A Review of Cultural Practices for Botrytis Bunch Rot Management in New Zealand Vineyards
Abstract
:1. Introduction
2. Epidemiology of B. cinerea
Botrytis Bunch Rot Management in New Zealand Vineyards
Background
3. Cultural Control of BBR
3.1. Winter Vineyard Management
3.1.1. Pruning
3.1.2. Understory (Vineyard Floor)
3.2. Canopy Management
3.2.1. Bunch Trash (Debris) Removal
3.2.2. Leaf Removal
3.2.3. Mechanical Thinning
Bunch Structure
Berry Susceptibility
Debris
4. Management of Nutrients
4.1. Calcium
4.1.1. Calcium-Grape Berry Water Flow Relationships
4.1.2. Direct Effects on B. cinerea
4.1.3. Indirect Effects on B. cinerea
4.1.4. Practical Use of Calcium in the Vineyard
4.2. Nitrogen and Berry Diseases
4.2.1. Inherent Berry Defence Mechanisms
4.2.2. Direct and Indirect Influence of Nitrogen
4.2.3. Summary—Interactions between Nitrogen, Grape Berry Quality and Pathogen Susceptibility
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elad, Y.; Vivier, M.; Fillinger, S. Botrytis, the good, the bad and the ugly. In Botrytis—The Fungus, the Pathogen and Its Management in Agricultural Systems; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–15. [Google Scholar]
- Youssef, K.; Roberto, S.R.; de Oliveira, A.G. Ultra-Structural Alterations in Botrytis cinerea—The Causal Agent of Gray Mold—Treated with Salt Solutions. Biomolecules 2019, 9, 582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dean, R.; Van Kan, J.A.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elmer, P.A.G.; Michailides, T.J. Epidemiology of Botrytis cinerea in orchard and vine crops. In Botrytis: Biology, Pathology and Control; Elad, Y., Williamson, B., Tudzynski, P., Delen, N., Eds.; Kluwer Academic Publishers: Alphen aan den Rijn, The Netherlands; Springer: Dordrecht, The Netherlands, 2007; pp. 243–272. [Google Scholar]
- Mundy, D.; Agnew, R.; Wood, P. Grape tendrils as an inoculum source of Botrytis cinerea in vineyards a review. N. Z. Plant Prot. 2012, 65, 218–227. [Google Scholar] [CrossRef]
- Bollen, G.J.; Scholten, G. Acquired resistance to benomyl and some other systemic fungicides in a strain of Botrytis cinerea in cyclamen. Neth. J. Plant Pathol. 1971, 77, 83–90. [Google Scholar] [CrossRef]
- Beever, R.E.; Laracy, E.P.; Pak, H.A. Strains of Botrytis cinerea resistant to dicarboximide and benzimidazole fungicides in New Zealand vineyards. Plant Pathol. 1989, 38, 427–437. [Google Scholar] [CrossRef]
- Lamichhane, J.R. Pesticide use and risk reduction in European farming systems with IPM: An introduction to the special issue. Crop Prot. 2017, 97, 1–6. [Google Scholar] [CrossRef]
- Palmieri, D.; Ianiri, G.; Del Grosso, C.; Barone, G.; De Curtis, F.; Castoria, R.; Lima, G. Advances and Perspectives in the Use of Biocontrol Agents against Fungal Plant Diseases. Horticulturae 2022, 8, 577. [Google Scholar] [CrossRef]
- Romanazzi, G.; Smilanick, J.L.; Feliziani, E.; Droby, S. Integrated management of postharvest gray mold on fruit crops. Postharvest Biol. Technol. 2016, 113, 69–76. [Google Scholar] [CrossRef]
- Wurms, K.; Chee, A.A.; Wood, P.; Taylor, J.; Parry, F.; Agnew, R.; Hedderley, D.; Elmer, P. Lipid-Based Natural Food Extracts for Effective Control of Botrytis Bunch Rot and Powdery Mildew on Field-Grown Winegrapes in New Zealand. Plants 2021, 10, 423. [Google Scholar] [CrossRef]
- Cardogan, S. EU bans one of the world’s most commonly used fungicides. Irish Examiner, 4 January 2021. [Google Scholar]
- Fenner, K.; Canonica, S.; Wackett, L.P.; Elsner, M. Evaluating Pesticide Degradation in the Environment: Blind Spots and Emerging Opportunities. Science 2013, 341, 752–758. [Google Scholar] [CrossRef] [PubMed]
- Egan, P.A.; Dicks, L.V.; Hokkanen, H.M.T.; Stenberg, J.A. Delivering Integrated Pest and Pollinator Management (IPPM). Trends Plant Sci. 2020, 25, 577–589. [Google Scholar] [CrossRef] [PubMed]
- Agarbati, A.; Canonico, L.; Pecci, T.; Romanazzi, G.; Ciani, M.; Comitini, F. Biocontrol of Non-Saccharomyces Yeasts in Vineyard against the Gray Mold Disease Agent Botrytis cinerea. Microorganisms 2022, 10, 200. [Google Scholar] [CrossRef] [PubMed]
- Calvo-Garrido, C.; Panitrur-de la Fuente, C.; Davidou, L.; Eugenia, M.; Cestaret, S.; Roudet, J.; Valdes-Gomez, H.; Fermaud, M. Epidemiology of Botrytis bunch rot in Bordeaux vineyards and alternative control strategies. IOBC/WPRS Bull. 2017, 128, 18–27. [Google Scholar]
- Calvo-Garrido, C.; Roudet, J.; Aveline, N.; Davidou, L.; Dupin, S.; Fermaud, M. Microbial antagonism toward Botrytis bunch rot of grapes in multiple field tests using one Bacillus ginsengihumi strain and formulated biological control products. Front. Plant Sci. 2019, 10, 105. [Google Scholar] [CrossRef]
- Laurent, A.; Makowski, D.; Aveline, N.; Dupin, S.; Miguez, F.E. On-Farm Trials Reveal Significant but Uncertain Control of Botrytis cinerea by Aureobasidium pullulans and Potassium Bicarbonate in Organic Grapevines. Front. Plant Sci. 2021, 12, 620786. [Google Scholar] [CrossRef]
- Teixidó, N.; Usall, J.; Torres, R. Insight into a Successful Development of Biocontrol Agents: Production, Formulation, Packaging, and Shelf Life as Key Aspects. Horticulturae 2022, 8, 305. [Google Scholar] [CrossRef]
- Fillinger, S.; Walker, A.-S. Chemical control and resistance management of botrytis diseases. In Botrytis—The Fungus, the Pathogen and Its Management in Agricultural Systems; Springer: Berlin/Heidelberg, Germany, 2016; pp. 189–216. [Google Scholar]
- Avenot, H.F.; Quattrini, J.; Puckett, R.; Michailides, T.J. Different levels of resistance to cyprodinil and iprodione and lack of fludioxonil resistance in Botrytis cinerea isolates collected from pistachio, grape, and pomegranate fields in California. Crop Prot. 2018, 112, 274–281. [Google Scholar] [CrossRef]
- Weber, R.W.S.; Hahn, M. Grey mould disease of strawberry in northern Germany: Causal agents, fungicide resistance and management strategies. Appl. Microbiol. Biotechnol. 2019, 103, 1589–1597. [Google Scholar] [CrossRef]
- Xiao, L.; Niu, H.-J.; Qu, T.-L.; Zhang, X.-F.; Du, F.-Y. Streptomyces sp. FX13 inhibits fungicide-resistant Botrytis cinerea in vitro and in vivo by producing oligomycin A. Pestic. Biochem. Physiol. 2021, 175, 104834. [Google Scholar] [CrossRef]
- Shao, W.; Zhao, Y.; Ma, Z. Advances in Understanding Fungicide Resistance in Botrytis cinerea in China. Phytopathology 2021, 111, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Boncinelli, F.; Dominici, A.; Gerini, F.; Marone, E. Insights into organic wine consumption: Behaviour, segmentation and attribute non-attendance. Agric. Food Econ. 2021, 9, 7. [Google Scholar] [CrossRef]
- Newton, P.; Civita, N.; Frankel-Goldwater, L.; Bartel, K.; Johns, C. What Is Regenerative Agriculture? A Review of Scholar and Practitioner Definitions Based on Processes and Outcomes. Front. Sustain. Food Syst. 2020, 4, 577723. [Google Scholar] [CrossRef]
- Giller, K.E.; Hijbeek, R.; Andersson, J.A.; Sumberg, J. Regenerative Agriculture: An agronomic perspective. Outlook Agric. 2021, 50, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Wurms, K.V.; Chee, A.; Elmer, P.A.G.; Agnew, R.H.; Wood, P.N. Developing new biologically-based products for control of botrytis bunch rot. Part 1: Developing a new natural product for mid-season botrytis control—NP2 moves closer to the market. Wine Vit. J. 2011, 26, 64–72. [Google Scholar]
- Rantsiou, K.; Giacosa, S.; Pugliese, M.; Englezos, V.; Ferrocino, I.; Río Segade, S.; Monchiero, M.; Gribaudo, I.; Gambino, G.; Gullino, M.L.; et al. Impact of Chemical and Alternative Fungicides Applied to Grapevine cv Nebbiolo on Microbial Ecology and Chemical-Physical Grape Characteristics at Harvest. Front. Plant Sci. 2020, 11, 700. [Google Scholar] [CrossRef]
- Beresford, R.M. Towards reduced reliance on fungicides for disease control in New Zealand’s crop-based industries. N. Z. Plant Prot. 2010, 63, 138–144. [Google Scholar]
- Elmer, P.A.G.; Reglinski, T.; Wurms, K.V.; Wood, P.N. Enabling technologies: The practical integration of biological and natural products for disease control. In Future Challenges in Crop Protection: Repositioning NZ’s Primary Industries; Butcher, M.R., Walker, J.T.S., Zydenbos, S.M., Eds.; New Zealand Plant Protection Society: Auckland, New Zealand, 2007; pp. 109–116. [Google Scholar]
- Parry, F.; Elmer, P.; Wood, P.; Agnew, R.; Saunders, J.; Wurms, K.; Hoyte, S.; Chee, A. Developing new biologically-based products for control of botrytis bunch rot. Part 2: Developing a new biologically-based product for late-season botrytis control: The BCA-L1 story. Wine Vit. J. 2011, 26, 73–78. [Google Scholar]
- Pertot, I.; Giovannini, O.; Benanchi, M.; Caffi, T.; Rossi, V.; Mugnai, L. Combining biocontrol agents with different mechanisms of action in a strategy to control Botrytis cinerea on grapevine. Crop Prot. 2017, 97, 85–93. [Google Scholar] [CrossRef]
- González-Domínguez, E.; Caffi, T.; Ciliberti, N.; Rossi, V. A Mechanistic Model of Botrytis cinerea on Grapevines That Includes Weather, Vine Growth Stage, and the Main Infection Pathways. PLoS ONE 2015, 10, e0140444. [Google Scholar] [CrossRef] [Green Version]
- Fedele, G.; González-Domínguez, E.; Ammour, M.S.; Languasco, L.; Rossi, V. Reduction of Botrytis cinerea Colonization of and Sporulation on Bunch Trash. Plant Dis. 2020, 104, 808–816. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.; Riches, D.A.; Evans, K.J.; Beresford, R.M.; Wood, P.N.; Hill, G.N.; Mundy, D.C. The need for a risk-based approach to botrytis management. Aust. N. Z. Grapegrow. Winemak. 2009, 6–9. [Google Scholar]
- Jaspers, M.V.; Seyb, A.M.; Trought, M.C.T.; Balasubramaniam, R. Overwintering grapevine debris as an important source of Botrytis cinerea inoculum. Plant Pathol. 2012, 62, 130–138. [Google Scholar] [CrossRef]
- Coombe, B.G.; Dry, P.R. Viticulture. In Resources in Australia; Winetitles: Adelaide, Australia, 1988; Volume 1. [Google Scholar]
- Broome, J.C.; English, J.T.; Marois, J.J.; Latorre, B.A.; Aviles, J.C. Development of an infection model for Botrytis bunch rot of grapes based on wetness duration and temperature. Phytopathology 1995, 85, 97–102. [Google Scholar] [CrossRef]
- Kim, K.S.; Beresford, R.M.; Henshall, W.R. Prediction of disease risk using site-specific estimates of weather variables. N. Z. Plant Prot. 2007, 60, 128–132. [Google Scholar]
- Hoksbergen, T. Impact of Botrytis cinerea on vineyard returns and wine quality. In Grape Day seminar, Marlborough, New Zealand Winegrowers; New Zealand Winegrowers: Auckland, New Zealand, 2010. [Google Scholar]
- Jaspers, M.V.; Seyb, A.M.; Trought, M.C.T.; Balasubramaniam, R. Necrotic grapevine material from the current season is a source of Botrytis cinerea inoculum. Eur. J. Plant Pathol. 2016, 144, 811–820. [Google Scholar] [CrossRef]
- R’Houma, A.; Cherif, M.; Boubaker, A. Effect of nitrogen fertilization, green pruning and fungicide treatments on Botrytis bunch rot of grapes. J. Plant Pathol. 1998, 80, 115–124. [Google Scholar]
- Mundy, D.; Haycock, S.; McLachlan, A.; Wood, P.; Raw, V. Tendrils as a source of seasonal carryover of Botrytis cinerea in vineyards. N. Z. Plant Prot. 2012, 65, 236–240. [Google Scholar] [CrossRef]
- Thomas, A.C.; Matthee, F.N.; Kotze, J.M. Survival of Botrytis cinerea as mycelium in vine prunings as affected by different methods of weed control = Survie de Botrytis cinerea sous forme de mycelium dans le bois de taille en fonction de diverses methodes de lutte contre les mauvaises herbes. In Proceedings of the XVIIIe Congres International de la Vigne et du Vin de l’O.I.V., Cape Town, South Africa, 24–28 October 1983; pp. 209–221. [Google Scholar]
- Walter, M.; Harris-Virgin, P.; Waipara, N.W.; Stanley, J.; Boyd-Wilson, K.S.H.; Morgan, C.; Langford, G.I. From the laboratory to the field: Litter management for control of Botrytis cinerea in boysenberry gardens. Fruits 2004, 59, 291–299. [Google Scholar] [CrossRef]
- Mundy, D.C.; Agnew, R.H. Effects of mulching with vineyard and winery waste on soil fungi and botrytis bunch rot in Marlborough vineyards. N. Z. Plant Prot. 2002, 55, 135–138. [Google Scholar] [CrossRef] [Green Version]
- Jacometti, M.A.; Wratten, S.D.; Walter, M. Management of understorey to reduce the primary inoculum of Botrytis cinerea: Enhancing ecosystem services in vineyards. Biol. Control 2007, 40, 57–64. [Google Scholar] [CrossRef]
- Jacometti, M.A.; Wratten, S.D.; Walter, M. Understorey management increases grape quality, yield and resistance to Botrytis cinerea. Agric. Ecosyst. Environ. 2007, 122, 349–356. [Google Scholar] [CrossRef]
- Fedele, G.; Brischetto, C.; González-Domínguez, E.; Rossi, V. The Colonization of Grape Bunch Trash by Microorganisms for the Biocontrol of Botrytis cinerea as Influenced by Temperature and Humidity. Agronomy 2020, 10, 1829. [Google Scholar] [CrossRef]
- Calvo-Garrido, C.; Usall, J.; Viñas, I.; Elmer, P.A.; Cases, E.; Teixidó, N. Potential secondary inoculum sources of Botrytis cinerea and their influence on bunch rot development in dry Mediterranean climate vineyards. Pest Manag. Sci. 2014, 70, 922–930. [Google Scholar] [CrossRef] [PubMed]
- Molitor, D.; Hoffmann, L.; Beyer, M. Flower Debris Removal Delays Grape Bunch Rot Epidemic. Am. J. Enol. Vitic. 2015, 66, 548–553. [Google Scholar] [CrossRef]
- Hed, B.; Ngugi, H.K.; Travis, J.W. Relationship Between Cluster Compactness and Bunch Rot in Vignoles Grapes. Plant Dis. 2009, 93, 1195–1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beresford, R.M.; Hill, G.N. Botrytis control without fungicide residues—Is it just a load of rot? N. Z. Winegrow. 2008, 12, 104–106. [Google Scholar]
- Gubler, W.D.; Marois, J.J.; Bledsoe, A.M.; Bettiga, L.J. Control of Botrytis bunch rot of grape with canopy management. Plant Dis. 1987, 71, 599–601. [Google Scholar] [CrossRef]
- Smith, S.; Codrington, I.; Robertson, M.; Smart, R.E. Viticultural and oenological implications of leaf removal for New Zealand vineyards. In Proceedings of the Second International Cool Climate Viticulture and Oenology Symposium, Auckland, New Zealand, 11–15 January 1988; pp. 127–133. [Google Scholar]
- Mosetti, D.; Herrera, J.; Sabbatini, P.; Green, A.; Alberti, G.; Peterlunger, E.; Lisjak, K.; Castellarin, S.D. Impact of leaf removal after berry set on fruit composition and bunch rot in ‘Sauvignon blanc’. VITIS J. Grapevine Res. 2016, 55, 57–64. [Google Scholar]
- Würz, D.A.; Rufato, L.; Bogo, A.; Allebrandt, R.; de Bem, B.P.; Filho, J.L.M.; Brighenti, A.F.; Bonin, B.F. Effects of leaf removal on grape cluster architecture and control of Botrytis bunch rot in Sauvignon Blanc grapevines in Southern Brazil. Crop Prot. 2020, 131, 105079. [Google Scholar] [CrossRef]
- Thomas, C.S.; Marois, J.J.; English, J.T. The effects of wind speed, temperature, and relative humidity on developmen of aerial mycelium and conidia of Botrytis cinerea on grape. Phytopathology 1988, 78, 260–265. [Google Scholar] [CrossRef]
- Agnew, R.H.; Mundy, D.C.; Balasubramaniam, R. Effects of spraying strategies based on monitored disease risk on grape disease control and fungicide usage in Marlborough. N. Z. Plant Prot. 2004, 57, 30–36. [Google Scholar]
- Würz, D.A.; Brighenti, A.F.; Allebrandt, R.; Marcon Filho, J.L.; Bem, B.P.D.; Araujo Filho, J.V.; Rufato, L.; Kretzschmar, A.A. Early leaf removal as a strategy to control Botrytis cinerea rot in Cabernet Sauvignon grapevine at high altitude regions = Desfolha precoce como estrategia de controle da podridao de Botrytis cinerea na videira Cabernet Sauvignon em regioes de altitude. Summa Phytopath. 2017, 43, 111–117. [Google Scholar] [CrossRef]
- Sidhu, D.; Lund, J.; Kotseridis, Y.; Saucier, C. Methoxypyrazine Analysis and Influence of Viticultural and Enological Procedures on their Levels in Grapes, Musts, and Wines. Crit. Rev. Food Sci. Nutr. 2015, 55, 485–502. [Google Scholar] [CrossRef]
- Greven, M.; Neal, S.; Hall, A.; Bennett, J. Influence of retained node number on Sauvignon Blanc grapevine phenology in a cool climate. Aust. J. Grape Wine Res. 2015, 21, 290–301. [Google Scholar] [CrossRef]
- Zhu, J.; Parker, A.; Gou, F.; Agnew, R.; Yang, L.; Greven, M.; Raw, V.; Neal, S.; Martin, D.; Trought, M.C.T.; et al. Developing perennial fruit crop models in APSIM Next Generation using grapevine as an example. Silico Plants 2021, 3, diab021. [Google Scholar] [CrossRef]
- Diago, M.P.; Vilanova, M.; Tardaguila, J. Effects of Timing of Manual and Mechanical Early Defoliation on the Aroma of Vitis vinifera L. Tempranillo Wine. Am. J. Enol. Vitic. 2010, 61, 382–391. [Google Scholar]
- Neal, S.M.; Trought, M.C.T.; Mundy, D.C.; Albright, A.; McLachlan, A.R.G.; Allen, M.; Pecchenino, D. New opportunities for sustainable grape thinning. In Proceedings of the 16th Australian Wine Industry Technical Conference, Adelaide, Australia, 24–28 July 2016. [Google Scholar]
- Trought, M.C.T. Fruitset—Possible implications on wine quality. In Transforming Flowers to Fruit; de Garis, K., Dundon, C., Johnstone, R., Partridge, S., Eds.; Australian Society of Viticulture and Oenology: Mildura, Australia, 2005; pp. 32–36. [Google Scholar]
- Trought, M.C.T.; Neal, S.M.; Mundy, D.C.; Grose, C.; Beresford, M.K.; McLachlan, A.R.G.; Allen, M. New opportunities for sustainable grape thinning—What have we learned after five years of research? bunches post machine thinning. N. Z. Winegrow. 2014, 87, 131–133. [Google Scholar]
- Trought, M.C.T.; Neal, S.M.; Greven, M.M.; Mundy, D.C.; Raw, V.; McLachlan, A.R.G. Reduced berry size and Botrytis tolerance through trauma to the vine. N. Z. Winegrow. 2015, 90, 68–71. [Google Scholar]
- Pool, R.M.; Dunst, D.C.; Crowe, H.; Hubbard, G.E.; Howard, G.E.; DeGrolier, G. Predicting and controlling crop on machine or minimal pruned grapevines. In Proceedings of the 2nd N.J. Shaulis Grape Symposium: Pruning Mechanization and Crop Control, New York, NY, USA, 13–14 July 1993; pp. 31–45. [Google Scholar]
- Petrie, P.R.; Clingeleffer, P.R. Crop thinning (hand versus mechanical), grape maturity and anthocyanin concentration: Outcomes from irrigated Cabernet Sauvignon (Vitis vinifera L.) in a warm climate. Aust. J. Grape Wine Res. 2006, 12, 21–29. [Google Scholar] [CrossRef]
- Tardaguila, J.; Petrie, P.R.; Poni, S.; Diago, M.P.; de Toda, F.M. Effects of Mechanical Thinning on Yield and Fruit Composition of Tempranillo and Grenache Grapes Trained to a Vertical Shoot-Positioned Canopy. Am. J. Enol. Vitic. 2008, 59, 412–417. [Google Scholar]
- Tardaguila, J.; Blanco, J.A.; Poni, S.; Diago, M.P. Mechanical yield regulation in winegrapes: Comparison of early defoliation and crop thinning. Aust. J. Grape Wine Res. 2012, 18, 344–352. [Google Scholar] [CrossRef]
- Bates, T.R. Mechanical crop control in New York ‘Concord’ vineyards target desirable crop load levels. Acta Hortic. 2017, 1177, 259–264. [Google Scholar] [CrossRef]
- Geller, J.P.; Kurtural, S.K. Mechanical Canopy and Crop-Load Management of Pinot gris in a Warm Climate. Am. J. Enol. Vitic. 2013, 64, 65–73. [Google Scholar] [CrossRef]
- Mundy, D.C.; Trought, M.C.T.; McLachlan, A.R.G.; Neal, S.M.; Pecchenino, D. Effects of Mechanical Thinning on Botrytis Bunch Rot on Sauvignon Blanc Wine Grapes; New Zealand Plant Protection Society: Wellington, New Zealand, 2021; p. 30. [Google Scholar]
- Falcini, L. Prospects for clonal selection of grapes for control of grey mould (Botrytis cinerea Pers.) = Le prospettive della selezione clonale della vite nella lotta alla muffa grigia del grappolo (Botrytis cinerea Pers.). Vignevini 1981, 8, 59–64. [Google Scholar]
- Mundy, D.; Haycock, S.; Raw, V.; Agnew, R.; Sherman, E.; McLachlan, A.; Hagerty, G. Effects of chemical and natural product treatments on bunch openness and botrytis bunch rot in Sauvignon blanc grapes. N. Z. Plant Prot. 2014, 67, 157–167. [Google Scholar] [CrossRef]
- Shavrukov, Y.N.; Dry, I.B.; Thomas, M.R. Inflorescence and bunch architecture development in Vitis vinifera L. Aust. J. Grape Wine Res. 2004, 10, 116–124. [Google Scholar] [CrossRef]
- Mundy, D.C.; Beresford, R.M. Susceptibility of grapes to Botrytis cinerea in relation to berry nitrogen and sugar concentration. N. Z. Plant Prot. 2007, 60, 123–127. [Google Scholar] [CrossRef]
- Verdenal, T.; Zufferey, V.; Dienes-Nagy, A.; Belcher, S.; Lorenzini, F.; Rösti, J.; Koestel, C.; Gindro, K.; Spring, J.-L. Intensity and timing of defoliation on white cultivar Chasselas under the temperate climate of Switzerland. OENO One 2018, 52, 93–104. [Google Scholar] [CrossRef]
- Schwendel, B.H.; Anekal, P.V.; Zarate, E.; Bang, K.W.; Guo, G.; Grey, A.C.; Pinu, F.R. Mass spectrometry-based metabolomics to investigate the effect of mechanical shaking on Sauvignon blanc berry metabolism. J. Agric. Food Chem. 2021, 69, 4918–4933. [Google Scholar] [CrossRef]
- Tian, B.; Harrison, R.; Morton, J.D.; Jaspers, M.V.; Hodge, S.; Grose, C.; Trought, M.C. Extraction of Pathogenesis-Related Proteins and Phenolics in Sauvignon Blanc as Affected by Grape Harvesting and Processing Conditions. Molecules 2017, 22, 1164. [Google Scholar] [CrossRef] [Green Version]
- Keller, M.; Viret, O.; Cole, F.M. Botrytis cinerea infection in grape flowers: Defense reaction, latency, and disease expression. Phytopathology 2003, 93, 316–322. [Google Scholar] [CrossRef] [Green Version]
- Ammour, M.S.; Castaldo, E.; Fedele, G.; Rossi, V. Use of LAMP for Assessing Botrytis cinerea Colonization of Bunch Trash and Latent Infection of Berries in Grapevines. Plants 2020, 9, 1538. [Google Scholar] [CrossRef] [PubMed]
- Ammour, M.S.; Fedele, G.; Morcia, C.; Terzi, V.; Rossi, V. Quantification of Botrytis cinerea in Grapevine Bunch Trash by Real-Time PCR. Phytopathology 2019, 109, 1312–1319. [Google Scholar] [CrossRef] [PubMed]
- Hocking, B.; Tyerman, S.D.; Burton, R.A.; Gilliham, M. Fruit Calcium: Transport and Physiology. Front. Plant Sci. 2016, 7, 569. [Google Scholar] [CrossRef] [Green Version]
- André, M.; Lacampagne, S.; Barsacq, A.; Gontier, E.; Petrel, M.; Mercier, L.; Courot, D.; Gény-Denis, L. Physical, Anatomical, and Biochemical Composition of Skins Cell Walls from Two Grapevine Cultivars (Vitis vinifera) of Champagne Region Related to Their Susceptibility to Botrytis cinerea during Ripening. Horticulturae 2021, 7, 413. [Google Scholar] [CrossRef]
- Martins, V.; Soares, C.; Spormann, S.; Fidalgo, F.; Gerós, H. Vineyard calcium sprays reduce the damage of postharvest grape berries by stimulating enzymatic antioxidant activity and pathogen defense genes, despite inhibiting phenolic synthesis. Plant Physiol. Biochem. 2021, 162, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Rogiers, S.Y.; Hatfield, J.; Keller, M. Irrigation, nitrogen, and rootstock effects on volume loss of berries from potted Shiraz vines. Vitis 2004, 43, 1–6. [Google Scholar]
- Krasnow, M.; Matthews, M.; Shackel, K. Evidence for substantial maintenance of membrane integrity and cell viability in normally developing grape (Vitis vinifera L.) berries throughout development. J. Exp. Bot. 2008, 59, 849–859. [Google Scholar] [CrossRef] [Green Version]
- Tilbrook, J.; Tyerman, S.D. Hydraulic connection of grape berries to the vine: Varietal differences in water conductance into and out of berries, and potential for backflow. Funct. Plant Biol. 2009, 36, 541–550. [Google Scholar] [CrossRef]
- Tyerman, S.D.; Tilbrook, J.; Pardo, C.; Kotula, L.; Sullivan, W.; Steudle, E. Direct measurement of hydraulic properties in developing berries of Vitis vinifera L. cv Shiraz and Chardonnay. Aust. J. Grape Wine Res. 2004, 10, 170–181. [Google Scholar] [CrossRef]
- Chardonnet, C.O.; Sams, C.E.; Trigiano, R.N.; Conway, W.S. Variability of Three Isolates of Botrytis cinerea Affects the Inhibitory Effects of Calcium on this Fungus. Phytopathology 2000, 90, 769–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nigro, F.; Schena, L.; Ligorio, A.; Pentimone, I.; Ippolito, A.; Salerno, M.G. Control of table grape storage rots by pre-harvest applications of salts. Postharvest Biol. Technol. 2006, 42, 142–149. [Google Scholar] [CrossRef]
- Zaker, M. Antifungal evaluation of some inorganic salts against three phytopathogenic fungi. Int. J. Agric. Crop. Sci. 2014, 7, 1352–1358. [Google Scholar]
- Chardonnet, C.O.; Doneche, B. Relation between calcium content and resistance to enzymatic digestion of the skin during grape ripening = Relation entre la teneur en calcium et la resistance a la digestion enzymatique du tissu pelliculaire au cours de la maturation du raisin. Vitis 1995, 34, 95–98. [Google Scholar]
- Martins, V.; Szakiel, A.; Pączkowski, C.; Teixeira, A.; Gerós, H. The restructuring of grape berry waxes by calcium changes the surface microbiota. Food Res. Int. 2021, 150, 110812. [Google Scholar] [CrossRef] [PubMed]
- Ciccarese, A.; Stellacci, A.M.; Gentilesco, G.; Rubino, P. Effectiveness of pre- and post-veraison calcium applications to control decay and maintain table grape fruit quality during storage. Postharvest Biol. Technol. 2013, 75, 135–141. [Google Scholar] [CrossRef]
- Bell, S.-J.; Henschke, P.A. Implications of nitrogen nutrition for grapes, fermentation and wine. Aust. J. Grape Wine Res. 2005, 11, 242–295. [Google Scholar] [CrossRef]
- Robinson, S.P.; Jacobs, A.K.; Dry, I.B. A Class IV Chitinase Is Highly Expressed in Grape Berries during Ripening. Plant Physiol. 1997, 114, 771–778. [Google Scholar] [CrossRef]
- Snoeijers, S.S.; García, A.P.; Joosten, M.H.; de Wit, P. The Effect of Nitrogen on Disease Development and Gene Expression in Bacterial and Fungal Plant Pathogens. Eur. J. Plant Pathol. 2000, 106, 493–506. [Google Scholar] [CrossRef]
- Robert, N.; Roche, K.; Lebeau, Y.; Breda, C.; Boulay, M.; Esnault, R.; Buffard, D. Expression of grapevine chitinase genes in berries and leaves infected by fungal or bacterial pathogens. Plant Sci. 2002, 162, 389–400. [Google Scholar] [CrossRef]
- Commenil, P.; Brunet, L.; Audran, J.-C. The development of the grape berry cuticle in relation to susceptibility to bunch rot disease. J. Exp. Bot. 1997, 48, 1599–1607. [Google Scholar] [CrossRef] [Green Version]
- Herzog, K.; Schwander, F.; Kassemeyer, H.-H.; Bieler, E.; Dürrenberger, M.; Trapp, O.; Töpfer, R. Towards Sensor-Based Phenotyping of Physical Barriers of Grapes to Improve Resilience to Botrytis Bunch Rot. Front. Plant Sci. 2022, 12, 808365. [Google Scholar] [CrossRef] [PubMed]
- Keller, M.; Arnink, K.J.; Hrazdina, G. Interaction of nitrogen availability during bloom and light intensity during veraison. I. Effects on grapevine growth, fruit development, and ripening. Am. J. Enol. Vitic. 1998, 49, 333–340. [Google Scholar]
- Verdenal, T.; Dienes-Nagy, Á.; Spangenberg, J.E.; Zufferey, V.; Spring, J.-L.; Viret, O.; Marin-Carbonne, J.; Van Leeuwen, C. Understanding and managing nitrogen nutrition in grapevine: A review. OENO One 2021, 55, 1–43. [Google Scholar] [CrossRef]
- Keller, M.; Hrazdina, G. Interaction of nitrogen availability during bloom and light intensity during veraison. II. Effects on anthocyanin and phenolic development during grape ripening. Am. J. Enol. Vitic. 1998, 49, 341–349. [Google Scholar]
- Keller, M.; Steel, C.C.; Creasy, G.L. Stilbene accumulation in grapevine tissues: Developmental and environmental effects. Acta Hort. 2000, 514, 275–286. [Google Scholar] [CrossRef]
- Bezier, A.; Lambert, B.; Baillieul, F. Study of Defense-related Gene Expression in Grapevine Leaves and Berries Infected with Botrytis cinerea. Eur. J. Plant Pathol. 2002, 108, 111–120. [Google Scholar] [CrossRef]
- Monteiro, E.; Gonçalves, B.; Cortez, I.; Castro, I. The Role of Biostimulants as Alleviators of Biotic and Abiotic Stresses in Grapevine: A Review. Plants 2022, 11, 396. [Google Scholar] [CrossRef]
- Mundy, D. A review of the direct and indirect effects of nitrogen on botrytis bunch rot in wine grapes. N. Z. Plant Prot. 2008, 61, 306–310. [Google Scholar] [CrossRef] [Green Version]
- Keller, M.; Kunner, M.; Carmo Vasconcelos, M. Reproductive growth of grapevines in reponse to nitrogen supply and rootstock. Aust. J. Grape Wine Res. 2001, 7, 12–18. [Google Scholar] [CrossRef]
- Christensen, L.P.; Bianchi, M.L.; Peacock, W.L.; Hirschfelt, D.J. Effect of nitrogen fertiliser timing and rate on inorganic nitrogen status, fruit composition, and yield of grapevines. Am. J. Enol. Vitic. 1994, 45, 377–387. [Google Scholar]
- Spayd, S.E.; Wample, R.L.; Stevens, R.G.; Evans, R.G.; Seymour, B.J.; Nagel, C.W. Nitrogen fertilisation of white Riesling grapes in Washington. Must and wine composition. Am. J. Enol. Vitic. 1994, 45, 34–42. [Google Scholar]
- Hilbert, G.; Soyer, J.P.; Molot, C.; Giraudon, J.; Milin, S.; Gaudillère, J.-P. Effects of nitrogen supply on must quality and anthocyanin accumulation in berries of cv. Merlot. Vitis 2003, 42, 69–76. [Google Scholar]
- Goldspink, B.-H.; Frayne, B. The effect of nutrients on vine performance, juice parameters and fermentation characteristics. In Fertilisers for Wine Grapes—An Information Package to Promote Efficient Fertiliser Practices; Goldspink, B.-H., Howes, K.M., Eds.; Agriculture Western Australia: Mildura, Australia, 1996; p. 12. [Google Scholar]
- Dawson, P. Growing great reds, Australian reds—How do they do it? In Proceedings of the Romeo Bragato Conference 2001, Napier, Australia, 30 August 2001. [Google Scholar]
Issue | Examples in the Literature |
---|---|
More restrictive governmental regulations such as European Union (EU) Directive 2009/128 and EU Green deal 2109 Farm to Fork Strategy | [8,9] |
Increasing restrictions on allowable residues by export markets and global retailers | [10,11] |
Older and less safe ingredients banned in the EU | [10,12] |
Adverse environmental impacts including deleterious effects on non-target organisms (e.g., bees, beneficial insects, fish & birds) | [13,14,15] |
Adverse effects on human health | [16,17,18,19] |
Rapid emergence of resistance to AP 1, DC 2, HA 3, MBC 4, QoI 5, PPs 6 and SDHI 7 fungicides, including multiple resistance to several FRAC coded fungicide groups | [20,21,22,23,24] |
Increasing demand for organics | [25] |
Resurgence in interest in ‘Regenerative Agriculture’ in the last five years | [26,27] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mundy, D.C.; Elmer, P.; Wood, P.; Agnew, R. A Review of Cultural Practices for Botrytis Bunch Rot Management in New Zealand Vineyards. Plants 2022, 11, 3004. https://doi.org/10.3390/plants11213004
Mundy DC, Elmer P, Wood P, Agnew R. A Review of Cultural Practices for Botrytis Bunch Rot Management in New Zealand Vineyards. Plants. 2022; 11(21):3004. https://doi.org/10.3390/plants11213004
Chicago/Turabian StyleMundy, Dion Charles, Philip Elmer, Peter Wood, and Rob Agnew. 2022. "A Review of Cultural Practices for Botrytis Bunch Rot Management in New Zealand Vineyards" Plants 11, no. 21: 3004. https://doi.org/10.3390/plants11213004
APA StyleMundy, D. C., Elmer, P., Wood, P., & Agnew, R. (2022). A Review of Cultural Practices for Botrytis Bunch Rot Management in New Zealand Vineyards. Plants, 11(21), 3004. https://doi.org/10.3390/plants11213004