Dissection of Genetic Effects, Heterosis, and Inbreeding Depression for Phytochemical Traits in Coriander
Abstract
:1. Introduction
2. Results and Discussion
2.1. Combined Analysis of Variance for Traits under Water Treatments
2.2. Effect of Water Deficit Stress on Measured Traits
2.2.1. Effect of Water Deficit Stress on Seed Yield
2.2.2. Effect of Water Deficit Stress on Essential Oil Content and Essential Oil Yield
2.2.3. Effect of Water Deficit stress on Fatty Oil Content and Yield
2.3. Nature of Gene Action
2.4. Mean Performance, Heterosis, and Inbreeding Depression
2.4.1. Seed Yield
2.4.2. Essential Oil Content
2.4.3. Fatty Oil Content
2.4.4. Essential Oil Yield and Fatty Oil Yield
3. Materials and Methods
3.1. Plant Material and Growth Conditions
3.2. Traits Measurements
3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Neffati, M.; Marzouk, B. Changes in essential oil and fatty acid composition in coriander (Coriandrum sativum L.) leaves under saline conditions. Ind. Crop. Prod. 2008, 28, 137–142. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Khodadadi, M.; Sharifi-Zagheh, A. Modeling the final fruit yield of coriander (Coriandrum sativum L.) using multiple linear regression and artificial neural network models. Arch. Agron. Soil Sci. 2022, 68, 1398–1412. [Google Scholar] [CrossRef]
- Msaada, K.; Hosni, K.; Taarit, M.B.; Chahed, T.; Hammami, M.; Marzouk, B. Changes in fatty acid composition of coriander (Coriandrum sativum L.) fruit during maturation. Ind. Crop. Prod. 2009, 29, 269–274. [Google Scholar] [CrossRef]
- Ramadan, M.; Mörsel, J.-T. Oil composition of coriander (Coriandrum sativum L.) fruit-seeds. Eur. Food Res. Technol. 2002, 215, 204–209. [Google Scholar] [CrossRef]
- Ramadan, M.; Mörsel, J.-T. Screening of the antiradical action of vegetable oils. J. Food Compos. Anal. 2006, 19, 838–842. [Google Scholar] [CrossRef]
- Sriti, J.; Talou, T.; Wannes, W.A.; Cerny, M.; Marzouk, B. Essential oil, fatty acid and sterol composition of Tunisian coriander fruit different parts. J. Sci. Food. Agric. 2009, 89, 1659–1664. [Google Scholar] [CrossRef]
- Murphy, D.J. Engineering oil production in rapeseed and other oil crops. Trends Biotechnol. 1996, 14, 206–213. [Google Scholar] [CrossRef]
- Murphy, D.J.; Richards, D.; Taylor, R.; Capdevielle, J.; Guillemot, J.C.; Grison, R.; Fairbairn, D.; Bowra, S. Manipulation of seed oil content to produce industrial crops. Ind. Crops Prod. 1994, 3, 17–27. [Google Scholar] [CrossRef]
- Khodadadi, M.; Dehghani, H.; Jalali-Javaran, M.; Christopher, J.T. Fruit yield, fatty and essential oils content genetics in coriander. Ind. Crop. Prod. 2016, 94, 72–81. [Google Scholar] [CrossRef]
- Donega, M.A.; Mello, S.C.; Moraes, R.M.; Cantrell, C.L. Nutrient uptake, biomass yield and quantitative analysis of aliphatic aldehydes in cilantro plants. Ind. Crop. Prod. 2013, 44, 127–131. [Google Scholar] [CrossRef]
- Wong, P.Y.; Kitts, D.D. Studies on the dual antioxidant and antibacterial properties of parsley (Petroselinum crispum) and cilantro (Coriandrum sativum) extracts. Food Chem. 2006, 97, 505–515. [Google Scholar] [CrossRef]
- Matasyoh, J.; Maiyo, Z.; Ngure, R.; Chepkorir, R. Chemical composition and antimicrobial activity of the essential oil of Coriandrum sativum. Food Chem. 2009, 113, 526–529. [Google Scholar] [CrossRef]
- Neffati, M.; Marzouk, B. Salinity impact on growth, essential oil content and composition of coriander (Coriandrum sativum L.) stems and leaves. J. Essent. Oil Bear. Plants 2010, 22, 29–34. [Google Scholar] [CrossRef]
- Msaada, K.; Hosni, K.; Taarit, M.B.; Chahed, T.; Kchouk, M.E.; Marzouk, B. Changes on essential oil composition of coriander (Coriandrum sativum L.) fruits during three stages of maturity. Food Chem. 2007, 102, 1131–1134. [Google Scholar] [CrossRef]
- Msaada, K.; Taarit, M.B.; Hosni, K.; Hammami, M.; Marzouk, B. Regional and maturational effects on essential oils yields and composition of coriander (Coriandrum sativum L.) fruits. Sci. Hortic. 2009, 122, 116–124. [Google Scholar] [CrossRef]
- Neffati, M.; Sriti, J.; Hamdaoui, G.; Kchouk, M.E.; Marzouk, B. Salinity impact on fruit yield, essential oil composition and antioxidant activities of Coriandrum sativum fruit extracts. Food Chem. 2011, 124, 221–225. [Google Scholar] [CrossRef]
- Lubbe, A.; Verpoorte, R. Cultivation of medicinal and aromatic plants for specialty industrial materials. Ind. Crop. Prod. 2011, 34, 785–801. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods-a review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Lo Cantore, P.; Iacobellis, N.S.; De Marco, A.; Capasso, F.; Senatore, F. Antibacterial activity of Coriandrum sativum L. and Foeniculum vulgare Miller var. vulgare (Miller) essential oils. J. Agric. Food Chem. 2004, 52, 7862–7866. [Google Scholar] [CrossRef]
- Wangensteen, H.; Samuelsen, A.B.; Malterud, K.E. Antioxidant activity in extracts from coriander. Food Chem. 2004, 88, 293–297. [Google Scholar] [CrossRef]
- Gallagher, A.; Flatt, P.; Duffy, G.; Abdel-Wahab, Y. The effects of traditional antidiabetic plants on in vitro glucose diffusion. Nut. Res. 2003, 23, 413–424. [Google Scholar] [CrossRef]
- Chithra, V.; Leelamma, S. Coriandrum sativum—Effect on lipid metabolism in 1, 2-dimethyl hydrazine induced colon cancer. J. Ethnopharmacol. 2000, 71, 457–463. [Google Scholar] [CrossRef]
- Begnami, A.; Duarte, M.; Furletti, V.; Rehder, V. Antimicrobial potential of Coriandrum sativum L. against different Candida species in vitro. Food Chem. 2010, 118, 74–77. [Google Scholar] [CrossRef]
- Charles, D.J.; Joly, R.J.; Simon, J.E. Effects of osmotic stress on the essential oil content and composition of peppermint. Phytochemistry 1990, 29, 2837–2840. [Google Scholar] [CrossRef]
- Petropoulos, S.; Daferera, D.; Polissiou, M.; Passam, H. The effect of water deficit stress on the growth, yield and composition of essential oils of parsley. Sci. Hortic. 2008, 115, 393–397. [Google Scholar] [CrossRef]
- Alinian, S.; Razmjoo, J.; Zeinali, H. Flavonoids, anthocynins, phenolics and essential oil produced in cumin (Cuminum cyminum L.) accessions under different irrigation regimes. Ind. Crop. Prod. 2016, 81, 49–55. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Dehghani, H.; Khodadadi, M. Quantitative genetic analysis of water deficit tolerance in coriander through physiological traits. Plant Genet. Resour. 2019, 17, 255–264. [Google Scholar] [CrossRef]
- Hanifei, M.; Mehravi, S.; Khodadadi, M.; Severn-Ellis, A.A.; Edwards, D.; Batley, J. Detection of epistasis for seed and some phytochemical traits in coriander under different irrigation regimes. Agronomy 2021, 11, 1891. [Google Scholar] [CrossRef]
- Jaafar, H.Z.; Ibrahim, M.H.; Fakri, N.F.M. Impact of soil field water capacity on secondary metabolites, phenylalanine ammonia-lyase (PAL), maliondialdehyde (MDA) and photosynthetic responses of Malaysian Kacip Fatimah (Labisia pumila Benth). Molecules 2012, 17, 7305–7322. [Google Scholar] [CrossRef] [Green Version]
- Sharifi-Zagheh, A.; Gholizadeh, A.; Sorkhilalehloo, B.; Khodadadi, M. Identification of suitable parents for essential oil yield in coriander half-sib families under different environmental conditions. Int. J. Hortic. Sci. Technol. 2022, 9, 201–212. [Google Scholar]
- Bettaieb, I.; Zakhama, N.; Wannes, W.A.; Kchouk, M.; Marzouk, B. Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Sci. Hortic. 2009, 120, 271–275. [Google Scholar] [CrossRef]
- Bettaieb, I.; Knioua, S.; Hamrouni, I.; Limam, F.; Marzouk, B. Water-deficit impact on fatty acid and essential oil composition and antioxidant activities of cumin (Cuminum cyminum L.) aerial parts. J. Agric. Food Chem. 2011, 59, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Hamrouni, I.; Salah, H.B.; Marzouk, B. Effects of water-deficit on lipids of safflower aerial parts. Phytochemistry 2001, 58, 277–280. [Google Scholar] [CrossRef]
- Griffing, B. A generalised treatment of the use of diallel crosses in quantitative inheritance. Heredity 1956, 10, 31–50. [Google Scholar] [CrossRef] [Green Version]
- Blank, A.F.; Santa Rosa, Y.R.; de Carvalho Filho, J.L.S.; dos Santos, C.A.; de Fátima Arrigoni-Blank, M.; dos Santos Niculau, E.; Alves, P.B. A diallel study of yield components and essential oil constituents in basil (Ocimum basilicum L.). Ind. Crop. Prod. 2012, 38, 93–98. [Google Scholar] [CrossRef]
- El-Gabry, M.; Solieman, T.; Abido, A. Combining ability and heritability of some tomato (Solanum lycopersicum L.) cultivars. Sci. Hortic. 2014, 167, 153–157. [Google Scholar] [CrossRef]
- Gaballah, M.M.; El-Agoury, R.Y.; Sakr, S.M.; Zidan, A.A. Genetic behavior of the physiological, nutrient, and yield traits of rice under deficit irrigation conditions. SABRAO J. Breed. Genet. 2021, 53, 139–156. [Google Scholar]
- Gholizadeh, A.; Dehghani, H.; Khodadadi, M.; Gulick, P.J. Genetic combining ability of coriander genotypes for agronomic and phytochemical traits in response to contrasting irrigation regimes. PLoS ONE 2018, 13, e0199630. [Google Scholar] [CrossRef] [Green Version]
- Kaushik, P.; Plazas, M.; Prohens, J.; Vilanova, S.; Gramazio, P. Diallel genetic analysis for multiple traits in eggplant and assessment of genetic distances for predicting hybrids performance. PLoS ONE 2018, 13, e0199943. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.U.; Hassan, G.; Kumbhar, M.B.; Marwat, K.B.; Khan, M.A.; Parveen, A.; Saeed, M. Combining ability analysis to identify suitable parents for heterosis in seed cotton yield, its components and lint % in upland cotton. Ind. Crop. Prod. 2009, 29, 108–115. [Google Scholar] [CrossRef]
- Khodadadi, M.; Dehghani, H.; Jalali Javaran, M. Quantitative genetic analysis reveals potential to genetically improve fruit yield and drought resistance simultaneously in coriander. Front. Plant Sci. 2017, 8, 568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schegoscheski Gerhardt, I.F.; Teixeira do Amaral Junior, A.; Ferreira Pena, G.; Moreira Guimarães, L.J.; de Lima, V.J.; Vivas, M.; Araújo Diniz Santos, P.H.; Alves Ferreira, F.R.; Mendonça Freitas, M.S.; Kamphorst, S.H. Genetic effects on the efficiency and responsiveness to phosphorus use in popcorn as estimated by diallel analysis. PLoS ONE 2019, 14, e0216980. [Google Scholar] [CrossRef] [PubMed]
- Shavkiev, J.; Azimov, A.; Nabiev, S.; Khamdullaev, S.; Amanov, B.; Kholikova, M.; Matniyazova, H.; Yuldashov, U. Comparative performance and genetic attributes of upland cotton genotypes for yield-related traits under optimal and deficit irrigation conditions. SABRAO J. Breed. Genet. 2021, 53, 157–171. [Google Scholar]
- Teodoro, L.P.R.; Bhering, L.L.; Gomes, B.E.L.; Campos, C.N.S.; Baio, F.H.R.; Gava, R.; da Silva Júnior, C.A.; Teodoro, P.E. Understanding the combining ability for physiological traits in soybean. PLoS ONE 2019, 14, e0226523. [Google Scholar] [CrossRef] [PubMed]
- Townsend, T.; Segura, V.; Chigeza, G.; Penfield, T.; Rae, A.; Harvey, D.; Bowles, D.; Graham, I.A. The use of combining ability analysis to identify elite parents for Artemisia annua F1 hybrid production. PLoS ONE 2013, 8, e61989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joseph, J.; Santhoshkumar, A. Heterosis and inbreeding depression in green gram (Vigna radiate L. Wilczek). Legum. Res. 2000, 23, 118–121. [Google Scholar]
- Nadjafi, F.; Damghani, A.M.; Ebrahimi, S.N. Effect of irrigation regimes on yield, yield components, content and composition of the essential oil of four Iranian land races of coriander (Coriandrum sativum). J. Essent. Oil Bear. Plants 2009, 12, 300–309. [Google Scholar] [CrossRef]
- Zehtab-Salmasi, S.; Ghassemi-Golez, K.; Moghbeli, S. Effect of sowing date and limited irrigation on the seed yield and quality of dill (Anethum graveolens L.). Turk. J. Agric. For. 2006, 30, 281–286. [Google Scholar]
- Bannayan, M.; Nadjafi, F.; Azizi, M.; Tabrizi, L.; Rastgoo, M. Yield and seed quality of Plantago ovata and Nigella sativa under different irrigation treatments. Ind. Crop. Prod. 2008, 27, 11–16. [Google Scholar] [CrossRef]
- Laribi, B.; Bettaieb, I.; Kouki, K.; Sahli, A.; Mougou, A.; Marzouk, B. Water deficit effects on caraway (Carum carvi L.) growth, essential oil and fatty acid composition. Ind. Crop. Prod. 2009, 30, 372–379. [Google Scholar] [CrossRef]
- Ekren, S.; Sönmez, Ç.; Özçakal, E.; Kurttaş, Y.S.K.; Bayram, E.; Gürgülü, H. The effect of different irrigation water levels on yield and quality characteristics of purple basil (Ocimum basilicum L.). Agric. Water Manag. 2012, 109, 155–161. [Google Scholar] [CrossRef]
- Alinian, S.; Razmjoo, J. Phenological, yield, essential oil yield and oil content of cumin accessions as affected by irrigation regimes. Ind. Crop. Prod. 2014, 54, 167–174. [Google Scholar] [CrossRef]
- Rebey, I.B.; Jabri-Karoui, I.; Hamrouni-Sellami, I.; Bourgou, S.; Limam, F.; Marzouk, B. Effect of drought on the biochemical composition and antioxidant activities of cumin (Cuminum cyminum L.) seeds. Ind. Crop. Prod. 2012, 36, 238–245. [Google Scholar] [CrossRef]
- Baher, Z.F.; Mirza, M.; Ghorbanli, M.; Bagher Rezaii, M. The influence of water stress on plant height, herbal and essential oil yield and composition in Satureja hortensis L. Flavour Fragr. J. 2002, 17, 275–277. [Google Scholar] [CrossRef]
- Yassen, M.; Ram, P.; Yadav, A.; Singh, K. Response of Indian basil (Ocimum basilicum) to irrigation and nitrogen schedule in Central Uttar Pradesh. Ann. Plant Physiol. 2003, 17, 177–181. [Google Scholar]
- Omidbaigi, R.; Hassani, A.; Sefidkon, F. Essential oil content and composition of sweet basil (Ocimum basilicum) at different irrigation regimes. J. Essent. Oil Bear. Plants 2003, 6, 104–108. [Google Scholar] [CrossRef]
- Nurhan, T.; Vazquez, R. Effect of water stress on plant growth and thymol and carvacrol concentrations in Mexican oregano grown under controlled conditions. J. Appl. Hortic. 2005, 7, 20–22. [Google Scholar]
- Khalid, K.A. Influence of water stress on growth, essential oil, and chemical composition of herbs (Ocimum sp.). Int. Agrophys. 2006, 20, 289–296. [Google Scholar]
- Hossein, A.F.; Valadabadi, S.A.; Daneshian, J.; Shiranirad, A.H.; Khalvati, M.A. Medicinal and aromatic plants farming under drought conditions. J. Hortic. Forest. 2009, 1, 086–092. [Google Scholar]
- Munnu, S.; Ramesh, S. Effect of irrigation and nitrogen on herbage, oil yield and water-use efficiency in rosemary grown under semi-arid tropical conditions. J. Med. Aromat. Plant Sci. 2000, 22, 659–662. [Google Scholar]
- Ramachandram, M.; Goud, J. Genetic analysis of seed yield, oil content and their components in safflower (Carthamus tinctorius L.). Theor. Appl. Genet. 1981, 60, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Robinson, H.; Cockerham, C.C.; Moll, R. Studies on Estimation of Dominance Variance and Effects of Linkage Bias. Biometrical Genetics, 1st ed.; Pergamon Press: New York, NY, USA, 1960; pp. 171–177. [Google Scholar]
- Musembi, K.B.; Githiri, S.M.; Yencho, G.C.; Sibiya, J. Combining ability and heterosis for yield and drought tolerance traits under managed drought stress in sweet potato. Euphytica 2015, 201, 423–440. [Google Scholar] [CrossRef]
- Shukla, A.; Gautam, N. Heterosis and inbreeding depression in okra (Abelmoschus esculentus L. Moench.). Indian J. Hortic. 1990, 47, 85–88. [Google Scholar]
- Armbruster, P.; Reed, D. Inbreeding depression in benign and stressful environments. Heredity 2005, 95, 235–242. [Google Scholar] [CrossRef]
- Cheptou, P.O.; Berger, A.; Blanchard, A.; Collin, C.; Escarre, J. The effect of drought stress on inbreeding depression in four populations of the Mediterranean outcrossing plant Crepis sancta (Asteraceae). Heredity 2000, 85, 294–302. [Google Scholar] [CrossRef] [Green Version]
- Shalaby, T.A. Mode of gene action, heterosis and inbreeding depression for yield and its components in tomato (Solanum lycopersicum L.). Sci. Hortic. 2013, 164, 540–543. [Google Scholar] [CrossRef]
- Singh, P.; Cheema, D.; Dhaliwal, M.; Garg, N. Heterosis and combining ability for earliness, plant growth, yield and fruit attributes in hot pepper (Capsicum annuum L.) involving genetic and cytoplasmic-genetic male sterile lines. Sci. Hortic. 2014, 168, 175–188. [Google Scholar] [CrossRef]
- Solieman, T.; El-Gabry, M.; Abido, A. Heterosis, potence ratio and correlation of some important characters in tomato (Solanum lycopersicum L.). Sci. Hortic. 2013, 150, 25–30. [Google Scholar] [CrossRef]
- Saxena, K.; Singh, L.; Gupta, M. Variation for natural out-crossing in pigeonpea. Euphytica 1990, 46, 143–148. [Google Scholar] [CrossRef]
- Marwiyah, S.; Sutjahjo, S.H.; Wirnas, D.; Suwarno, W.B. High nonadditive gene action controls synchronous maturity in mung bean. SABRAO J. Breed. Genet. 2021, 53, 213–227. [Google Scholar]
- Khan, N.U.; Hassan, G.; Kumbhar, M.B.; Kang, S.; Khan, I.; Parveen, A.; Aiman, U. Heterosis and inbreeding depression and mean performance in segregating generations in upland cotton. Eur. J. Sci. Res. 2005, 17, 531–546. [Google Scholar]
- Soomro, A.; Kalhoro, A. Hybrid vigor (F1) and inbreeding depression (F2) for some economic traits in crosses between glandless and glanded cotton. Pak. J. Biol. Sci. 2000, 3, 2013–2015. [Google Scholar] [CrossRef]
- Khodadadi, M.; Dehghani, H.; Jalali-Javaran, M.; Rashidi-Monfared, S.; Christopher, J.T. Numerical and graphical assessment of relationships between traits of the Iranian Coriandrum sativum L. core collection by considering genotype × irrigation interaction. Sci. Hortic. 2016, 200, 73–82. [Google Scholar] [CrossRef]
- Anderson, T.W. Anderson-Darling tests of goodness-of-fit. Int. Encycl. Stat Sci. 2011, 1, 52–54. [Google Scholar]
- Zhang, Y.; Kang, M.S.; Lamkey, K.R. DIALLEL-SAS05: A comprehensive program for Griffing’s and Gardner-Eberhart analyses. Agron. J. 2005, 97, 1097–1106. [Google Scholar] [CrossRef]
- Baker, R. Issues in diallel analysis. Crop Sci. 1978, 18, 533–536. [Google Scholar] [CrossRef]
- Fonseca, S.; Patterson, F.L. Hybrid Vigor in a Seven-Parent Diallel Cross in Common Winter Wheat (Triticum aestivum L.). Crop Sci. 1968, 8, 85–88. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS Technical Report. SAS Statistics Software: Changes and Enhancements, Release 6.07; SAS Institute Inc.: Cary, NC, USA, 1992.
- Excel, 2013, version 2013; Microsoft Office Excel; Microsoft: Redmond, WA, USA, 2013.
Source | df | Mean Squares | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SY | EOC | FOC | EOY | FOY | |||||||
F1 | F2 | F1 | F2 | F1 | F2 | F1 | F2 | F1 | F2 | ||
Water Treatment (WT) | 2 | 771.31 ** | 332.34 ** | 0.53 ** | 0.193 ** | 223.12 ** | 111.27 ** | 0.008 ** | 0.004 ** | 35.08 ** | 11.53 ** |
Replication (WT) | 6 | 13.60 | 12.55 | 0.43 × 10−3 | 0.33 × 10−3 | 5.02 | 3.68 | 0.42 × 10−3 | 0.26 × 10−3 | 0.70 | 0.53 |
Genotype (G) | 20 | 45.60 ** | 21.64 ** | 0.23 ** | 0.167 ** | 102.71 ** | 63.95 ** | 0.003 ** | 0.14 × 10−2 | 2.25 ** | 0.93 ** |
G × WT | 40 | 14.75 ** | 6.27 ** | 0.02 ** | 0.015 ** | 6.13 ** | 7.10 ** | 0.6 × 10−3 ** | 0.2 × 10−3 ** | 0.60 ** | 0.23 ** |
GCA | 5 | 61.74 ** | 40.78 ** | 0.59 ** | 0.553 ** | 219.99 ** | 182.17 ** | 0.007 ** | 0.004 ** | 2.51 ** | 1.64 ** |
SCA | 15 | 40.22 ** | 15.26 ** | 0.11 ** | 0.038 ** | 63.61 ** | 24.54 ** | 0.002 ** | 0.6 × 10−3 ** | 2.16 ** | 0.69 ** |
GCA × WT | 10 | 35.18 ** | 19.27 ** | 0.02 ** | 0.022 ** | 8.65 ** | 13.54 ** | 0.001 ** | 0.6 × 10−3 ** | 1.13 ** | 0.69 ** |
SCA × WT | 30 | 7.94 ** | 1.94 ** | 0.01 ** | 0.012 ** | 5.29 ** | 4.95 ** | 0.4 × 10−3 ** | 0.1 × 10−3 ** | 0.42 ** | 0.08 * |
Error | 120 | 1.12 | 1.10 | 0.54 × 10−3 | 0.87 × 10−3 | 1.98 | 2.09 | 3.87 × 10−5 | 3.1 × 10−5 | 0.05 | 0.05 |
Water Treatment | SY | EOC | FOC | EOY | FOY | |||||
---|---|---|---|---|---|---|---|---|---|---|
F1 | F2 | F1 | F2 | F1 | F2 | F1 | F2 | F1 | F2 | |
Well-Watered | 9.19 a | 6.74 a | 0.351 c | 0.337 c | 20.59 a | 18.35 a | 0.035 a | 0.023 a | 1.88 a | 1.22 a |
Moderate Water Stressed | 4.51 b | 3.94 b | 0.530 a | 0.446 a | 18.60 b | 17.76 b | 0.029 b | 0.021 a | 0.87 b | 0.73 b |
Severe Water Stressed | 2.35 c | 2.18 c | 0.477 b | 0.377 b | 16.83 c | 15.81 c | 0.013 c | 0.009 b | 0.43 c | 0.37 c |
Water Treatment | Estimate | SY | EOC | FOC | EOY | FOY | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
F1 | F2 | F1 | F2 | F1 | F2 | F1 | F2 | F1 | F2 | ||
Well-Watered | GCA | 31.82 ** | 13.86 ** | 0.131 ** | 0.128 ** | 59.34 ** | 30.62 ** | 0.002 ** | 0.001 ** | 16.25 ** | 8.30 ** |
SCA | 21.19 ** | 4.85 ** | 0.018 ** | 0.014 ** | 28.44 ** | 6.88 ** | 0.001 ** | 0.26 × 10−3 ** | 26.53 ** | 6.08 ** | |
Error | 1.65 | 1.42 | 0.45 × 10−3 | 0.41 × 10−3 | 2.33 | 2.19 | 3.4 × 10−5 | 2.24 × 10−5 | 0.08 | 0.05 | |
2.21 ns | 0.53 * | 0.005 ** | 0.005 ** | 1.29 ns | 0.99 ** | 4.5 × 10−5 ns | 3.64 × 10−5 ** | 0.03 ns | 0.004 ns | ||
18.21 ** | 1.83 ** | 0.006 ** | 0.004 ** | 8.70 ** | 1.56 ** | 0.4 × 10−3 ** | 7.96 × 10−5 ** | 0.64 ** | 0.08 ** | ||
GCA/SCA | 0.12 | 0.37 | 0.62 | 0.68 | 0.23 | 0.56 | 0.18 | 0.48 | 0.09 | 0.10 | |
Moderate Water Stress | GCA | 65.85 ** | 48.31 ** | 0.323 ** | 0.307 ** | 101.93 ** | 119.15 ** | 0.006 ** | 0.003 ** | 2.873** | 2.147** |
SCA | 16.30 ** | 8.64 ** | 0.074 ** | 0.041 ** | 23.03 ** | 16.00 ** | 0.001 ** | 5.3 × 10−4 ** | 0.791 ** | 0.448 ** | |
Error | 0.90 | 1.14 | 0.001 | 0.001 | 1.68 | 1.70 | 5.3 × 10−5 | 5.0 × 10−5 | 0.049 | 0.071 | |
2.06 * | 1.65 ** | 0.010 * | 0.011 ** | 3.29 * | 4.30 ** | 1.8 × 10−4 * | 1.2 × 10−4 * | 0.006 * | 0.003 ** | ||
5.13 ** | 2.50 ** | 0.025 ** | 0.013 ** | 7.12 ** | 4.77 ** | 4.6 × 10−4 ** | 1.6 × 10−4 ** | 0.009 ** | 0.003 ** | ||
GCA/SCA | 0.45 | 0.57 | 0.46 | 0.62 | 0.48 | 0.64 | 0.44 | 0.60 | 0.41 | 0.53 | |
Severe Water Stress | GCA | 13.62 ** | 11.30 ** | 0.177 ** | 0.161 ** | 76.03 ** | 59.48 ** | 6.4 × 10−4 ** | 3.9 × 10−4 ** | 0.68 ** | 0.48 ** |
SCA | 4.75 ** | 3.58 ** | 0.044 ** | 0.008 ** | 22.73 ** | 11.56 ** | 2.3 × 10−4 ** | 8.4 × 10−5 ** | 0.20 ** | 0.12 ** | |
Error | 0.80 | 0.75 | 0.001 | 0.001 | 1.94 | 2.37 | 2.9 10−5 | 2.1 × 10−5 | 0.03 | 0.03 | |
0.37 * | 0.32 * | 0.006 * | 0.006 ** | 2.22 * | 2.00 ** | 1.7 × 10−5 * | 1.3 × 10−5 ** | 0.02 * | 0.02 ** | ||
1.32 ** | 0.94 ** | 0.014 ** | 0.002 ** | 6.93 ** | 3.06 ** | 6.6 × 10−5 ** | 2.1 × 10−5 ** | 0.06 ** | 0.03 ** | ||
GCA/SCA | 0.36 | 0.40 | 0.44 | 0.86 | 0.39 | 0.57 | 0.35 | 0.55 | 0.41 | 0.57 |
Genotype | Parental Code | Characteristics |
---|---|---|
Commercial | P1 | Drought susceptible |
TN-59-353 | P2 | Relatively drought tolerant |
TN-59-80 | P3 | Drought susceptible |
TN-59-160 | P4 | Drought tolerant and relatively high yielding |
TN-59-158 | P5 | Highly drought susceptible |
TN-59-230 | P6 | Highly drought tolerant but low yielding |
Soil Depth (cm) | Sand (%) | Silt (%) | Clay (%) | Bulk Density (g cm−3) | FC (%) | Organic Matter (%) | pH | EC (dS m−1) |
---|---|---|---|---|---|---|---|---|
0–20 | 70 | 15 | 15 | 1.2 | 16.5 | 1.61 | 7.75 | 1.3 |
20–40 | 68 | 18 | 14 | 1.4 | 19 | 1.45 | 7.75 | 1.28 |
40–60 | 66 | 18 | 16 | 1.48 | 15 | 1.09 | 7.74 | 1.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanifei, M.; Gholizadeh, A.; Khodadadi, M.; Mehravi, S.; Hanifeh, M.; Edwards, D.; Batley, J. Dissection of Genetic Effects, Heterosis, and Inbreeding Depression for Phytochemical Traits in Coriander. Plants 2022, 11, 2959. https://doi.org/10.3390/plants11212959
Hanifei M, Gholizadeh A, Khodadadi M, Mehravi S, Hanifeh M, Edwards D, Batley J. Dissection of Genetic Effects, Heterosis, and Inbreeding Depression for Phytochemical Traits in Coriander. Plants. 2022; 11(21):2959. https://doi.org/10.3390/plants11212959
Chicago/Turabian StyleHanifei, Mehrdad, Amir Gholizadeh, Mostafa Khodadadi, Shaghayegh Mehravi, Mehnosh Hanifeh, David Edwards, and Jacqueline Batley. 2022. "Dissection of Genetic Effects, Heterosis, and Inbreeding Depression for Phytochemical Traits in Coriander" Plants 11, no. 21: 2959. https://doi.org/10.3390/plants11212959
APA StyleHanifei, M., Gholizadeh, A., Khodadadi, M., Mehravi, S., Hanifeh, M., Edwards, D., & Batley, J. (2022). Dissection of Genetic Effects, Heterosis, and Inbreeding Depression for Phytochemical Traits in Coriander. Plants, 11(21), 2959. https://doi.org/10.3390/plants11212959