Geographical Patterns of Genetic Variation in Locoto Chile (Capsicum pubescens) in the Americas Inferred by Genome-Wide Data Analysis
Abstract
:1. Introduction
2. Results
2.1. Sequencing and Assembly
2.2. Phylogenetic Network
2.3. Genetic Clustering
2.4. Genetic Diversity and Differentiation
3. Discussion
4. Materials and Methods
4.1. Sampling
4.2. DNA Isolation and RAD-Seq Library Preparation
4.3. Loci Assembly and SNP Calling
4.4. Phylogenetic Analysis
4.5. Detection of SNPs Putatively under Selection
4.6. Population Structure Analysis
4.7. Genetic Diversity and Differentiation
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barboza, G.E.; Carrizo García, C.; de Bem Bianchetti, L.; Romero, M.V.; Scaldaferro, M. Monograph of wild and cultivated chili peppers (Capsicum L., Solanaceae). PhytoKeys 2022, 200, 1–423. [Google Scholar] [CrossRef]
- Pickersgill, B. Genetic resources and breeding of Capsicum spp. Euphytica 1997, 96, 129–133. [Google Scholar] [CrossRef]
- Jarret, R.L.; Barboza, G.E.; da Costa Batista, F.R.; Berke, T.; Chou, Y.; Hulse-Kemp, A.; Ochoa-Alejo, N.; Tripodi, P.; Veres, A.; Carrizo García, C.; et al. Capsicum—An Abbreviated Compendium. J. Am. Soc. Hortic. Sci. 2022, 144, 3–22. [Google Scholar] [CrossRef] [Green Version]
- Jäger, M.; Jiménez, A.; Amaya, K. Las Cadenas de Valor de los Ajíes Nativos de Bolivia; Biodiversity International: Rome, Italy, 2013; pp. 1–90. Available online: https://www.bioversityinternational.org/e-library/publications/detail/las-cadenas-de-valor-de-los-ajies-nativos-de-bolivia/ (accessed on 28 October 2022).
- Jäger, M.; Jiménez, A.; Amaya, K. Las Cadenas de Valor de los Ajíes Nativos de Perú; Biodiversity International: Rome, Italy, 2013; pp. 1–96. Available online: https://www.bioversityinternational.org/e-library/publications/detail/las-cadenas-de-valor-de-los-ajies-nativos-de-peru/ (accessed on 28 October 2022).
- Rick, C.M. Capsicum pubescens, a little-known pungent pepper from Latin America. Mo. Bot. Gard. Bull. 1950, 38, 36–42. [Google Scholar]
- Eshbaugh, W.H. Biosystematic and evolutionary study of the Capsicum pubescens complex. Natl. Geogr. Res. 1979, 1970, 143–162. [Google Scholar]
- Bosland, P.W.; Votava, E.J. Peppers: Vegetable and Spice Capsicums, 2nd ed.; CABI: Wallingford, UK, 2012; pp. 1–230. [Google Scholar] [CrossRef]
- Bosland, P.W. Capsicums: Innovative Uses of an Ancient Crop. In Progress in New Crops; Janick, J., Ed.; ASHS Press: Arlington, VA, USA, 1996; pp. 479–487. [Google Scholar]
- DeWitt, D.; Bosland, P.W. The Complete Chile Pepper Book; Timber Press: Portland, OR, USA, 2009. [Google Scholar]
- Yacovleff, E.; Herrera, F. El mundo vegetal de los antiguos peruanos. Rev. Mus. Nac. 1934, 3, 241–322. [Google Scholar]
- Perry, L.; Dickau, R.; Zarrillo, S.; Holst, I.; Pearsall, D.M.; Piperno, D.R.; Berman, M.J.; Cooke, R.G.; Rademaker, K.; Ranere, A.J.; et al. Starch fossils and the domestication and dispersal of chili peppers (Capsicum spp.) in the Americas. Science 2007, 315, 986–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLeod, M.J.; Guttman, S.I.; Eshbaugh, W.H.; Rayle, R.E. An electrophoretic study of evolution in Capsicum (Solanaceae). Evolution 1982, 37, 562–574. [Google Scholar] [CrossRef] [PubMed]
- Moscone, E.A.; Scaldaferro, M.A.; Grabiele, M.; Cecchini, N.M.; Sánchez García, Y.; Jarret, R.; Daviña, J.R.; Ducasse, D.A.; Barboza, G.E.; Ehrendofer, F. The evolution of chili peppers (Capsicum—Solanaceae): A cytogenetic perspective. Acta Hortic. 2007, 745, 137–169. [Google Scholar] [CrossRef]
- Carrizo García, C.; Barfuss, M.H.J.; Sehr, E.M.; Barboza, G.E.; Samuel, R.; Moscone, E.A.; Ehrendorfer, F. Phylogenetic relationships, diversification and expansion of chili peppers (Capsicum, Solanaceae). Ann. Bot. 2016, 118, 35–51. [Google Scholar] [CrossRef] [Green Version]
- Nee, M. Solanaceae I. Flora de Veracruz, 49; Instituto Nacional de Investigaciones sobre Recursos Bióticos: Veracruz, Mexico, 1986. [Google Scholar]
- Van Zonneveld, M.; Ramirez, M.; Williams, D.E.; Petz, M.; Meckelmann, S.; Avila, T.; Bejarano, C.; Ríos, L.; Peña, K.; Jäger, M.; et al. Screening genetic resources of Capsicum peppers in their primary center of diversity in Bolivia and Peru. PLoS ONE 2015, 10, e0134663. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Meléndez, A.; Lira Noriega, A. ¿Dónde Crecen los Chiles en México? In Los Chiles que le dan Sabor al Mundo; Aguilar-Meléndez, M.A., Vásquez-Dávila, E., Katz, E., Hernández Colorado, M.R., Eds.; Universidad Veracruzana: Veracurz, Mexico, 2018; pp. 75–92. Available online: https://books.openedition.org/irdeditions/30931 (accessed on 28 October 2022).
- Carrizo García, C.; Barboza, G.E.; Palombo, N.; Weiss-Schneeweiss, H. Diversification of chiles (Capsicum, Solanaceae) trough time and space: New insights from genome-wide RAD-seq data. Front. Genet. 2022, 13, 815379. [Google Scholar] [CrossRef]
- Eshbaugh, W.H. Peppers: History and Exploitation of a Serendipitous New Crop Discovery. In New Crops; Janick, J., Simon, J.E., Eds.; Wiley: New York, NY, USA, 1993; pp. 132–139. [Google Scholar]
- Yamamoto, S.; Djarwaningsih, T.; Wiriadinata, H. Capsicum pubescens (Solanaceae) in Indonesia: Its history, taxonomy, and distribution. Econ. Bot. 2013, 67, 161–170. [Google Scholar] [CrossRef]
- Rodríguez Pastor, H.R. El rocoto en tiempos de la globalización. Investig. Soc. 2017, 20, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Escalera-Ordaz, A.K.; Guillén-Andrade, H.; Lara-Chávez, M.B.N.; Lemus-Flores, C.; Rodríguez-Carpena, J.G.; Valdivia-Bernal, R. Characterization of cultivated varieties of Capsicum pubescens in Michoacán, Mexico. Remexca 2019, 10, 239–251. [Google Scholar] [CrossRef] [Green Version]
- Meckelmann, S.W.; Jansen, C.; Riegel, D.W.; van Zonneveld, M.; Ríos, L.; Peña, K.; Mueller-Seitz, E.; Petz, M. Phytochemicals in native Peruvian Capsicum pubescens (rocoto). Eur. Food. Res. Tech. 2015, 241, 817–825. [Google Scholar] [CrossRef]
- Hammer, K.; Arrowsmith, N.; Gladis, T. Agrobiodiversity with emphasis on plant genetic resources. Sci. Nat. 2003, 90, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Mastretta-Yanes, A.; Acevedo Gasman, F.; Burgeff, C.; Cano Ramírez, M.; Piñero, D.; Sarukhán, J. An initiative for the study and use of genetic diversity of domesticated plants and their wild relatives. Front. Plant Sci. 2018, 9, 209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pironon, S.; Borrell, J.S.; Ondo, I.; Douglas, R.; Phillips, C.; Khoury, C.K.; Kantar, M.B.; Fumia, N.; Soto Gomez, M.; Viruel, J.; et al. Toward Unifying Global Hotspots of Wild and Domesticated Biodiversity. Plants 2020, 9, 1128. [Google Scholar] [CrossRef] [PubMed]
- Ibiza, V.P.; Blanca, J.; Cañizares, J.; Nuez, F. Taxonomy and genetic diversity of domesticated Capsicum species in the Andean region. Genet. Resour. Crop. Evol. 2012, 59, 1077–1088. [Google Scholar] [CrossRef]
- Silvar, C.; García-González, C.A. Deciphering genetic diversity in the origins of pepper (Capsicum spp.) and comparison with worldwide variability. Crop Sci. 2016, 56, 3100–3111. [Google Scholar] [CrossRef]
- Baird, N.A.; Etter, P.D.; Atwood, T.S.; Currey, M.C.; Shiver, A.L.; Lewis, Z.A.; Selker, E.U.; Cresko, W.A.; Johnson, E.A. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 2008, 3, e3376. [Google Scholar] [CrossRef]
- Davey, J.W.; Blaxter, M.L. RADSeq: Next-generation population genetics. Brief. Funct. Genom. 2011, 9, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Andrews, K.R.; Good, J.M.; Miller, M.R.; Luikart, G.; Hohenlohe, P.A. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 2016, 17, 81–92. [Google Scholar] [CrossRef] [Green Version]
- Atchison, G.W.; Nevado, B.; Eastwood, R.J.; Contreras-Ortiz, N.; Reynel, C.; Madriñán, S.; Filatov, D.A.; Hughes, C.E. Lost crops of the Incas: Origins of domestication of the Andean pulse crop tarwi, Lupinus mutabilis. Am. J. Bot. 2016, 103, 1592–1606. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, D.; Kundu, A.; Das, D.; Chakraborty, A.; Mandal, N.A.; Satya, P.; Karmakar, P.A.; Kar, C.S.; Mitra, J.; Singh, N.K. Resolving population structure and genetic differentiation associated with RAD-SNP loci under selection in tossa jute (Corchorus olitorius L.). Mol. Genet. Genom. 2019, 294, 479–492. [Google Scholar] [CrossRef] [PubMed]
- Alves-Pereira, A.; Novello, M.; Dequigiovanni, G.; Pinheiro, J.B.; Brancalion, P.H.; Veasey, E.A.; Clement, C.R.; Zucchi, M.I. Genomic diversity of three Brazilian native food crops based on double-digest restriction site-associated DNA sequencing. Trop. Plant Biol. 2019, 12, 268–281. [Google Scholar] [CrossRef]
- Helmstetter, A.J.; Oztolan-Erol, N.; Lucas, S.J.; Buggs, R.J. Genetic diversity and domestication of hazelnut (Corylus avellana L.) in Turkey. Plants People Planet 2020, 2, 326–339. [Google Scholar] [CrossRef] [Green Version]
- Mehravi, S.; Ranjbar, G.A.; Mirzaghaderi, G.; Severn-Ellis, A.A.; Scheben, A.; Edwards, D.; Batley, J. De Novo SNP Discovery and Genotyping of Iranian Pimpinella Species Using ddRAD Sequencing. Agronomy 2021, 11, 1342. [Google Scholar] [CrossRef]
- Park, B.; Donoghue, M.J. Phylogeography of a widespread eastern North American shrub, Viburnum lantanoides. Am. J. Bot. 2019, 106, 389–401. [Google Scholar] [CrossRef]
- Warschefsky, E.J.; von Wettberg, E.J.B. Population genomic analysis of mango (Mangifera indica) suggests a complex history of domestication. New Phytol. 2019, 222, 2023–2037. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.M.; Ranta, P.; Saarikivi, J.; Kutnar, L.; Vreš, B.; Dzhus, M.; Mutanen, M.; Kvist, L. Using genomic information for management planning of an endangered perennial, Viola uliginosa. Ecol. Evol. 2020, 10, 2638–2649. [Google Scholar] [CrossRef] [PubMed]
- DeWitt, D.; Bosland, P.W. Peppers of the World: An Identification Guide; Ten Speed Press: Berkeley, CA, USA, 1996; pp. 1–219. [Google Scholar]
- Leyva-Ovalle, O.R.; Andrés-Meza, P.; Del Valle-Hernández, D.; Meneses-Márquez, I.; Murguía-González, J.; Galindo-Tovar, M.E.; López-Sánchez, H.; Serna-Lagunes, R.; Del Rosario-Arellano, L.; Lee- Espinoza, H.E.; et al. Morphological characterization of manzano hot pepper (Capsicum pubescens Ruiz & Pav.) landraces in the central region of Veracruz state, Mexico. Rev. Bio Cienc. 2018, 5, e388. [Google Scholar] [CrossRef]
- Glaszmann, J.C.; Kilian, B.; Upadhyaya, H.D.; Varshney, R.K. Accessing genetic diversity for crop improvement. Curr. Op. Plant Biol. 2010, 13, 167–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira-Dias, L.; Vilanova, S.; Fita, A.; Prohens, J.; Rodríguez Burruezo, A. Genetic diversity, population structure, and relationships in a collection of pepper (Capsicum spp.) landraces from the Spanish centre of diversity revealed by genotyping-by-sequencing (GBS). Hortic. Res. 2019, 6, 54. [Google Scholar] [CrossRef] [Green Version]
- Tripodi, P.; Rabanus-Wallace, M.T.; Barchi, L.; Kale, S.; Esposito, S.; Acquadro, A.; Schafleitner, R.; van Zonneveld, M.; Prohens, J.; Diez, M.J.; et al. Global range expansion history of pepper (Capsicum spp.) revealed by over 10,000 genebank accessions. Proc. Natl. Acad. Sci. USA 2021, 118, e2104315118. [Google Scholar] [CrossRef]
- Vavilov, N.I. Origin and Geography of Cultivated Plants; Cambridge University Press: Cambridge, UK, 1992; pp. 1–498. [Google Scholar]
- Gross, B.L.; Olsen, K.M. Genetic perspectives on crop domestication. Trends Plant Sci. 2010, 15, 529–537. [Google Scholar] [CrossRef] [Green Version]
- Kantar, M.B.; Nashoba, A.R.; Anderson, J.E.; Blackman, B.K.; Rieseberg, L.H. The genetics and genomics of plant domestication. BioScience 2017, 67, 971–982. [Google Scholar] [CrossRef] [Green Version]
- Meyer, R.S.; Purugganan, M.D. Evolution of crop species: Genetics of domestication and diversification. Nat. Rev. Genet. 2013, 14, 840–852. [Google Scholar] [CrossRef]
- Churqui, M.; Cespedes, A.; Lozano, R.; Serrano, M. Centros de origen de plantas cultivadas de los agroecosistemas del Parque Nacional y Área Natural de Manejo Integrado Serranía del Iñao. Agro-Ecológica 2015, 2, 136–145. [Google Scholar]
- Heiser, C.B.; Smith, P.G. Observations on another species of cultivated pepper, Capsicum pubescens R & P. Proc. Am. Soc. Hort. Sci. 1948, 52, 331–335. [Google Scholar]
- Hurrell, J.A.; Arenas, P.M.; Pochettino, M.L. Plantas de Dietéticas: Plantas Comercializadas en las Dietéticas de la Conurbación Buenos Aires-La Plata (Argentina); Editorial LOLA: Buenos Aires, Argentina, 2013; pp. 1–208. [Google Scholar]
- Cantero, J.J.; Núñez, C.O.; Mulko, J.; Amuchastegui, M.A.; Palchetti, M.V.; Brandolin, P.G.; Iparraguirre, J.; Virginil, N.; Bernardello, G.; Ariza Espinar, L. Las Plantas de Interés Económico en Argentina; UniRío Editora: Río Cuarto, Argentina, 2019. [Google Scholar]
- Petrucci, N.; Acosta, M.E.; Lambaré, D.A.; Pochettino, M.L.; Hilgert, N.I. The relationship between gastronomic tourism and agrodiversity in Humahuaca (Jujuy, Argentina): An ethnobotanical perspective. Bol. Soc. Argent. Bot. 2022, 57, 131–151. [Google Scholar] [CrossRef]
- Heiser, C.B.; Smith, P.G. The cultivated Capsicum peppers. Econ. Bot. 1953, 7, 214–227. [Google Scholar] [CrossRef]
- Towell, J. Los Senderos Prehispánicos del Capsicum. In Caminos y Mercados de México; Towell, J., León, A.A. (Coord), Eds.; UNAM, Instituto de Investigaciones Históricas: Mexico DF, Mexico, 2009; pp. 79–106. [Google Scholar]
- Paun, O.; Turner, B.; Trucchi, E.; Munzinger, J.; Chase, M.W.; Samuel, R. Processes driving the adaptive radiation of a tropical tree (Diospyros, Ebenaceae) in New Caledonia, a biodiversity hotspot. Syst. Biol. 2016, 65, 212–227. [Google Scholar] [CrossRef] [PubMed]
- Vienna BioCenter Core Facilites. Available online: https://www.viennabiocenter.org/vbcf/ (accessed on 30 September 2022).
- FastQC: A Quality Control Tool for High Throughput Sequence Data. Babraham Institute. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 30 September 2022).
- illumina2bam Package. Available online: http://gq1.github.io/illumina2bam/ (accessed on 30 September 2022).
- Catchen, J.; Hohenlohe, P.; Bassham, S.; Amores, A.; Cresko, W. Stacks: An analysis tool set for population genomics. Mol. Ecol. 2013, 22, 3124–3140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eaton, D.A.; Overcast, I. ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinformatics 2020, 36, 2592–2594. [Google Scholar] [CrossRef]
- Hühn, P.; Dillenberger, M.S.; Gerschwitz-Eidt, M.; Hörandl, E.; Los, J.A.; Messerschmid, T.F.; Kadereit, G. How challenging RADseq data turned out to favor coalescent-based species tree inference. A case study in Aichryson (Crassulaceae). Mol. Phylogenet. Evol. 2022, 167, 107342. [Google Scholar] [CrossRef]
- Mastretta-Yanes, A.; Arrigo, N.; Alvarez, N.; Jorgensen, T.H.; Piñero, D.; Emerson, B.C. Restriction site-associated DNA sequencing, genotyping error estimation and de novo assembly optimization for population genetic inference. Mol. Ecol. Resour. 2015, 15, 28–41. [Google Scholar] [CrossRef]
- Shafer, A.B.; Peart, C.R.; Tusso, S.; Maayan, I.; Brelsford, A.; Wheat, C.W.; Wolf, J.B. Bioinformatic processing of RAD-seq data dramatically impacts downstream population genetic inference. Methods Ecol. Evol. 2017, 8, 907–917. [Google Scholar] [CrossRef] [Green Version]
- Paetzold, C.; Wood, K.R.; Eaton, D.A.; Wagner, W.L.; Appelhans, M.S. Phylogeny of Hawaiian Melicope (Rutaceae): RAD-seq resolves species relationships and reveals ancient introgression. Front. Plant Sci. 2019, 10, 1074. [Google Scholar] [CrossRef] [Green Version]
- McCartney-Melstad, E.; Gidiş, M.; Shaffer, H.B. An empirical pipeline for choosing the optimal clustering threshold in RADseq studies. Mol. Ecol. Resour. 2019, 19, 1195–1204. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. 1000 Genomes Project Analysis Group. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Vcfparser Script. Available online: https://github.com/CoBiG2/RAD_Tools/blob/master/vcf_parser.py (accessed on 30 September 2022).
- Huson, D.H.; Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006, 23, 254–267. [Google Scholar] [CrossRef]
- Lischer, H.E.; Excoffier, L. PGDSpider: An automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics 2012, 28, 298–299. [Google Scholar] [CrossRef] [PubMed]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef] [PubMed]
- Foll, M.; Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics 2008, 180, 977–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luu, K.; Bazin, E.; Blum, M.G. pcadapt: An R package to perform genome scans for selection based on principal component analysis. Mol. Ecol. Resour. 2016, 17, 67–77. [Google Scholar] [CrossRef]
- The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 30 September 2022).
- Jombart, T.; Devillard, S.; Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 2010, 11, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 2008, 24, 1403–1405. [Google Scholar] [CrossRef] [Green Version]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef] [Green Version]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szpiech, Z.A.; Jakobsson, M.; Rosenberg, N.A. ADZE: A rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 2008, 24, 2498–2504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goudet, J. Hierfstat, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes 2005, 5, 184–186. [Google Scholar] [CrossRef] [Green Version]
- Weir, B.S.; Cockerham, C.C. Estimating F-statistics for the analysis of population structure. Evolution 1984, 38, 1358–1370. [Google Scholar] [CrossRef]
- Excoffier, L.; Smouse, P.E.; Quattro, J. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 1992, 131, 479–491. [Google Scholar] [CrossRef]
- Kamvar, Z.N.; Tabima, J.F.; Grünwald, N.J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2014, 2, e281. [Google Scholar] [CrossRef]
Cluster | N | %P | A | AR | AP | HO | HE | FIS | FIS (95% CI) |
---|---|---|---|---|---|---|---|---|---|
Admixture | |||||||||
G1 | 18 | 90.17 | 2624 | 1.394 | 0.159 | 0.201 | 0.190 | −0.018 | −0.045, −0.010 |
G2 | 14 | 94.40 | 2747 | 1.492 | 0.213 | 0.245 | 0.232 | −0.007 | −0.024, 0.012 |
G3 | 10 | 70.24 | 2044 | 1.228 | 0.075 | 0.102 | 0.108 | 0.101 | 0.080, 0.170 |
DAPC | |||||||||
G1 | 21 | 93.43 | 2732 | 1.413 | 0.158 | 0.212 | 0.199 | −0.015 | −0.051, −0.020 |
G2 | 37 | 98.8 | 2889 | 1.444 | 0.176 | 0.195 | 0.211 | 0.082 | 0.059, 0.150 |
G3 | 9 | 69.46 | 2031 | 1.267 | 0.0801 | 0.101 | 0.104 | 0.084 | 0.079, 0.111 |
Admixture | G1 | G2 | G3 |
G1 | - | 0.086–0.100 | 0.233–0.267 |
G2 | 0.093 | - | 0.158–0.186 |
G3 | 0.250 | 0.172 | - |
DAPC | G1 | G2 | G3 |
G1 | - | 0.068–0.082 | 0.223–0.257 |
G2 | 0.076 | - | 0.117–0.143 |
G3 | 0.240 | 0.130 | - |
Level | % Variation | F-Value | p-Value |
---|---|---|---|
Admixture | |||
Among clusters | 16.529 | 0.165 | 0.001 * |
Among individuals within clusters | −0.518 | −0.006 | 0.586 |
Within samples | 83.989 | 0.160 | 0.001 * |
Total | 100 | ||
DAPC | |||
Among clusters | 12.171 | 0.122 | 0.001 * |
Among individuals within clusters | 3.979 | 0.045 | 0.028 |
Within individuals | 83.850 | 0.162 | 0.001 * |
Total | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palombo, N.E.; Carrizo García, C. Geographical Patterns of Genetic Variation in Locoto Chile (Capsicum pubescens) in the Americas Inferred by Genome-Wide Data Analysis. Plants 2022, 11, 2911. https://doi.org/10.3390/plants11212911
Palombo NE, Carrizo García C. Geographical Patterns of Genetic Variation in Locoto Chile (Capsicum pubescens) in the Americas Inferred by Genome-Wide Data Analysis. Plants. 2022; 11(21):2911. https://doi.org/10.3390/plants11212911
Chicago/Turabian StylePalombo, Nahuel E., and Carolina Carrizo García. 2022. "Geographical Patterns of Genetic Variation in Locoto Chile (Capsicum pubescens) in the Americas Inferred by Genome-Wide Data Analysis" Plants 11, no. 21: 2911. https://doi.org/10.3390/plants11212911
APA StylePalombo, N. E., & Carrizo García, C. (2022). Geographical Patterns of Genetic Variation in Locoto Chile (Capsicum pubescens) in the Americas Inferred by Genome-Wide Data Analysis. Plants, 11(21), 2911. https://doi.org/10.3390/plants11212911