097–1105. [Google Scholar]
- Noda, K.; Okuda, H.; Iwagaki, I. Indole acetic acid and abscisic acid levels in new shoots and fibrous roots of citrus scion-rootstock combinations. Sci. Hortic. 2000, 84, 245–254. [Google Scholar] [CrossRef]
- Martínez-Alcántara, B.; Rodriguez-Gamir, J.; Martínez-Cuenca, M.-R.; Iglesias, D.J.; Primo-Millo, E.; Forner-Giner, M.A. Relationship between hydraulic conductance and citrus dwarfing by the Flying Dragon rootstock (Poncirus trifoliata L. Raft var. monstruosa). Trees 2013, 27, 629–638. [Google Scholar] [CrossRef]
- de Carvalho, W.; Marinho, C.S.; Arantes, M.; Campbell, G.; Amaral, B.D.; Da Cunha, M. Agronomic and anatomical indicators of dwarfism and graft incompatibility in citrus plants. J. Agric. Sci. 2018, 10, 263–274. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Awasthi, O.; Dubey, A.; Pandey, R.; Sharma, V.; Mishra, A.; Sharma, R. Root morphology and the effect of rootstocks on leaf nutrient acquisition of Kinnow mandarin (Citrus nobilis Loureiro× Citrus reticulata Blanco). J. Hortic. Sci. Biotechnol. 2018, 93, 100–106. [Google Scholar] [CrossRef]
- Dubey, A.K.; Sharma, R.M. Effect of rootstocks on tree growth, yield, quality and leaf mineral composition of lemon (Citrus limon (L.) Burm.). Sci. Hortic. 2016, 200, 131–136. [Google Scholar] [CrossRef]
- Legua, P.; Bellver, R.; Forner, J.; Forner-Giner, M.A. Plant growth, yield and fruit quality of ‘Lane Late’ navel orange on four citrus rootstocks. Span. J. Agric. Res. 2011, 9, 271–279. [Google Scholar] [CrossRef] [Green Version]
- Nasir, M.A.; Makon, M.N.K.; Khan, A.-u.-R.; Ahmad, S.; Ishfaq, M. Effect of different rootstocks on vegetative growth and canopy of Kinnow Mandarin plants. J. Agric. Res. 2011, 49, 65–71. [Google Scholar]
- Bassal, M. Growth, yield and fruit quality of ‘Marisol’ clementine grown on four rootstocks in Egypt. Sci. Hortic. 2009, 119, 132–137. [Google Scholar] [CrossRef]
- Lliso, I.; Forner, J.B.; Talón, M. The dwarfing mechanism of citrus rootstocks F&A 418 and# 23 is related to competition between vegetative and reproductive growth. Tree Physiol. 2004, 24, 225–232. [Google Scholar] [PubMed] [Green Version]
- Castle, W.; Phillips, R. Potentially dwarfing rootstocks for Florida citrus. Proc. Intl. Soc. Citricult. 1977, 2, 558–561. [Google Scholar]
- Atkinson, C.; Else, M. Understanding how rootstocks dwarf fruit trees. Compact Fruit Tree 2001, 34, 46–49. [Google Scholar]
- Caruso, M.; Continella, A.; Modica, G.; Pannitteri, C.; Russo, R.; Salonia, F.; Arlotta, C.; Gentile, A.; Russo, G. Rootstocks influence yield precocity, productivity, and pre-harvest fruit drop of mandared pigmented mandarin. Agronomy 2020, 10, 1305. [Google Scholar] [CrossRef]
- Continella, A.; Pannitteri, C.; La Malfa, S.; Legua, P.; Distefano, G.; Nicolosi, E.; Gentile, A. Influence of different rootstocks on yield precocity and fruit quality of ‘Tarocco Scirè’ pigmented sweet orange. Sci. Hortic. 2018, 230, 62–67. [Google Scholar] [CrossRef]
- Siebert, T.; Krueger, R.; Kahn, T.; Bash, J.; Vidalakis, G. Descriptions of new varieties recently distributed from the Citrus Clonal Protection Program. Citrograph 2010, 1, 20–26. [Google Scholar]
- Ladaniya, M.; Marathe, R.; Das, A.; Rao, C.; Huchche, A.; Shirgure, P.; Murkute, A. High density planting studies in acid lime (Citrus aurantifolia Swingle). Sci. Hortic. 2020, 261, 108935. [Google Scholar] [CrossRef]
- Silva, S.R.d.; Stuchi, E.S.; Girardi, E.A.; Cantuarias-Avilés, T.; Bassan, M.M. Desempenho da tangerineira’Span Americana’em diferentes porta-enxertos. Rev. Bras. De Frutic. 2013, 35, 1052–1058. [Google Scholar] [CrossRef] [Green Version]
- Gheshlaghi, E.; Fifaei, R.; Majaddad, D.; Farzam, E. Study of planting density of four Mandarin cultivars on ’Flying Dragon’ rootstock. Int. J. AgriScience 2012, 2, 1093–1102. [Google Scholar]
- Ferrarezi, R.S.; Jani, A.D.; James, H.T.; Gil, C.; Ritenour, M.A.; Wright, A.L. Sweet orange orchard architecture design, fertilizer, and irrigation management strategies under huanglongbing-endemic conditions in the Indian River citrus district. HortScience 2020, 55, 2028–2036. [Google Scholar] [CrossRef]
- Dogar, W.A.; Khan, A.A.; Ahmed, S.; Tariq, S.; Ahmad, M.; Imran, M.; Noman, M.; Khan, N. Study to determine the effects of high-density plantation on growth and yield of citrus. Sarhad J. Agric. 2017, 33, 315–319. [Google Scholar] [CrossRef]
- Dalal, R.; Sangwan, A.; Beniwal, B.; Sharma, S. Effect of planting density on canopy parameter, yield and water use efficiency of Kinnow mandarin. Indian J. Hort. 2013, 70, 587–590. [Google Scholar]
- Nawaz, M.A.; Ahmed, W.; Iqbal, Z.; Khan, M.M. Evaluation of high density plantation on vigor and yield in Kinnow mandarin (Citrus reticulata Blanco). In Proceedings of the International Symposium on Prospects of Horticultural Industry in Pakistan, Faisalabad, Pakistan, 28–30 March 2007; pp. 87–92. [Google Scholar]
Name of Rootstock | Origin | Parents | References |
---|---|---|---|
‘Flying Dragon’ | Japan | Poncirus trifoliata var. monstrosa (T. Itô) Swingle | [35] |
Forner-Alcaide (‘FA 418’) | Spain | Citrange ‘Troyer’ × Citrus deliciosa Ten | [32,36] |
‘HTR-051’ | Brazil | Poncirus trifoliata L. Raf. × C. limonia | [37] |
‘US-897’ | USA | Cross between Cleopatra mandarin × Flying Dragon | [38] |
Forner-Alcaide (‘FA 517’) | Spain | King’ mandarin × Poncirus trifoliata (L.) Raf. | [32] |
‘Ziyang Xiangcheng’ | China | Citrus junos Sieb. Ex Tanaka | [39] |
‘Red Tangerine’ | China | Citrusreticulata Blanco | [40] |
‘Trifoliate Orange’ | China | Poncirus trifoliata | [41] |
Scion Cultivar | Rootstock | Name of Treatment | Key Findings | References |
---|---|---|---|---|
‘Navel orange’ | ‘Rich 16-6’ trifoliate orange | Graft-inoculated with CDVd, while the control group was not inoculated with CDVd. | The tree canopy was reduced by >20% in CDVd-infected trees. | [51] |
‘Parent Washington’ navel orange | ‘Rich 16-6’ trifoliate orange | The CDVd-infected trees were planted at a close spacing (3 × 6.7 m), whereas the uninfected trees were planted at a standard spacing (6.1 × 6.7 m). | CDVd modifies the expression profile of citrus growth and developmental processes, which may be related to cellular changes that result in the observed phenotype of reduced vegetative growth and smaller trees. | [25] |
‘Washington navel’ | ‘Carrizo citrange’ | A graft was infected with viroid isolates. | Viroid infection had a negative impact on plant growth, resulting in decreased height and canopy volume. | [49] |
‘Navel orange’ | ‘Poncirus trifoliata’ | Trees were treated using citrus dwarfing viroid (TsnRNA-IIIb). | TsnRNAs (CDVd) can limit tree growth, making citrus grove management and production more flexible and consumer-friendly. | [56] |
‘Grapefruit’ | ‘Troyer citrange’ | The graft was inoculated with five different kinds of GTDC, together with 225T and 225M. | CVd infection of grafted grapefruit trees decreased the water movement capacity from the roots and within the canopy. | [50] |
‘Valencia orange’ | ‘Poncirus trifoliata’ | Treatment was performed using citrus viroid (CVd-la, CVd-IIIb and CVd-IIa,). | The canopy volume was reduced while the yield per tree increased. | [52] |
Scion Cultivar | Interstock | Rootstock | Key Findings | References |
---|---|---|---|---|
‘Yuanxiaochun’ | ‘Ponkan Shiranuhi’, ‘Hammi Taroceo’and ‘Kumquat’ | ‘Trifoliate orange’ | The growth, development, and photosynthetic features of ‘Yuanxiaochun’ trees are significantly affected by interstocks. The grafted plant with ‘Shiranuhi’ as the interstock had the lowest values of morphological traits. | [62] |
‘Navel orange’ | ‘Volkamer lemon’ and ‘Sour orange’ | ‘Volkamer lemon’ and ‘Sour orange’ | Plants grafted on ‘Volkamer lemon’ had the tallest scion, longest roots, and most leaf numbers. Further, the scion stem recorded the highest contents of Mg, N, K, Fe, Zn, P, Mn, and phenols. | [66] |
‘Mexican lime’ | Different citrus types used as interstocks | ‘Alemow’ (Mac) | ‘Hiryu’ and ‘Flying Dragon’ rootstocks performed well when used as dwarfing interstocks. Moreover, the use of dwarfing trees allowed for the establishment of higher planting densities, reaching up to 600 trees per hectare. | [67] |
‘C. reticulata’ | ‘C. grandis’ | ‘C. hystrix’ | Compared to other combinations, citrus (Scion/rootstock/interstock/) combinations [‘C. reticulata’/’C. aurantifolia’/’C. aurantium’] produced lower values for morphological traits, i.e., plant height, root dry matter, etc. When ‘C. grandis’ was used as the rootstock and ‘C. hystrix’ as the interstock, there were no symptoms of HLB after six months of inoculation. | [60] |
‘Satsuma mandarin’ | ‘Flying Dragon’ trifoliate orange | ‘Flying Dragon’ trifoliate orange | High fruit soluble solids and size reduction are results of reduced sap flow in the scion cultivar caused by a heavy crop load and/or ‘Flying Dragon’ rootstocks or interstocks. | [68] |
‘Salustiana orange’ (SAO), ‘Valencia Late’ (VLO) | ‘Valencia Late’ grafted on CM/SO (CM/SAO/VLO) | ‘Cleopatra mandarin’ (CM) | Interstock graft combinations had greater root growth than shoot growth, resulting in a lower shoot/root ratio than other combinations. | [69] |
Scion Cultivar | Rootstock | Traits | Key Findings | References |
---|---|---|---|---|
‘Shatangjyu’ mandarin | Eleven different types of rootstocks. | Hormone levels, scion growth, enzyme activity, and metabolite profile measurements. | ‘Shantangju’ mandarin scion cultivar grafted onto ‘Flying Dragon’ rootstock produces dwarf plants. For high-density citrus cultivations, ‘Flying Dragon’ rootstock can be the best option under net house conditions. | [1] |
‘Valencia’ sweet orange | Fifty-one different hybrid rootstocks. | Evaluations were made on tree strength and survival rate, fruit output and quality, drought tolerance, and graft compatibility. | Compared to conventional rootstocks, the scion canopy volume of three selected citrandarins of ‘Sunki’ mandarin (C. sunki (Hayata) hort. ex Tanaka) ‘Flying Dragon’ decreased by 70%. | [17] |
‘Salustiana’ orange | ‘Troyer citrange’, ‘Trifoliate orange’, ‘Rangpur lime’, ‘Carrizo citrange’, ‘Rough lemon’ | Mineral analysis, scion vigor, and photosynthetic processes. | The primary shoot length of the ‘Salustiana’ scion grafted onto the Rough lemon rootstock was the longest. In addition, the ‘Rough lemon’ rootstock had a vigorous root system, which improved its ability to absorb minerals and nutrients. | [2] |
‘Kinnow’ mandarin | ‘Karna Khatta’, ‘Rough lemon’, ‘Rangpur lime’, ‘Troyer carrizo’, ‘citrange’, ‘sour orange’, ‘Jatti Khatti’ | Mineral absorption capability and root morphology. | Higher mineral uptake was associated with a stronger root system (total root length, number of forks, and root tips), which can directly impact nutrient uptake. | [81] |
‘Shatangju’ mandarin | ‘Rough lemon’, ‘Fragrant orange’ ‘Canton lemon’, ‘Shatangju mandarin’, ‘Red tangerine’ | Measurement of scion growth, RNA Seq, hormonal levels, qRT-PCR. | Scion vigor was significantly and positively associated with IAA and GA contents. Moreover, qRT-PCR revealed that IAA content and growth vigor were inversely linked with the expression levels of ARF1, GH3, ARF8, and IAA4. | [40] |
‘Lemon’ | ‘Jatti Khatti’, ‘Attani-2’, ‘Rough lemon’, ‘RLC-4’, ‘Billikhichlli’, ‘Sour orange’, ‘Troyer citrange’ ‘Karna Khatta’, | Tee growth, yield, quality, and leaf nutrient concentrations. | Dwarfing rootstocks were less responsive to N, K, Ca, and Mg, and most of the micronutrients from the root medium. | [82] |
‘Valencia’ orange | ‘Flying Dragon’, ‘Rubidoux’ | Production of biomass, hydraulic resistance, measures of gas exchange, xylem anatomy, and transport of 13C photoassimilates. | Rootstock-induced dwarfing in ‘Flying Dragon’ rootstock may be due to lowered hydraulic conductivity. | [79] |
‘Lane Late’ navel orange | ‘C. macrophylla’, ‘C. volkameriana’ ‘Gou Tou Chen’, ‘Cleopatra mandarin’ | Variables affecting fruit quality, yield, and growth. | Citrus rootstocks have a discernible impact on the fruit quality, yield, and vegetative growth of ‘Lane Late’ oranges. ‘Cleopatra’ mandarin and ‘Gou Tou Chen’ were the most suitable rootstocks for Lane Late scion cultivar under growing circumstances with thick and calcareous soil. | [83] |
‘Kinnow’ mandarin | ‘Rough lemon’, ‘Kinnow’, ‘Rangpur line’ | Measurement of different morphological traits. | Among all evaluated rootstocks, ‘Rough lemon’ was found to be the most vigorous, while ‘Rangpur lime’ exhibited dwarf characteristics for Kinnow scion cultivar under agro-climatic conditions of Sargodha. | [84] |
‘Marisol’ clementine | ‘Swingle citrumelo’, ‘Sour orange, Carrizo citrange’, ‘Cleopatra mandarin/, | Measurements of vegetative growth parameters, yield, and fruit quality. | In high-density plantings under Egyptian circumstances, ‘Carrizo citrange’, ‘Swingle citrumelo’, and ‘Cleopatra mandarin’ are found to be effective rootstocks for ‘Marisol’ clementines. | [85] |
‘Navelina; | Three different rootstocks (#23, #24, and F&A 418) | Vegetative growth, reproductive growth, hormonal analysis, photosynthetic measurements, and carbohydrate analysis. | The F&A 418 and #23 rootstocks result in dwarfing plants by promoting higher fruit and reproductive development, which slows summer vegetative growth. | [86] |
‘Eureka’ lemon | ‘Flying Dragon’, ‘Swingle citrumelo’, ‘Trifoliate orange’ | Dry matter of different parts, endogenous IAA and ABA concentrations. | IAA levels were highest in the fresh shoots of ‘Swingle citrumelo’ and lowest in the ‘Flying Dragon’ rootstock. | [78] |
Scion Cultivar | Rootstock | Planting Spacing/Density | Key Findings | References |
---|---|---|---|---|
Valencia | Kuharske citrange | 358 and 955 trees/ha | High tree density, fertigation, and drip irrigation increased fruit yield in a CLas-infected sweet orange orchards. | [95] |
Nagpur mandarin (Citrus reticulata Blanco) | Rangpur lime | Six different planting spacings. | Early and high yields were achieved through careful canopy management of plants planted with dense spacing (2 × 2 m, 2500 plant ha−1). From the first fruiting, the yield attained under the 2 × 2 spacing density was 26-times higher than the control. | [13] |
Valencia sweet orange | IAC 1697, IAC 1710, Swingle, Swingle 4x | 513, 696, and 1000 trees ha−1 | Planting vigorous rootstocks at moderate to high tree densities improves the land-use efficiency of citrus orchards. | [31] |
Lime seedlings | Conventional density (400 plants ha−1), High density (800 plants ha−1), Ultra-High-Density (1600 plants ha−1) | High-density planting systems may be preferred during the early years of production. | [92] | |
Kinnow mandarin, Musambi | Lemon | Three planting distances: T1 (3.35 × 3.35 m), T2 (3.35 × 6.71 m) and T3 (6.71 × 6.71 m). | Plants planted at 11 × 22ft (T1) showed better results than other planting densities. | [96] |
Kinnow mandarin | Rough lemon | 6.00 m × 6.00 m, 6.00 m × 5.00 m, 6.00 m × 3.00 m | Vegetative growth of plants was greater at larger spacing (6.00 m × 6.00 m). Yield ha−1 was the maximum (220.99 t ha−1) at the closest spacing density (6.00 × 3.00 m). | [97] |
Kinnow mandarin | Rough lemon | 3.30 m × 6.60 m, 3.30 m × 3.30 m, 6.60 m × 6.60 m | Plant height and number of leaves were maximum at close planting density (3.30 m × 3.30 m). Moreover, the highest yield was observed at (3.30 m × 6.60 m) spacing density. | [98] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayat, F.; Li, J.; Iqbal, S.; Peng, Y.; Hong, L.; Balal, R.M.; Khan, M.N.; Nawaz, M.A.; Khan, U.; Farhan, M.A.; et al. A Mini Review of Citrus Rootstocks and Their Role in High-Density Orchards. Plants 2022, 11, 2876. https://doi.org/10.3390/plants11212876
Hayat F, Li J, Iqbal S, Peng Y, Hong L, Balal RM, Khan MN, Nawaz MA, Khan U, Farhan MA, et al. A Mini Review of Citrus Rootstocks and Their Role in High-Density Orchards. Plants. 2022; 11(21):2876. https://doi.org/10.3390/plants11212876
Chicago/Turabian StyleHayat, Faisal, Juan Li, Shahid Iqbal, Yang Peng, Leming Hong, Rashad Mukhtar Balal, Muhammad Nawaz Khan, Muhammad Azher Nawaz, Ummara Khan, Muhammad Asad Farhan, and et al. 2022. "A Mini Review of Citrus Rootstocks and Their Role in High-Density Orchards" Plants 11, no. 21: 2876. https://doi.org/10.3390/plants11212876
APA StyleHayat, F., Li, J., Iqbal, S., Peng, Y., Hong, L., Balal, R. M., Khan, M. N., Nawaz, M. A., Khan, U., Farhan, M. A., Li, C., Song, W., Tu, P., & Chen, J. (2022). A Mini Review of Citrus Rootstocks and Their Role in High-Density Orchards. Plants, 11(21), 2876. https://doi.org/10.3390/plants11212876