Prospecting the Resilience of Several Spanish Ancient Varieties of Red Grape under Climate Change Scenarios
Abstract
:1. Introduction
2. Results
2.1. Plant Physiological Characteristics
2.2. Berry Composition
2.3. Antioxidant Capacity
3. Discussions
4. Materials and Methods
4.1. Biological Material and Growth Conditions
4.2. Experimental Design
4.3. Weather Conditions
4.4. Plant Measurements
4.5. Technological Maturity
4.6. Phenolic Maturity
4.7. Total Antioxidant Capacity
4.8. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC, Intergovernmental Panel on Climate Change. Available online: www.ipcc.ch (accessed on 14 August 2022).
- Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. Future Scenarios for Viticultural Zoning in Europe: Ensemble Projections and Uncertainties. Int. J. Biometeorol. 2013, 57, 909–925. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.M.; Vaz, M.; Escalona, J.; Egipto, R.; Lopes, C.; Medrano, H.; Chaves, M.M. Modern Viticulture in Southern Europe: Vulnerabilities and Strategies for Adaptation to Water Scarcity. Agric. Water Manag. 2016, 164, 5–18. [Google Scholar] [CrossRef]
- Venios, X.; Korkas, E.; Nisiotou, A.; Banilas, G. Grapevine Responses to Heat Stress and Global Warming. Plants 2020, 9, 1754. [Google Scholar] [CrossRef] [PubMed]
- Duchêne, E.; Schneider, C. Grapevine and Climatic Changes: A Glance at the Situation in Alsace. Agron. Sustain. Dev. 2005, 25, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Lüscher, J.; Kizildeniz, T.; Vučetić, V.; Dai, Z.; Luedeling, E.; van Leeuwen, C.; Gomès, E.; Pascual, I.; Irigoyen, J.J.; Morales, F.; et al. Sensitivity of Grapevine Phenology to Water Availability, Temperature and CO2 Concentration. Front. Environ. Sci. 2016, 4, 48. [Google Scholar] [CrossRef] [Green Version]
- Sadras, V.O.; Morán, M.A. Elevated Temperature Decouples Anthocyanins and Sugars in Berries of Shiraz and Cabernet Franc. Aust. J. Grape Wine Res. 2012, 18, 115–122. [Google Scholar] [CrossRef]
- Barnuud, N.; Zerihun, A.; Mpelasoka, F.; Gibberd, M.; Bates, B. Responses of Grape Berry Anthocyanin and Titratable Acidity to the Projected Climate Change across the Western Australian Wine Regions. Int. J. Biometeorol. 2014, 58, 1279–1293. [Google Scholar] [CrossRef] [Green Version]
- Sweetman, C.; Sadras, V.O.; Hancock, R.D.; Soole, K.L.; Ford, C.M. Metabolic Effects of Elevated Temperature on Organic Acid Degradation in Ripening Vitis vinifera Fruit. J. Exp. Bot. 2014, 65, 5975–5988. [Google Scholar] [CrossRef]
- Gouot, J.C.; Smith, J.P.; Holzapfel, B.P.; Walker, A.R.; Barril, C. Grape Berry Flavonoids: A Review of their Biochemical Responses to High and Extreme High Temperatures. J. Exp. Bot. 2019, 70, 397–423. [Google Scholar] [CrossRef]
- Drappier, J.; Thibon, C.; Rabot, A.; Geny-Denis, L. Relationship Between Wine Composition and Temperature: Impact on Bordeaux Wine Typicity in the Context of Global Warming-Review. Crit. Rev. Food Sci. 2019, 59, 14–30. [Google Scholar] [CrossRef]
- Torres, N.; Yu, R.; Martínez-Lüscher, J.; Girardello, C.; Kostaki, E.; Oberholster, A.; Kurtural, S.K. Shifts in the Phenolic Composition and Aromatic Profiles of Cabernet Sauvignon (Vitis vinifera L.) Wines are Driven by Different Irrigation Amounts in a Hot Climate. Food Chem. 2022, 371, 131163. [Google Scholar] [CrossRef] [PubMed]
- MAPA. Anuario de Estadística. Ministerio de Agricultura, Pesca y Alimentación (Spain). 2022. Available online: https://www.mapa.gob.es/es/ (accessed on 31 May 2022).
- Gambetta, G.A.; Herrera, J.C.; Dayer, S.; Feng, Q.; Hochberg, U.; Castellarin, S.D. The Physiology of Drought Stress in Grapevine: Towards an Integrative Definition of Drought Tolerance. J. Exp. Bot. 2020, 71, 4658–4676. [Google Scholar] [CrossRef] [PubMed]
- Intrigliolo, D.S.; Castel, J.R. Response of Grapevine cv. Tempranillo to Timing and Amount of Irrigation: Water Relations, Vine Growth, Yield and Berry and Wine Composition. Irrig. Sci. 2010, 28, 113–125. [Google Scholar] [CrossRef]
- Castellarin, S.D.; Matthews, M.A.; Di Gaspero, G.; Gambetta, G.A. Water Deficits Accelerate Ripening and Induce Changes in Gene Expression Regulating Flavonoid Biosynthesis in Grape Berries. Planta 2007, 227, 101–112. [Google Scholar] [CrossRef]
- Deluc, L.G.; Quilici, D.R.; Decendit, A.; Grimplet, J.; Wheatley, D.; Schlauch, A.; Mérillon, J.M.; Cushman, J.C.; Cramer, G.R. Water Deficit Alters Differentially Metabolic Pathways Affecting Important Flavour and Quality Traits in Grape Berries of Cabernet Sauvignon and Chardonnay. BMC Genom. 2009, 10, 212. [Google Scholar] [CrossRef] [Green Version]
- Hochberg, U.; Degu, A.; Cramer, G.R.; Rachmilevitch, S.; Fait, A. Cultivar Specific Metabolic Changes in Grapevines Berry Skins in Relation to Deficit Irrigation and Hydraulic Behavior. Plant Physiol. Biochem. 2015, 88, 42–52. [Google Scholar] [CrossRef]
- Savoi, S.; Wong, D.C.J.; Degu, A.; Herrera, J.C.; Bucchetti, B.; Peterlunger, E.; Fait, A.; Mattivi, F.; Castellarin, S.D. Multi-omics and Integrated Network Analyses Reveal New Insights into the Systems Relationships Between Metabolites, Structural Genes, and Transcriptional Regulators in Developing Grape Berries (Vitis vinifera L.) Exposed to Water Deficit. Front. Plant Sci. 2017, 8, 1124. [Google Scholar] [CrossRef] [Green Version]
- Alatzas, A.; Theocharis, S.; Miliordos, D.-E.; Leontaridou, K.; Kanellis, A.K.; Kotseridis, Y.; Hatzopoulos, P.; Koundouras, S. The Effect of Water Deficit on Two Greek Vitis vinifera L. Cultivars: Physiology, Grape composition, and Gene Expression during Berry Development. Plants 2021, 10, 1947. [Google Scholar] [CrossRef]
- Herrera, J.C.; Bucchetti, B.; Sabbatini, P.; Comuzzo, P.; Zulini, L.; Vecchione, A.; Peterlunger, E.; Castellarin, S.D. Effect of Water Deficit and Severe Shoot Trimming on the Composition of Vitis vinifera L. Merlot Grapes and Wines. Aust. J. Grape Wine Res. 2015, 21, 254–265. [Google Scholar] [CrossRef]
- Cáceres-Mella, A.; Ribalta-Pizarro, C.; Villalobos-González, L.; Cuneo, I.F.; Pastenes, C. Controlled Water Deficit Modifies the Phenolic Composition and Sensory Properties in Cabernet Sauvignon Wines. Sci. Hortic.-Amsterdam 2018, 237, 105–111. [Google Scholar] [CrossRef]
- Bonada, M.; Jeffery, D.W.; Petrie, P.R.; Moran, M.A.; Sadras, V.O. Impact of Elevated Temperature and Water Deficit on the Chemical and Sensory Profiles of Barossa Shiraz Grapes and Wines. Aust. J. Grape Wine Res. 2015, 21, 240–253. [Google Scholar] [CrossRef]
- Torres, N.; Hilbert, G.; Luquin, J.; Goicoechea, N.; Antolín, M.C. Flavonoid and Amino Acid Profiling on Vitis vinifera L. cv Tempranillo subjected to Deficit Irrigation Under Elevated Temperatures. J. Food Compos. Anal. 2017, 62, 51–62. [Google Scholar] [CrossRef]
- Nicotra, A.B.; Atkin, O.K.; Bonser, S.P.; Davidson, A.M.; Finnegan, E.J.; Mathesius, U.; Poot, P.; Purugganan, M.D.; Richards, C.L.; Valladares, F. Plant Phenotypic Plasticity in a Changing Climate. Trends Plant Sci. 2010, 15, 684–692. [Google Scholar] [CrossRef] [PubMed]
- Wolkovich, E.M.; García de Cortázar-Atauri, I.; Morales-Castilla, I.; Nicholas, K.A.; Lacombe, T. From Pinot to Xinomavro in the World’s Future Wine-growing Regions. Nat. Clim. Chang. 2018, 8, 29–37. [Google Scholar] [CrossRef]
- Muñoz-Organero, G.; Cabello, F.; Serrano, M.J.; Cretazzo, E.; Pérez, J.A.; Gogorcena, Y.; Giménez, R.; Andreu, L.J.; Uson, J.J.; Mené, R.; et al. Nuevas Prospecciones y Recuperación de Variedades Antiguas de Vid en España. In 30a Reunión del Grupo de Trabajo de Experimentación en Viticultura y Enología; Ministerio de Medio Ambiente Medio Rural y Marino: Zalla, Spain, 2016; pp. 25–32. ISBN 978-84-491-1450-2. [Google Scholar]
- Balda, P.; Ibañez, J.; Sancha, J.C.; de Toda, M.F. Characterization and Identification of Minority Red Grape Varieties Recovered in Rioja, Spain. Am. J. Enol. Vitic. 2014, 65, 148–162. [Google Scholar] [CrossRef]
- Urrestarazu, J.; Miranda, C.; Santesteban, L.G.; Royo, J.B. Recovery and Identification of Grapevine Varieties Cultivated in Old Vineyards from Navarre (Northeastern Spain). Sci. Hortic.-Amsterdam 2015, 191, 65–73. [Google Scholar] [CrossRef]
- García, J.; Peiró, R.; Martínez-Gil, F.; Soler, J.X.; Jiménez, C.; Yuste, A.; Xirivella, C.; Gisbert, C. Recovering Old Grapevine Varieties. Vitis 2020, 59, 101–103. [Google Scholar] [CrossRef]
- Jiménez, C.; Peiró, R.; Yuste, A.; García, J.; Martínez-Gil, F.; Gisbert, C. Looking for Old Grapevine Varieties. Vitis 2019, 58, 59–60. [Google Scholar] [CrossRef]
- Cibriáin, F.; Jimeno, K.; Sagüés, A.; Rodríguez, M.; Abad, J.; Martínez, M.C.; Santiago, J.L.; Gogorcena, Y. TempraNA: Tempranillos con Matrícula. Rescate de la Variabilidad Existente en el Tempranillo Antiguo en el Área de Cultivo de Navarra. Navar. Agrar. 2018, 229, 12–20. [Google Scholar]
- Frioni, T.; Bertoloni, G.; Squeri, C.; Garavani, A.; Ronney, L.; Poni, S.; Gatti, M. Biodiversity of Local Vitis vinifera L. Germplasm: A Powerful Tool Toward Adaptation to Global Warming and Desired Grape Composition. Front. Plant Sci. 2020, 11, 608. [Google Scholar] [CrossRef]
- Florez-Sarasa, I.; Clemente-Moreno, M.R.; Cifré, J.; Capó, M.; Llompart, M.; Fernie, A.R.; Bota, J. Differences in Metabolic and Physiological Responses Between Local and Widespread Grapevine Cultivars Under Water Deficit Stress. Agronomy 2020, 10, 1052. [Google Scholar] [CrossRef]
- Antolín, M.C.; Toledo, M.; Pascual, I.; Irigoyen, J.J.; Goicoechea, N. The Exploitation of Local Vitis vinifera L. Biodiversity as a Valuable Tool to Cope with Climate Change Maintaining Berry Quality. Plants 2021, 10, 71. [Google Scholar] [CrossRef] [PubMed]
- Goicoechea, N.; Jiménez, L.; Prieto, E.; Gogorcena, Y.; Pascual, I.; Irigoyen, J.J.; Antolín, M.C. Assessment of Nutritional and Quality Properties of Leaves and Musts in Three Local Spanish Grapevine Varieties Undergoing Controlled Climate Change Scenarios. Plants 2021, 10, 1198. [Google Scholar] [CrossRef]
- Droulia, F.; Charalampopoulos, I. Future Climate Change Impacts on European Viticulture: A Review on Recent Scientific Advances. Atmosphere 2021, 12, 495. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Zheng, W.; de Toda, M.F. Current Viticultural Techniques to Mitigate the Effects of Global Warming on Grape and Wine quality: A Comprehensive Review. Int. Food Res. 2021, 139, 109946. [Google Scholar] [CrossRef]
- Romero, P.; Navarro, J.M.; Orda, P.B. Towards a Sustainable Viticulture: The Combination of Deficit Irrigation Strategies and Agroecological Practices in Mediterranean Vineyards. A Review and Update. Agric. Water Manag. 2022, 259, 107216. [Google Scholar] [CrossRef]
- Sadras, V.O.; Montoro, A.; Moran, M.A.; Aphalo, P.J. Elevated Temperature Altered the Reaction Norms of Stomatal Conductance in Field-Grown Grapevine. Agric. For. Meteorol. 2012, 165, 35–42. [Google Scholar] [CrossRef]
- Giorgi, E.G.; Sadras, V.O.; Keller, M.; Peña, J.P. Interactive Effects of High Temperature and Water Deficit on Malbec Grapevines. Aust. J. Grape Wine Res. 2019, 25, 345–356. [Google Scholar] [CrossRef]
- Webb, L.B.; Whetton, P.H.; Bhend, J.; Darbyshire, R.; Briggs, P.R.; Barlow, E.W.R. Earlier Wine-Grape Ripening Driven by Climatic Warming and Drying and Management Practices. Nat. Clim. Chang. 2012, 2, 259–264. [Google Scholar] [CrossRef]
- Ramos, M.C. Projection of Phenology Response to Climate Change in Rainfed Vineyards in North-East Spain. Agric. For. Meteorol. 2017, 247, 104–115. [Google Scholar] [CrossRef]
- Biasi, R.; Brunori, E.; Ferrara, C.; Salvati, L. Assessing Impacts of Climate Change on Phenology and Quality Traits of Vitis vinifera L.: The Contribution of Local Knowledge. Plants 2019, 8, 121. [Google Scholar] [CrossRef] [PubMed]
- Intrigliolo, D.S.; Pérez, D.; Risco, D.; Yeves, A.; Castel, J.R. Yield Components and Grape Composition Responses to Seasonal Water Deficits in Tempranillo Grapevines. Irrig. Sci. 2012, 30, 339–349. [Google Scholar] [CrossRef]
- Allegro, G.; Pastore, C.; Valentini, G.; Filippetti, I. The Evolution of Phenolic Compounds in Vitis vinifera L. Red Berries During Ripening: Analysis and Role on Wine Sensory—A Review. Agronomy 2021, 11, 999. [Google Scholar] [CrossRef]
- Lecourieux, F.; Kappel, C.; Pieri, P.; Charon, J.; Pillet, J.; Hilbert, G.; Renaud, C.; Gomès, E.; Delrot, S.; Lecourieux, D. Dissecting the Biochemical and Transcriptomic Effects of a Locally Applied Heat Treatment on Developing Cabernet Sauvignon Grape Berries. Front. Plant Sci. 2017, 8, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Álvarez, E.P.; Intrigliolo Molina, D.S.; Vivaldi, G.A.; García-Esparza, M.J.; Lizama, V.; Álvarez, I. Effects of the Irrigation Regimes on Grapevine cv. Bobal in a Mediterranean Climate: I. Water Relations, Vine Performance and Grape Composition. Agric. Water Manag. 2021, 248, 106772. [Google Scholar] [CrossRef]
- Niculcea, M.; Martínez-Lapuente, L.; Guadalupe, Z.; Sánchez-Díaz, M.; Ayestarán, B.; Antolín, M.C. Characterization of Phenolic Composition of Vitis vinifera L. ‘Tempranillo’ and ‘Graciano’ Subjected to Deficit Irrigation during Berry Development. Vitis 2015, 54, 9–16. [Google Scholar] [CrossRef]
- Mori, K.; Goto-Yamamoto, N.; Kitayama, M.; Hashizume, K. Loss of Anthocyanins in Red-Wine Grape Under High Temperature. J. Exp. Bot. 2007, 58, 1935–1945. [Google Scholar] [CrossRef]
- Movahed, N.; Pastore, C.; Cellini, A.; Allegro, G.; Valentini, G.; Zenoni, S.; Cavallini, E.; D’Incà, E.; Tornielli, G.B.; Filippetti, I. The Grapevine VviPrx31 Peroxidase as a Candidate Gene Involved in Anthocyanin Degradation in Ripening Berries Under High Temperature. J. Plant Res. 2016, 129, 513–526. [Google Scholar] [CrossRef]
- Unterkofler, J.; Muhlack, R.A.; Jeffery, D.W. Processes and Purposes of Extraction of Grape Components During Winemaking: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2020, 104, 4737–4755. [Google Scholar] [CrossRef]
- Nadal, M. Phenolic Maturity in Red Grapes. In Methodologies and Results in Grapevine Research; Delrot, S., Medrano-Gil, H., Or, E., Bavaresco, L., Grando, S., Eds.; Springer Science+Business Media, B.V.: Dordrecht, The Netherlands, 2010; pp. 389–409. ISBN 978-90-481-9283-0. [Google Scholar]
- Giovinazzo, G.; Grieco, F. Functional Properties of Grape and Wine Polyphenols. Plant Foods Hum. Nutr. 2015, 70, 454–462. [Google Scholar] [CrossRef]
- Torres, N.; Goicoechea, N.; Morales, F.; Antolín, M.C. Berry Quality and Antioxidant Properties in Vitis vinifera cv. Tempranillo as Affected by Clonal Variability, Mycorrhizal Inoculation and Temperature. Crop Pasture Sci. 2016, 67, 961–977. [Google Scholar] [CrossRef]
- Pérez-Álvarez, E.P.; Intrigliolo, D.S.; Almajano, M.P.; Rubio-Bretón, P.; Garde-Cerdán, T. Effects of Water Deficit Irrigation on Phenolic Composition and Antioxidant Activity of Monastrell Grapes Under Semiarid Conditions. Antioxidants 2021, 10, 1301. [Google Scholar] [CrossRef]
- Cibriáin, F.; Sagüés, A.; Marquínez, M.; Caminero, L.; Arrondo, C.; Oria, I.; Subirats, B.; Aguirrezábal, F. Cepas Singulares de Navarra. Navar. Agrar. 2013, 198, 38–48. [Google Scholar]
- Mullins, M.G. Test-Plants for Investigations of the Physiology of Fruiting in Vitis vinifera L. Nature 1966, 209, 419–420. [Google Scholar] [CrossRef]
- Coombe, B.G. Adoption of a System for Identifying Grapevine Growth Stages. Aust. J. Grape Wine Res. 1995, 1, 104–110. [Google Scholar] [CrossRef]
- Kliewer, W.M.; Dokoozlian, N.K. Leaf Area/Crop Weight Ratios of Grapevines: Influence on Fruit Composition and Wine Quality. Am. J. Enol. Vitic. 2005, 56, 170–181. [Google Scholar]
- Morales, F.; Pascual, I.; Sánchez-Díaz, M.; Aguirreolea, J.; Irigoyen, J.J.; Goicoechea, N.; Antolín, M.C.; Oyarzun, M.; Urdiain, A. Methodological Advances: Using Greenhouses to Simulate Climate Change Scenarios. Plant Sci. 2014, 226, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Rawson, H.M.; Gifford, R.M.; Condon, B.N. Temperature Gradient Chambers for Research on Global Environment Change. I. Portable Chambers for Research on Short-Stature Vegetation. Plant Cell Environ. 1995, 18, 1048–1054. [Google Scholar] [CrossRef]
- Ollat, N.; Gény, L.; Soyer, J.P. Les Boutures Fructifères de Vigne: Validation d’un Modèle d’Étude de la Physiologie de la Vigne. I. Principales Caractéristiques de l’Appareil Végétatif. J. Int. Sci. Vigne Vin 1998, 32, 1–9. [Google Scholar] [CrossRef]
- AEMET, Agencia Estatal de Meteorología (Spain). Available online: https://www.aemet.es/es (accessed on 14 August 2022).
- Hayman, P.; Longbottom, M.; McCarthy, M.; Thomas, D. Managing Vines during Heatwaves; Wine Australia: Adelaide, Australia, 2012; pp. 1–8. [Google Scholar]
- OIV. Compendium of International Methods of Analysis of Wines and Musts; International Organization of Vine and Wine: Paris, France, 2018; Volume I, ISBN 979-10-91799-80-5. [Google Scholar]
- Saint-Cricq, N.; Vivas, N.; Glories, Y. Maturité Phénolique: Définition et Contrôle. Rev. Fr. d’Oenol. 1998, 173, 22–25. [Google Scholar]
- Ribéreau-Gayon, J.; Stonestreet, E. Le Dosage des Anthocyanes dans le Vin Rouge. Bull. Soc. Chim. Fr. 1965, 9, 2649–2652. [Google Scholar] [PubMed]
- EEC (European Union Commission Regulation) No 2676/90. Community Methods for the Analysis of Wines. Off. J. Eur. Commun. 1990, 272, 1–92. [Google Scholar]
- Glories, Y. La Couleur des Vins Rouges. 2e partie: Mesure, Origine et Interprétation. OENO One 1984, 18, 253–271. [Google Scholar] [CrossRef]
- Kedare, S.; Singh, R. Genesis and Development of DPPH Method of Antioxidant Assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef] [PubMed]
Clone | Maturation Cycle | Colour | Code | |
---|---|---|---|---|
Tempranillo | T24 | Short | Red | TEM |
Tinto Velasco | T73 | Medium | Red | TV |
Graciano | T72 | Medium | Red | GRA |
Grand Noir | T48 | Medium | Teinturier | GNO |
TEM | TEM | TV | GRA | GNO | |
---|---|---|---|---|---|
Phenology | Fruit set–veraison (d) | 53 c | 58 b | 62 a | 55 c |
Veraison–maturity (d) | 51 a | 52 a | 45 b | 53 a | |
Plant growth | Leaf area (m2 plant−1) | 0.32 b | 0.67 a | 0.40 b | 0.37 b |
Leaf size (cm2 leaf−1) | 202.8 b | 363.4 a | 269.5 b | 215.3 b | |
Bunch traits | Bunch mass (g FM bunch−1) | 182.4 a | 108.5 b | 74.9 c | 95.0 bc |
Bunch compactness (g cm−2) | 0.68 b | 1.01 a | 0.64 b | 0.86 a | |
Berries (number bunch−1) | 158 a | 155 a | 90 b | 92 b | |
Berry traits | Berry mass (g FM berry−1) | 1.12 a | 0.57 c | 0.69 c | 0.94 b |
Seeds (number berry−1) | 2 a | 1 b | 1 b | 1 b | |
Relative skin mass (% berry FM) | 26.4 a | 27.8 a | 26.9 a | 25.5 a 1 |
TEM | ||||||||
Treatments | ANOVA | |||||||
ATFI | ATDI | ETFI | ETDI | T | I | T × I | ||
Phenology | Fruit set–veraison (d) | 55 a | 52 a | 52 a | 52 a | ns | ns | ns |
Veraison–maturity (d) | 44 a | 51 a | 56 a | 55 a | ns | ns | ns | |
Plant growth | Leaf area (m2 plant−1) | 0.40 a | 0.28 a | 0.35 a | 0.27 a | ns | ns | ns |
Leaf size (cm2 leaf−1) | 270.4 a | 186.0 a | 191.5 a | 163.4 a | ns | ns | ns | |
Bunch traits | Bunch mass (g FM bunch−1) | 204.6 a | 169.5 a | 190.4 a | 165.1 a | ns | ns | ns |
Bunch compactness (g cm−2) | 0.73 a | 0.77 a | 0.63 a | 0.61 a | ns | ns | ns | |
Berries (no bunch−1) | 175 a | 127 a | 168 a | 162 a | ns | ns | ns | |
Berry traits | Berry mass (g FM berry−1) | 1.11 a | 1.26 a | 1.11 a | 1.00 a | ns | ns | ns |
Seeds (no berry−1) | 2 a | 2 a | 2 a | 2 a | ns | ns | ns | |
Relative skin mass (% berry FM) | 24.7 b | 21.0 b | 25.9 ab | 33.9 a | * | ns | ns | |
TV | ||||||||
Treatments | ANOVA | |||||||
ATFI | ATDI | ETFI | ETDI | T | I | T × I | ||
Phenology | Fruit set–veraison (d) | 58 a | 58 a | 57 a | 57 a | ns | ns | ns |
Veraison–maturity (d) | 57 a | 51 ab | 51 ab | 47 b | * | * | ns | |
Plant growth | Leaf area (m2 plant−1) | 0.69 a | 0.61 ab | 0.56 ab | 0.44 b | * | ns | ns |
Leaf size (cm2 leaf−1) | 416.5 a | 342.8 a | 399.7 a | 312.2 a | ns | ns | ns | |
Bunch traits | Bunch mass (g FM bunch−1) | 135.2 a | 144.9 a | 60.1 b | 93.8 ab | ** | ns | ns |
Bunch compactness (g cm−2) | 0.68 b | 1.20 a | 0.69 b | 1.49 a | ns | *** | ns | |
Berries (no bunch−1) | 140 a | 193 a | 144 a | 142 a | ns | ns | ns | |
Berry traits | Berry mass (g FM berry−1) | 0.71 a | 0.57 a | 0.49 a | 0.51 a | ns | ns | ns |
Seeds (no berry−1) | 1 a | 1 a | 1 a | 1 a | ns | ns | ns | |
Relative skin mass (% berry FM) | 31.2 a | 23.3 a | 29.5 a | 27.2 a | ns | ns | ns | |
GRA | ||||||||
Treatments | ANOVA | |||||||
ATFI | ATDI | ETFI | ETDI | T | I | T × I | ||
Phenology | Fruit set–veraison (d) | 63 a | 60 a | 63 a | 61 a | ns | ns | ns |
Veraison–maturity (d) | 45 a | 45 a | 43 a | 46 a | ns | ns | ns | |
Plant growth | Leaf area (m2 plant−1) | 0.44 ab | 0.37 ab | 0.52 a | 0.29 b | ns | * | ns |
Leaf size (cm2 leaf−1) | 315.4 a | 224.5 a | 317.7 a | 220.2 a | ns | ns | ns | |
Bunch traits | Bunch mass (g FM bunch−1) | 90.6 a | 84.9 a | 81.1 a | 43.1 b | * | ns | ns |
Bunch compactness (g cm−2) | 0.62 a | 0.68 a | 0.66 a | 0.58 a | ns | ns | ns | |
Berries (no bunch−1) | 102 a | 98 a | 95 ab | 65 b | * | ns | ns | |
Berry traits | Berry mass (g FM berry−1) | 0.82 a | 0.69 a | 0.76 a | 0.49 b | * | ** | ns |
Seeds (no berry−1) | 1 a | 1 a | 1 a | 1 a | ns | ns | ns | |
Relative skin mass (% berry FM) | 26.9 a | 25.3 a | 26.9 a | 28.3 a | ns | ns | ns | |
GNO | ||||||||
Treatments | ANOVA | |||||||
ATFI | ATDI | ETFI | ETDI | T | I | T × I | ||
Phenology | Fruit set–veraison (d) | 55 a | 56 a | 54 a | 54 a | ns | ns | ns |
Veraison–maturity (d) | 52 a | 51 a | 56 a | 53 a | ns | ns | ns | |
Plant growth | Leaf area (m2 plant−1) | 0.47 ab | 0.24 b | 0.53 a | 0.26 b | ns | ** | ns |
Leaf size (cm2 leaf−1) | 274.3 a | 146.4 b | 274.1 a | 166.3 b | ns | ** | ns | |
Bunch traits | Bunch mass (g FM bunch−1) | 97.05 a | 96.5 a | 86.1 a | 100.2 a | ns | ns | ns |
Bunch compactness (g cm−2) | 0.77 a | 0.91 a | 0.88 a | 0.87 a | ns | ns | ns | |
Berries (no bunch−1) | 103 a | 103 a | 66 b | 95 ab | * | ns | ns | |
Berry traits | Berry mass (g FM berry−1) | 0.89 a | 0.84 a | 1.09 a | 0.96 a | ns | ns | ns |
Seeds (no berry−1) | 1 a | 1 a | 1 a | 1 a | ns | ns | ns | |
Relative skin mass (% berry FM) | 29.9 a | 24.9 ab | 24.0 ab | 23.1 b | ns | ns | ns 1 |
Main Effects | TSS (°Brix) | Must pH | Titratable Acidity (g L−1) | Color Density (AU) | Tonality Index | TPI (AU) | Total Anthocyanins (mg L−1) | Antioxidant Capacity (mg L−1) |
---|---|---|---|---|---|---|---|---|
Variety (V) | ||||||||
TEM | 20.4 a | 4.09 a | 5.40 a | 3.56 c | 0.56 b | 33.1 c | 375.9 c | 22.6 ab |
TV | 19.9 b | 3.82 c | 5.93 a | 3.87 c | 0.68 a | 32.6 c | 285.0 d | 21.5 ab |
GRA | 21.2 ab | 3.70 c | 5.68 a | 7.78 a | 0.65 a | 44.9 b | 527.1 b | 20.9 b |
GNO | 21.0 ab | 3.96 b | 4.24 b | 6.86 b | 0.57 b | 53.0 a | 629.4 a | 23.9 a |
Temperature (T) | ||||||||
AT | 21.6 a | 3.78 b | 5.69 a | 5.61 a | 0.59 b | 39.8 a | 488.6 a | 21.8 a |
ET | 20.7 a | 4.00 a | 4.93 b | 5.42 a | 0.64 a | 42.0 a | 420.2 b | 22.6 a |
Irrigation (I) | ||||||||
FI | 20.4 b | 3.83 b | 5.32 a | 5.51 a | 0.62 a | 40.5 a | 457.2 a | 21.6 a |
DI | 21.9 a | 3.96 a | 5.31 a | 5.53 a | 0.61 a | 41.3 a | 451.5 a | 22.8 a |
ANOVA | ||||||||
Variety (V) | * | *** | *** | *** | *** | *** | *** | ** |
Temperature (T) | ns | *** | *** | ns | ** | ns | ** | ns |
Irrigation (I) | * | *** | ns | ns | ns | ns | ns | ns |
V × T | ns | ns | ns | ** | ns | ** | *** | * |
V × I | ns | ns | ** | ns | * | * | ** | ns |
T × I | ns | ns | ns | ns | ns | ns | ns | ns |
V × T × I | ns | ns | *** | ns | ns | ns | ns | ns 1 |
Month | Year | Mean Daily Air Temperature (°C) | Minimum Daily Air Temperature (°C) | Maximum Daily Air Temperature (°C) | Number of Heat Days (>35 °C) (AT) | Number of Heat Days (>35 °C) (ET) |
---|---|---|---|---|---|---|
June | 2021 | 18.0 | 8.0 | 33.0 | 0 | 0 |
2001–2021 | 19.6 | 7.5 | 35.4 | |||
July | 2021 | 20.0 | 9.0 | 41.0 | 5 | 9 |
2001–2021 | 21.5 | 10.0 | 37.0 | |||
August | 2021 | 20.0 | 9.0 | 41.0 | 5 | 10 |
2001–2021 | 21.7 | 9.9 | 37.3 | |||
September | 2021 | 19.0 | 8.0 | 35.0 | 1 | 5 |
2001–2021 | 18.6 | 6.0 | 32.6 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antolín, M.C.; Salinas, E.; Fernández, A.; Gogorcena, Y.; Pascual, I.; Irigoyen, J.J.; Goicoechea, N. Prospecting the Resilience of Several Spanish Ancient Varieties of Red Grape under Climate Change Scenarios. Plants 2022, 11, 2929. https://doi.org/10.3390/plants11212929
Antolín MC, Salinas E, Fernández A, Gogorcena Y, Pascual I, Irigoyen JJ, Goicoechea N. Prospecting the Resilience of Several Spanish Ancient Varieties of Red Grape under Climate Change Scenarios. Plants. 2022; 11(21):2929. https://doi.org/10.3390/plants11212929
Chicago/Turabian StyleAntolín, María Carmen, Eduardo Salinas, Ana Fernández, Yolanda Gogorcena, Inmaculada Pascual, Juan José Irigoyen, and Nieves Goicoechea. 2022. "Prospecting the Resilience of Several Spanish Ancient Varieties of Red Grape under Climate Change Scenarios" Plants 11, no. 21: 2929. https://doi.org/10.3390/plants11212929
APA StyleAntolín, M. C., Salinas, E., Fernández, A., Gogorcena, Y., Pascual, I., Irigoyen, J. J., & Goicoechea, N. (2022). Prospecting the Resilience of Several Spanish Ancient Varieties of Red Grape under Climate Change Scenarios. Plants, 11(21), 2929. https://doi.org/10.3390/plants11212929