Predicting Cloned Disease Resistance Gene Homologs (CDRHs) in Radish, Underutilised Oilseeds, and Wild Brassicaceae Species
Abstract
:1. Introduction
2. Results
2.1. Prediction of RGAs in Brassica cretica, Capsella bursa-pastoris and Sinapis alba
2.2. Identification of CDRHs across the Study Species and Diseases
2.3. Retention and Diversification of RGA Domains in CDRHs
2.4. Identification of CDRH Clusters in Arabis alpina, Camelina sativa and Cardamine hirsuta
3. Discussion
4. Materials and Methods
4.1. Mining the Protein Sequences of the Cloned Genes
4.2. Mining of Resistance Gene Analogs
4.3. Identification of Homologs
4.4. Gene Cluster Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Shehbaz, I.A. The Genera of Brassiceae (Cruciferae; Brassicaceae) in the Southeastern United States. J. Arnold Arbor. 1985, 66, 279–351. [Google Scholar] [CrossRef]
- Tamokou, J.D.D.; Mbaveng, A.T.; Kuete, V. Chapter 8-Antimicrobial Activities of African Medicinal Spices and Vegetables. In Medicinal Spices and Vegetables from Africa; Kuete, V., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 207–237. [Google Scholar]
- Warwick, S.I.; Mummenhoff, K.; Sauder, C.A.; Koch, M.A.; Al-Shehbaz, I.A. Closing the gaps: Phylogenetic relationships in the Brassicaceae based on DNA sequence data of nuclear ribosomal ITS region. Plant Syst. Evol. 2010, 285, 209–232. [Google Scholar] [CrossRef]
- Koornneef, M.; Meinke, D. The development of Arabidopsis as a model plant. Plant J. 2010, 61, 909–921. [Google Scholar] [CrossRef] [PubMed]
- Palmer, C.E.; Warwick, S.; Keller, W. Brassicaceae (Cruciferae) family, plant biotechnology, and phytoremediation. Int. J. Phytoremed. 2001, 3, 245–287. [Google Scholar] [CrossRef]
- Wötzel, S.; Andrello, M.; Albani, M.C.; Koch, M.A.; Coupland, G.; Gugerli, F. Arabis alpina: A perennial model plant for ecological genomics and life-history evolution. Mol. Ecol. Resour. 2022, 22, 468–486. [Google Scholar] [CrossRef]
- Nielsen, N.J.; Nielsen, J.; Staerk, D. New resistance-correlated saponins from the insect-resistant crucifer Barbarea vulgaris. J. Agric. Food Chem. 2010, 58, 5509–5514. [Google Scholar] [CrossRef]
- Brukhin, V.; Osadtchiy, J.V.; Florez-Rueda, A.M.; Smetanin, D.; Bakin, E.; Nobre, M.S.; Grossniklaus, U. The Boechera Genus as a Resource for Apomixis Research. Front. Plant Sci. 2019, 10, 00392. [Google Scholar] [CrossRef] [Green Version]
- Nagaharu, U. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn. J. Bot. 1935, 7, 389–452. [Google Scholar]
- Bansal, S.; Durrett, T.P. Camelina sativa: An ideal platform for the metabolic engineering and field production of industrial lipids. Biochimie 2016, 120, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Gan, X.; Hay, A.; Kwantes, M.; Haberer, G.; Hallab, A.; Ioio, R.D.; Hofhuis, H.; Pieper, B.; Cartolano, M.; Neumann, U. The Cardamine hirsuta genome offers insight into the evolution of morphological diversity. Nat. Plants 2016, 2, 16167. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.J.; Zhang, Z.; Wang, J.Y.; Oh, D.-H.; Dassanayake, M.; Liu, B.; Huang, Q.; Sun, H.X.; Xia, R.; Wu, Y. Insights into salt tolerance from the genome of Thellungiella salsuginea. Proc. Natl. Acad. Sci. USA 2012, 109, 12219–12224. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Mummenhoff, K.; Bowman, J.L. Allopolyploidization and evolution of species with reduced floral structures in Lepidium L. (Brassicaceae). Proc. Natl. Acad. Sci. USA 2002, 99, 16835–16840. [Google Scholar] [CrossRef] [Green Version]
- Moser, B.R.; Evangelista, R.L.; Jham, G. Fuel properties of Brassica juncea oil methyl esters blended with ultra-low sulfur diesel fuel. Renew. Energy 2015, 78, 82–88. [Google Scholar] [CrossRef]
- Wilkes, M.A.; Takei, I.; Caldwell, R.A.; Trethowan, R.M. The effect of genotype and environment on biodiesel quality prepared from Indian mustard (Brassica juncea) grown in Australia. Ind. Crops Prod. 2013, 48, 124–132. [Google Scholar] [CrossRef]
- Rahman, M.; Khatun, A.; Liu, L.; Barkla, B.J. Brassicaceae Mustards: Traditional and Agronomic Uses in Australia and New Zealand. Molecules 2018, 23, 231. [Google Scholar] [CrossRef] [Green Version]
- Austin, D. Dye Plants and Dyeing, Revised edition: Daniel F. Austin, Book Review Editor. Econ. Bot. 2003, 57, 288. [Google Scholar] [CrossRef]
- Hamburger, M. Isatis tinctoria–From the rediscovery of an ancient medicinal plant towards a novel anti-inflammatory phytopharmaceutical. Phytochem. Rev. 2002, 1, 333. [Google Scholar] [CrossRef]
- Denisow, B. Flowering and pollen production of several f. brassicaceae ornamentals. J. Apic. Sci. 2008, 52, 13–21. [Google Scholar]
- Raza, A.; Hafeez, M.B.; Zahra, N.; Shaukat, K.; Umbreen, S.; Tabassum, J.; Charagh, S.; Khan, R.S.; Hasanuzzaman, M. The Plant Family Brassicaceae: Introduction, Biology, And Importance. In The Plant Family Brassicaceae; Hasanuzzaman, M., Ed.; Springer: Singapore, 2020; pp. 1–43. [Google Scholar]
- Barbetti, M.J.; Li, C.X.; Banga, S.S.; Banga, S.K.; Singh, D.; Sandhu, P.S.; Singh, R.; Liu, S.Y.; You, M.P. New host resistances in Brassica napus and Brassica juncea from Australia, China and India: Key to managing Sclerotinia stem rot (Sclerotinia sclerotiorum) without fungicides. Crop Prot. 2015, 78, 127–130. [Google Scholar] [CrossRef]
- Barbetti, M.J.; Li, C.X.; You, M.P.; Singh, D.; Agnihotri, A.; Banga, S.K.; Sandhu, P.S.; Singh, R.; Banga, S.S. Valuable New Leaf or Inflorescence Resistances Ensure Improved Management of White Rust (Albugo candida) in Mustard (Brassica juncea) Crops. J. Phytopathol. 2016, 164, 404–411. [Google Scholar] [CrossRef]
- Bhattacharya, I.; Dutta, S.; Mondal, S.; Mondal, B. Clubroot disease on Brassica crops in India. Can. J. Plant Pathol. 2014, 36, 154–160. [Google Scholar] [CrossRef]
- Chattopadhyay, C.; Kolte, S.J.; Waliyar, F. Diseases of Edible Oilseed Crops; CRC Press Inc.: Boca Raton, FL, USA, 2015. [Google Scholar]
- Mani, A.; Dutta, P.; Chatterjee, S. Diseases in Brassica vegetable crops and their Integrated Disease Management (IDM). Agric. Food E-Newsl. 2020, 2, 532–542. [Google Scholar]
- Li, C.X.; Sivasithamparam, K.; Walton, G.; Salisbury, P.; Burton, W.; Banga, S.S.; Banga, S.; Chattopadhyay, C.; Kumar, A.; Singh, R.; et al. Expression and relationships of resistance to white rust (Albugo candida) at cotyledonary, seedling, and flowering stages in Brassica juncea germplasm from Australia, China, and India. Aust. J. Agric. Res. 2007, 58, 259–264. [Google Scholar] [CrossRef]
- Balesdent, M.H.; Barbetti, M.J.; Li, H.; Sivasithamparam, K.; Gout, L.; Rouxel, T. Analysis of Leptosphaeria maculans Race Structure in a Worldwide Collection of Isolates. Phytopathology 2005, 95, 1061. [Google Scholar] [CrossRef] [Green Version]
- Marcroft, S.J.; Elliott, V.L.; Cozijnsen, A.J.; Salisbury, P.A.; Howlett, B.J.; Van de Wouw, A.P. Identifying resistance genes to in Australian cultivars based on reactions to isolates with known avirulence genotypes. Crop Pasture Sci. 2012, 63, 338–350. [Google Scholar] [CrossRef]
- Jo, S.J.; Jang, K.S.; Choi, Y.H.; Kim, J.C.; Choi, G.J. Development of convenient screening method for resistant radish to Plasmodiophora brassicae. Res. Plant Dis. 2011, 17, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Fredua-Agyeman, R.; Jiang, J.; Hwang, S.-F.; Strelkov, S.E. QTL Mapping and Inheritance of Clubroot Resistance Genes Derived From Brassica rapa subsp. rapifera (ECD 02) Reveals Resistance Loci and Distorted Segregation Ratios in Two F2 Populations of Different Crosses. Front. Plant Sci. 2020, 11, 00899. [Google Scholar]
- Gan, C.; Yan, C.; Pang, W.; Cui, L.; Fu, P.; Yu, X.; Qiu, Z.; Zhu, M.; Piao, Z.; Deng, X. Identification of Novel Locus RsCr6 Related to Clubroot Resistance in Radish (Raphanus sativus L.). Front. Plant Sci. 2022, 13, 866211. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, A.; Liang, F.; Yao, X.; Wang, Y.; Liu, X.; Zhang, Y.; Dalelhan, J.; Zhang, B.; Qin, M.; et al. Screening of clubroot-resistant varieties and transfer of clubroot resistance genes to Brassica napus using distant hybridization. Breed Sci. 2018, 68, 258–267. [Google Scholar] [CrossRef] [Green Version]
- Atri, C.; Akhatar, J.; Gupta, M.; Gupta, N.; Goyal, A.; Rana, K.; Kaur, R.; Mittal, M.; Sharma, A.; Singh, M.P.; et al. Molecular and genetic analysis of defensive responses of Brassica juncea-B. fruticulosa introgression lines to Sclerotinia infection. Sci. Rep. 2019, 9, 17089. [Google Scholar] [CrossRef] [Green Version]
- Rana, K.; Atri, C.; Akhatar, J.; Kaur, R.; Goyal, A.; Singh, M.P.; Kumar, N.; Sharma, A.; Sandhu, P.S.; Kaur, G.; et al. Detection of First Marker Trait Associations for Resistance Against Sclerotinia sclerotiorum in Brassica juncea–Erucastrum cardaminoides Introgression Lines. Front. Plant Sci. 2019, 10, 1015. [Google Scholar] [CrossRef] [Green Version]
- Kumari, P.; Singh, K.P.; Bisht, D.; Kumar, S. Somatic hybrids of Sinapis alba + Brassica juncea: Study of backcross progenies for morphological variations, chromosome constitution and reaction to Alternaria brassicae. Euphytica 2020, 216, 93. [Google Scholar] [CrossRef]
- Mei, J.; Shao, C.; Yang, R.; Feng, Y.; Gao, Y.; Ding, Y.; Li, J.; Qian, W. Introgression and pyramiding of genetic loci from wild Brassica oleracea into B. napus for improving Sclerotinia resistance of rapeseed. Theor. Appl. Genet. 2020, 133, 1313–1319. [Google Scholar] [CrossRef]
- Garg, H.; Banga, S.; Bansal, P.; Atri, C.; Banga, S.S. Hybridizing Brassica rapa with wild crucifers Diplotaxis erucoides and Brassica maurorum. Euphytica 2007, 156, 417–424. [Google Scholar] [CrossRef]
- Chen, C.Y.; Séguin-Swartz, G. Reaction of wild crucifers to Leptosphaeria maculans, the causal agent of blackleg of crucifers. Can. J. Plant Pathol. 1999, 21, 361–367. [Google Scholar] [CrossRef]
- Gugel, R.K.; Séguin-Swartz, G. Introgression of Blackleg Resistance from Sinapis alba into Brassica napus. In Proceedings of the Brassica 97: International Symposium on Brassicas: 10th Crucifer Genetics Workshop, Rennes, France, 23–27 September 1997; p. 222. [Google Scholar]
- Li, H.; Barbetti, M.J.; Sivasithamparam, K. Hazard from reliance on cruciferous hosts as sources of major gene-based resistance for managing blackleg (Leptosphaeria maculans) disease. Field Crops Res. 2005, 91, 185–198. [Google Scholar] [CrossRef]
- Mithen, R.F.; Magrath, R. Glucosinolates and Resistance to Leptosphaeria maculans in Wild and Cultivated Brassica Species. Plant Breed. 1992, 108, 60–68. [Google Scholar] [CrossRef]
- Pedras, M.S.; Chumala, P.B.; Suchy, M. Phytoalexins from Thlaspi arvense, a wild crucifer resistant to virulent Leptosphaeria maculans: Structures, syntheses and antifungal activity. Phytochemistry 2003, 64, 949–956. [Google Scholar] [CrossRef]
- Plümper, B. Somatische und Sexuelle Hybridisierung für den Transfer von Krankheitsresistenzen auf Brassica napus L. Ph.D. Thesis, Free University of Berlin, Berlin, Germany, 1995; p. 108. [Google Scholar]
- Tewari, J.P.; Bansal, V.K.; Tewari, I.; Gómez-Campo, C.; Stringam, G.R.; Thiagarajah, M.R. Reactions of some wild and cultivated accessions of Eruca against Leptosphaeria maculans. Cruciferae Newslett. 1996, 18, 130–131. [Google Scholar]
- Winter, H. Untersuchungen zur Introgression von Resistenzen gegen die Wurzelhals- und Stengelfäule [Leptosphaeria maculans (Desm.) Ces. et De Not.] aus Verwandten Arten in den Raps (Brassica napus L.). Ph.D. Thesis, Freie Universität Berlin Universitätsbibliothek, Berlin, Germany, 23 February 2004. [Google Scholar]
- Sekhwal, M.K.; Li, P.; Lam, I.; Wang, X.; Cloutier, S.; You, F.M. Disease Resistance Gene Analogs (RGAs) in Plants. Int. J. Mol. Sci. 2015, 16, 19248–19290. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.D.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Le Roux, C.; Huet, G.; Jauneau, A.; Camborde, L.; Trémousaygue, D.; Kraut, A.; Zhou, B.; Levaillant, M.; Adachi, H.; Yoshioka, H.; et al. A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity. Cell 2015, 161, 1074–1088. [Google Scholar] [CrossRef] [Green Version]
- Ravensdale, M.; Bernoux, M.; Ve, T.; Kobe, B.; Thrall, P.H.; Ellis, J.G.; Dodds, P.N. Intramolecular Interaction Influences Binding of the Flax L5 and L6 Resistance Proteins to their AvrL567 Ligands. PLoS Pathog. 2012, 8, e1003004. [Google Scholar] [CrossRef]
- Whitham, S.; Dinesh-Kumar, S.P.; Choi, D.; Hehl, R.; Corr, C.; Baker, B. The product of the tobacco mosaic virus resistance gene N: Similarity to toll and the interleukin-1 receptor. Cell 1994, 78, 1101–1115. [Google Scholar] [CrossRef]
- Tirnaz, S.; Bayer, P.; Inturrisi, F.; Zhang, F.; Yang, H.; Dolatabadian, A.; Neik, T.; Severn-Ellis, A.; Patel, D.; Ibrahim, M.; et al. Resistance gene analogs in the Brassicaceae: Identification, characterization, distribution and evolution. Plant Physiol. 2020, 184, 909–922. [Google Scholar] [CrossRef]
- Afzal, A.J.; Wood, A.J.; Lightfoot, D.A. Plant receptor-like serine threonine kinases: Roles in signaling and plant defense. Mol. Plant Microbe Interact. 2008, 21, 507–517. [Google Scholar] [CrossRef] [Green Version]
- Chisholm, S.T.; Coaker, G.; Day, B.; Staskawicz, B.J. Host-microbe interactions: Shaping the evolution of the plant immune response. Cell 2006, 124, 803–814. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.; Trotochaud, A.E.; Clark, S.E. The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell 1999, 11, 1925–1933. [Google Scholar] [CrossRef] [Green Version]
- Nadeau, J.A.; Sack, F.D. Control of stomatal distribution on the Arabidopsis leaf surface. Science 2002, 296, 1697–1700. [Google Scholar] [CrossRef]
- Cantila, A.Y.; Neik, T.X.; Tirnaz, S.; Thomas, W.J.W.; Bayer, P.E.; Edwards, D.; Batley, J. Mining of Cloned Disease Resistance Gene Homologs (CDRHs) in Brassica Species and Arabidopsis thaliana. Biology 2022, 11, 821. [Google Scholar] [CrossRef]
- Wu, P.; Shao, Z.Q.; Wu, X.Z.; Wang, Q.; Wang, B.; Chen, J.Q.; Hang, Y.Y.; Xue, J.Y. Loss retention and evolution of NBS-encoding genes upon whole genome triplication of Brassica rapa. Gene 2014, 540, 54–61. [Google Scholar] [CrossRef]
- Bayer, P.; Golicz, A.; Tirnaz, S.; Chan, C.K.K.; Edwards, D.; Batley, J. Variation in abundance of predicted resistance genes in the Brassica oleracea pangenome. Plant Biotechnol. J. 2019, 17, 789–800. [Google Scholar] [CrossRef] [Green Version]
- Fedoroff, N. Transposons and genome evolution in plants. Proc. Natl. Acad. Sci. USA 2000, 97, 7002. [Google Scholar] [CrossRef] [Green Version]
- Vicient, C.M.; Casacuberta, J.M. Impact of transposable elements on polyploid plant genomes. Ann. Bot. 2017, 120, 195–207. [Google Scholar] [CrossRef] [Green Version]
- Bayer, P.E.; Scheben, A.; Golicz, A.A.; Yuan, Y.; Faure, S.; Lee, H.; Chawla, H.S.; Anderson, R.; Bancroft, I.; Raman, H.; et al. Modelling of gene loss propensity in the pangenomes of three Brassica species suggests different mechanisms between polyploids and diploids. Plant Biotechnol. J. 2021, 19, 2488–2500. [Google Scholar] [CrossRef]
- Yaakov, B.; Meyer, K.; Ben-David, S.; Kashkush, K. Copy number variation of transposable elements in Triticum–Aegilops genus suggests evolutionary and revolutionary dynamics following allopolyploidization. Plant Cell Rep. 2013, 32, 1615–1624. [Google Scholar] [CrossRef]
- Dolatabadian, A.; Bayer, P.E.; Tirnaz, S.; Hurgobin, B.; Edwards, D.; Batley, J. Characterization of disease resistance genes in the Brassica napus pangenome reveals significant structural variation. Plant Biotechnol. J. 2020, 18, 969–982. [Google Scholar] [CrossRef] [Green Version]
- Jabeen, N. Agricultural, Economic and Societal Importance of Brassicaceae Plants. In The Plant Family Brassicaceae; Hasanuzzaman, M., Ed.; Springer: Singapore, 2020; pp. 45–128. [Google Scholar]
- Séguin-Swartz, G.; Gugel, R.K.; Strelkov, S.; Olivier, C.; Li, J.L.; Klein-Gebbinck, H.; Borhan, H.; Caldwell, C.; Falk, K.C. Diseases of Camelina sativa (false flax). Can. J. Plant Pathol. 2010, 31, 375–386. [Google Scholar] [CrossRef]
- Duan, Y.D.Y.; Wang, J.L.; Wang, H.P.; Zhang, X.; Shen, D.; Song, J.P.; Li, X. Genetic analysis on the resistance of different radish germplasm to black rot. J. Plant Genet. Resour. 2015, 16, 1–6. [Google Scholar]
- Zhan, Z.; Nwafor, C.C.; Hou, Z.; Gong, J.; Zhu, B.; Jiang, Y.; Zhou, Y.; Wu, J.; Piao, Z.; Tong, Y.; et al. Cytological and morphological analysis of hybrids between Brassicoraphanus, and Brassica napus for introgression of clubroot resistant trait into Brassica napus L. PLoS ONE 2017, 12, e0177470. [Google Scholar] [CrossRef]
- Yang, H.; Yuan, Y.; Wei, X.; Zhang, X.; Wang, H.; Song, J.; Li, X. A New Identification Method Reveals the Resistance of an Extensive-Source Radish Collection to Plasmodiophora brassicae Race 4. Agronomy 2021, 11, 792. [Google Scholar] [CrossRef]
- Coelho, P.; Valério, L.; Monteiro, A. Comparing Cotyledon, Leaf and Root Resistance To Downy Mildew in Radish (Raphanus sativus L). Euphytica 2022, 218, 84. [Google Scholar] [CrossRef]
- Xu, L.; Jiang, Q.W.; Wu, J.; Wang, Y.; Gong, Y.Q.; Wang, X.L.; Limera, C.; Liu, L.W. Identification and Molecular Mapping of the RsDmR Locus Conferring Resistance to Downy Mildew at Seedling Stage in Radish (Raphanus sativus L.). J. Integr. Agric. 2014, 13, 2362–2369. [Google Scholar] [CrossRef] [Green Version]
- Lee, O.N.; Koo, H.; Yu, J.W.; Park, H.Y. Genotyping-by-Sequencing-Based Genome-Wide Association Studies of Fusarium Wilt Resistance in Radishes (Raphanus sativus L.). Genes 2021, 12, 858. [Google Scholar] [CrossRef]
- Kolte, S.J.; Bordoloi, D.K.; Awasthi, R.P. The search for resistance to major diseases of rapeseed and mustard in India. In Proceedings of the GCIRC 8th International Rapeseed Congress, Saskatoon, SK, Canada, 9–11 July 1991; pp. 219–225. [Google Scholar]
- Nyalugwe, E.P.; Barbetti, M.J.; Jones, R.A. Studies on resistance phenotypes to Turnip mosaic virus in five species of Brassicaceae, and identification of a virus resistance gene in Brassica juncea. Eur. J. Plant Pathol. 2015, 141, 647–666. [Google Scholar] [CrossRef]
- Scholze, P.; Krämer, R.; Ryschka, U.; Klocke, E.; Schumann, G. Somatic hybrids of vegetable brassicas as source for new resistances to fungal and virus diseases. Euphytica 2010, 176, 1–14. [Google Scholar] [CrossRef]
- Khangura, R.; Aberra, M. Strains of Leptosphaeria maculans with the Capacity to Cause Crown Canker on Brassica carinata are Present in Western Australia. Plant Dis. 2006, 90, 832. [Google Scholar] [CrossRef]
- Mamula, D.; Juretic, N.; Horvath, J. Susceptibility of host plants to belladonna mottle and turnip yellow mosaic tymoviruses: Multiplication and distribution. Acta Phytopathol. Entomol. Hung. 1997, 32, 289–298. [Google Scholar]
- Kumari, P.; Singh, K.P. Characterization of Stable Somatic Hybrids of Sinapis alba and Brassica juncea for Alternaria blight, Sclerotinia sclerotiurum Resistance and Heat Tolerance. Indian Res. J. Ext. Educ. 2019, 19, 99–103. [Google Scholar]
- Li, A.; Wei, C.; Jiang, J.; Zhang, Y.; Snowdon, R.J.; Wang, Y. Phenotypic variation in progenies from somatic hybrids between Brassica napus and Sinapis alba. Euphytica 2009, 170, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Westman, A.L.; Dickson, M. Disease reaction to Alternaria brassicicola and Xanthomonas campestris pv. campestris in Brassica nigra and other weedy crucifers. Crucif. Newslett. 1998, 20, 87–88. [Google Scholar]
- Happstadius, I.; Ljungberg, A.; Kristiansson, B.; Dixelius, C. Identification of Brassica oleracea germplasm with improved resistance to Verticillium wilt. Plant Breed. 2003, 122, 30–34. [Google Scholar] [CrossRef]
- Siemens, J. Interspecific Hybridisation between Wild Relatives and Brassica napus to Introduce New Resistance Traits into the Oilseed Rape Gene Pool. Czech J. Genet. Plant Breed. 2002, 38, 155–157. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.F.; Wang, H.; Li, Z.Y. Production and genetic analysis of partial hybrids in intertribal crosses between Brassica species (B. rapa, B. napus) and Capsella bursa-pastoris. Plant Cell Rep. 2007, 26, 1791–1800. [Google Scholar] [CrossRef]
- Tewari, J.P. Current understanding of resistance to Alternaria brassicae in crucifers. In Rapeseeds in a Changing World, Proceedings of the 8th International Rapeseed Congress, Saskatoon, SK, Canada, 9 July 1991; McGregor, D., Ed.; Groupe Consultatif International de Recherche sur le Colza (GCIRC): Paris, France, 1991; pp. 471–476. [Google Scholar]
- Crute, I.; Gray, A.; Crisp, P.; Buczacki, S. Variation in Plasmodiophora brassicae and resistance to clubroot disease in brassicas and allied crops-a critical review. Plant Breed. Abstr. 1980, 50, 91–104. [Google Scholar]
- Mohammed, A.E.; You, M.P.; Al-lami, H.F.D.; Barbetti, M.J. Pathotypes and phylogenetic variation determine downy mildew epidemics in Brassica spp. in Australia. Plant Pathol. 2018, 67, 1514–1527. [Google Scholar] [CrossRef]
- Uloth, M.B.; You, M.P.; Finnegan, P.M.; Banga, S.S.; Banga, S.K.; Sandhu, P.S.; Yi, H.; Salisbury, P.A.; Barbetti, M.J. New sources of resistance to Sclerotinia sclerotiorum for crucifer crops. Field Crops Res. 2013, 154, 40–52. [Google Scholar] [CrossRef]
- Schmidt, R.; Bancroft, I. Genetics and Genomics of the Brassicaceae. Springer Science & Business Media: New York, NY, USA, 2010. [Google Scholar]
- Bowers, J.E.; Chapman, B.A.; Rong, J.; Paterson, A.H. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 2003, 422, 433–438. [Google Scholar] [CrossRef]
- Song, X.; Wei, Y.; Xiao, D.; Gong, K.; Sun, P.; Ren, Y.; Yuan, J.; Wu, T.; Yang, Q.; Li, X.; et al. Brassica carinata genome characterization clarifies U’s triangle model of evolution and polyploidy in Brassica. Plant Physiol. 2021, 186, 388–406. [Google Scholar] [CrossRef]
- Beilstein, M.A.; Nagalingum, N.S.; Clements, M.D.; Manchester, S.R.; Mathews, S. Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2010, 107, 18724. [Google Scholar] [CrossRef]
- Lysak, M.A.; Koch, M.A.; Pecinka, A.; Schubert, I. Chromosome triplication found across the tribe Brassiceae. Genome Res. 2005, 15, 516–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Q.; Han, T.-S.; Chen, X.; Chen, J.F.; Zou, Y.P.; Li, Z.W.; Xu, Y.C.; Guo, Y.L. Long-term balancing selection contributes to adaptation in Arabidopsis and its relatives. Genome Biol. 2017, 18, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charlesworth, D. Balancing Selection and Its Effects on Sequences in Nearby Genome Regions. PLoS Genet. 2006, 2, e64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, M.; Haberer, G.; Panda, A.; Das Laha, S.; Ghosh, T.C.; Schäffner, A.R. Expression Pattern Similarities Support the Prediction of Orthologs Retaining Common Functions after Gene Duplication Events. Plant Physiol. 2016, 17, 2343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gustin, J.L.; Zanis, M.J.; Salt, D.E. Salt, Structure and evolution of the plant cation diffusion facilitator family of ion transporters. BMC Evol. Biol. 2011, 11, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Liu, Z. Arabidopsis ribonucleotide reductases are critical for cell cycle progression, DNA damage repair, and plant development. Plant Cell 2006, 18, 350–365. [Google Scholar] [CrossRef] [Green Version]
- Rehmany, A.P.; Gordon, A.; Rose, L.E.; Allen, R.L.; Armstrong, M.R.; Whisson, S.C.; Kamoun, S.; Tyler, B.M.; Birch, P.R.J.; Beynon, J.L. Differential Recognition of Highly Divergent Downy Mildew Avirulence Gene Alleles by RPP1 Resistance Genes from Two Arabidopsis Lines. Plant Cell 2005, 17, 1839–1850. [Google Scholar] [CrossRef] [Green Version]
- Faulkner, C.; Robatzek, S. Plants and pathogens: Putting infection strategies and defence mechanisms on the map. Curr. Opin. Plant Biol. 2012, 15, 699–707. [Google Scholar] [CrossRef]
- Nepal, M.P.; Benson, B.V. CNL disease resistance genes in soybean and their evolutionary divergence. Evol. Bioinform. 2015, 11, EBO.S21782. [Google Scholar] [CrossRef]
- Joshi, R.; Nayak, S. Perspectives of genomic diversification and molecular recombination towards R-gene evolution in plants. Physiol. Mol. Biol. Plants 2013, 19, 1–9. [Google Scholar] [CrossRef]
- Yue, J.X.; Meyers, B.C.; Chen, J.Q.; Tian, D.; Yang, S. Tracing the origin and evolutionary history of plant nucleotide-binding site–leucine-rich repeat NBS-LRR, genes. New Phytol. 2012, 193, 1049–1063. [Google Scholar] [CrossRef] [PubMed]
- Jacob, F.; Vernaldi, S.; Maekawa, T. Evolution and conservation of plant NLR functions. Front. Immunol. 2013, 4, 297–316. [Google Scholar] [CrossRef] [Green Version]
- Steinbrenner, A.D.; Goritschnig, S.; Staskawicz, B.J. Recognition and Activation Domains Contribute to Allele-Specific Responses of an Arabidopsis NLR Receptor to an Oomycete Effector Protein. PLoS Pathog. 2015, 11, e1004665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis, J.; Dodds, P.; Pryor, T. Structure, function and evolution of plant disease resistance genes. Curr. Opin. Plant Biol. 2000, 3, 278–284. [Google Scholar] [CrossRef]
- Dodds, P.N.; Lawrence, G.J.; Catanzariti, A.-M.; Teh, T.; Wang, C.-I.; Ayliffe, M.A.; Kobe, B.; Ellis, J.G. Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc. Natl. Acad. Sci. USA 2006, 103, 8888–8893. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Dorey, S.; Swiderski, M.; Jones, J.D. Expression of RPS4 in tobacco induces an AvrRps4-independent HR that requires EDS1, SGT1 and HSP90. Plant J. 2004, 40, 213–224. [Google Scholar] [CrossRef]
- Rairdan, G.J.; Collier, S.M.; Sacco, M.A.; Baldwin, T.T.; Boettrich, T.; Moffett, P. The coiled-coil and nucleotide binding domains of the potato Rx disease resistance protein function in pathogen recognition and signaling. Plant Cell 2008, 20, 739–751. [Google Scholar] [CrossRef] [Green Version]
- Ade, J.; DeYoung, B.J.; Golstein, C.; Innes, R.W. Indirect activation of a plant nucleotide binding site–leucine-rich repeat protein by a bacterial protease. Proc. Natl. Acad. Sci. USA 2007, 104, 2531–2536. [Google Scholar] [CrossRef] [Green Version]
- Michelmore, R.W.; Meyers, B.C. Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res. 1998, 8, 1113–1130. [Google Scholar] [CrossRef] [Green Version]
- Nützmann, H.-W.; Scazzocchio, C.; Osbourn, A. Metabolic gene clusters in eukaryotes. Annu. Rev. Genet. 2018, 52, 159–183. [Google Scholar] [CrossRef]
- van Wersch, S.; Li, X. Stronger When Together: Clustering of Plant NLR Disease resistance Genes. Trends Plant Sci. 2019, 24, 688–699. [Google Scholar] [CrossRef] [PubMed]
- Seah, S.; Telleen, A.C.; Williamson, V.M. Introgressed and endogenous Mi-1 gene clusters in tomato differ by complex rearrangements in flanking sequences and show sequence exchange and diversifying selection among homologues. Theor. Appl. Genet. 2007, 114, 1289–1302. [Google Scholar] [CrossRef] [PubMed]
- Meyers, B.; Kozik, A.; Griego, A.; Kuang, H.; Michelmore, R. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 2003, 15, 809–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steidele, C.E.; Stam, R. Multi-omics approach highlights differences between RLP classes in Arabidopsis thaliana. BMC Genom. 2021, 22, 557. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Ellendorff, U.; Kemp, B.; Mansfield, J.W.; Forsyth, A.; Mitchell, K.; Bastas, K.; Liu, C.-M.; Woods-Tör, A.; Zipfel, C.; et al. A Genome-Wide Functional Investigation into the Roles of Receptor-Like Proteins in Arabidopsis. Plant Physiol. 2008, 147, 503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, L.; Fröhlich, K.; Melzer, E.; Albert, I.; Pruitt, R.N.; Zhang, L.; Albert, M.; Kim, S.-T.; Chae, E.; Weigel, D.; et al. Genotyping-by-sequencing-based identification of Arabidopsis pattern recognition receptor RLP32 recognizing proteobacterial translation initiation factor IF1. Nat. Commun. 2022, 13, 1294. [Google Scholar] [CrossRef]
- Larkan, N.; Lydiate, D.; Yu, F.; Rimmer, S.; Borhan, H. Co-localisation of the blackleg resistance genes Rlm2 and LepR3 on Brassica napus chromosome A10. BMC Plant Biol. 2014, 14, 1595. [Google Scholar] [CrossRef] [Green Version]
- Larkan, N.J.; Ma, L.; Borhan, M.H. The Brassica napus receptor-like protein RLM2 is encoded by a second allele of the LepR3/Rlm2 blackleg resistance locus. Plant Biotechnol. J. 2015, 13, 983–992. [Google Scholar] [CrossRef]
- Stotz, H.U.; Harvey, P.J.; Haddadi, P.; Mashanova, A.; Kukol, A.; Larkan, N.J.; Borhan, M.H.; Fitt, B.D.L. Genomic evidence for genes encoding leucine-rich repeat receptors linked to resistance against the eukaryotic extra- and intracellular Brassica napus pathogens Leptosphaeria maculans and Plasmodiophora brassicae. PLoS ONE 2018, 13, e0198201. [Google Scholar]
- The UniProt. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar] [CrossRef]
- Grant, J.J.; Chini, A.; Basu, D.; Loake, G.J. Targeted Activation Tagging of the Arabidopsis NBS-LRR gene, ADR1, Conveys Resistance to Virulent Pathogens. Mol. Plant Microbe Interact. 2003, 16, 669–680. [Google Scholar] [CrossRef] [PubMed]
- Castel, B.; Ngou, P.M.; Cevik, V.; Redkar, A.; Kim, D.S.; Yang, Y.; Ding, P.; Jones, J.D.G. Diverse NLR immune receptors activate defence via the RPW8-NLR NRG1. New Phytol. 2019, 222, 966–980. [Google Scholar] [CrossRef] [PubMed]
- Saile, S.C.; Jacob, P.; Castel, B.; Jubic, L.M.; Salas-Gonzáles, I.; Bäcker, M.; Jones, J.D.G.; Dangl, J.L.; El Kasmi, F. Two unequally redundant "helper" immune receptor families mediate Arabidopsis thaliana intracellular "sensor" immune receptor functions. PLoS Biol. 2020, 18, e3000783. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Wang, X.; Wang, D.; Xu, F.; Ding, X.; Zhang, Z.; Bi, D.; Cheng, Y.T.; Chen, S.; Li, X.; et al. Regulation of cell death and innate immunity by two receptor-like kinases in Arabidopsis. Cell Host Microbe 2009, 6, 34–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albert, I.; Böhm, H.; Albert, M.; Feiler, C.E.; Imkampe, J.; Wallmeroth, N.; Brancato, C.; Raaymakers, T.M.; Oome, S.; Zhang, H.; et al. An RLP23–SOBIR1–BAK1 complex mediates NLP-triggered immunity. Nat. Plants 2015, 1, 15140. [Google Scholar] [CrossRef]
- Zhang, W.; Fraiture, M.; Kolb, D.; Löffelhardt, B.; Desaki, Y.; Boutrot, F.F.G.; Tör, M.; Zipfel, C.; Gust, A.A.; Brunner, F. Arabidopsis RECEPTOR-LIKE PROTEIN30 and Receptor-Like Kinase SUPPRESSOR OF BIR1-1/EVERSHED Mediate Innate Immunity to Necrotrophic Fungi. Plant Cell 2013, 25, 4227–4241. [Google Scholar] [CrossRef] [Green Version]
- Bent, A.F.; Kunkel, B.N.; Dahlbeck, D.; Brown, K.L.; Schmidt, R.; Giraudat, J.; Leung, J.; Staskawicz, B.J. RPS2 of Arabidopsis thaliana: A leucine-rich repeat class of plant disease resistance genes. Science 1994, 265, 1856–1860. [Google Scholar] [CrossRef]
- Gassmann, W.; Hinsch, M.E.; Staskawicz, B.J. The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes. Plant J. 1999, 20, 265–277. [Google Scholar] [CrossRef]
- Deslandes, L.; Olivier, J.; Theulieres, F.; Hirsch, J.; Feng, D.X.; Bittner-Eddy, P.; Beynon, J.; Marco, Y. Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc. Natl. Acad. Sci. USA 2002, 99, 2404–2409. [Google Scholar] [CrossRef] [Green Version]
- Tabata, S.; Kaneko, T.; Nakamura, Y.; Kotani, H.; Kato, T.; Asamizu, E.; Miyajima, N.; Sasamoto, S.; Kimura, T.; Hosouchi, T.; et al. Sequence and analysis of chromosome 5 of the plant Arabidopsis thaliana. Nature 2000, 408, 823–826. [Google Scholar]
- Gómez-Gómez, L.; Boller, T. FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 2000, 5, 1003–1011. [Google Scholar] [CrossRef]
- Century, K.S.; Shapiro, A.D.; Repetti, P.P.; Dahlbeck, D.; Holub, E.; Staskawicz, B.J. NDR1, a pathogen-induced component required for Arabidopsis disease resistance. Science 1997, 278, 1963–1965. [Google Scholar] [CrossRef]
- Swiderski, M.R.; Innes, R.W. The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily. Plant J. 2001, 26, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Grant, M.R.; Godiard, L.; Straube, E.; Ashfield, T.; Lewald, J.; Sattler, A.; Innes, R.W.; Dangl, J.L. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 1995, 269, 843–846. [Google Scholar] [CrossRef]
- Tornero, P.; Chao, R.A.; Luthin, W.N.; Goff, S.A.; Dangl, J.L. Large-scale structure-function analysis of the Arabidopsis RPM1 disease resistance protein. Plant Cell 2002, 14, 435–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Axtell, M.J.; Staskawicz, B.J. Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 2003, 112, 369–377. [Google Scholar] [CrossRef] [Green Version]
- Day, B.; Dahlbeck, D.; Staskawicz, B.J. NDR1 interaction with RIN4 mediates the differential activation of multiple disease resistance pathways in Arabidopsis. Plant Cell 2006, 18, 2782–2791. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Elmore, J.M.; Lin, Z.-J.D.; Coaker, G. A Receptor-like Cytoplasmic Kinase Phosphorylates the Host Target RIN4, Leading to the Activation of a Plant Innate Immune Receptor. Cell Host Microbe 2011, 9, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Mackey, D.; Belkhadir, Y.; Alonso, J.M.; Ecker, J.R.; Dangl, J.L. Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 2003, 112, 379–389. [Google Scholar] [CrossRef] [Green Version]
- Mackey, D.; Holt, B.F.; Wiig, A.; Dangl, J.L. RIN4 Interacts with Pseudomonas syringae Type III Effector Molecules and Is Required for RPM1-Mediated Resistance in Arabidopsis. Cell 2002, 108, 743–754. [Google Scholar] [CrossRef] [Green Version]
- Warren, R.F.; Henk, A.; Mowery, P.; Holub, E.; Innes, R.W. A Mutation within the Leucine-Rich Repeat Domain of the Arabidopsis Disease Resistance Gene RPS5 Partially Suppresses Multiple Bacterial and Downy Mildew Resistance Genes. Plant Cell 1998, 10, 1439–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarris, P.F.; Duxbury, Z.; Huh, S.U.; Ma, Y.; Segonzac, C.; Sklenar, J.; Derbyshire, P.; Cevik, V.; Rallapalli, G.; Saucet, S.B.; et al. A Plant Immune Receptor Detects Pathogen Effectors that Target WRKY Transcription Factors. Cell 2015, 161, 1089–1100. [Google Scholar] [CrossRef]
- Diener, A.C.; Ausubel, F.M. RESISTANCE TO FUSARIUM OXYSPORUM 1, a dominant Arabidopsis disease-resistance gene, is not race specific. Genetics 2005, 171, 305–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Y.; Diener, A.C. Arabidopsis thaliana RESISTANCE TO FUSARIUM OXYSPORUM 2 Implicates Tyrosine-Sulfated Peptide Signaling in Susceptibility and Resistance to Root Infection. PLoS Genet. 2013, 9, e1003525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, S.J.; Diener, A.C. Diversity in receptor-like kinase genes is a major determinant of quantitative resistance to Fusarium oxysporum f.sp. matthioli. New Phytol. 2013, 200, 172–184. [Google Scholar] [CrossRef]
- Staal, J.; Kaliff, M.; Bohman, S.; Dixelius, C. Transgressive segregation reveals two Arabidopsis TIR-NB-LRR resistance genes effective against Leptosphaeria maculans, causal agent of blackleg disease. Plant J. 2006, 46, 218–230. [Google Scholar] [CrossRef]
- Ma, L.; Djavaheri, M.; Wang, H.; Larkan, N.J.; Haddadi, P.; Beynon, E.; Gropp, G.; Borhan, M.H. Leptosphaeria maculans Effector Protein AvrLm1 Modulates Plant Immunity by Enhancing MAP Kinase 9 Phosphorylation. iScience 2018, 3, 177–191. [Google Scholar] [CrossRef] [Green Version]
- Larkan, N.J.; Lydiate, D.J.; Parkin, I.A.; Nelson, M.N.; Epp, D.J.; Cowling, W.A.; Rimmer, S.R.; Borhan, M.H. The Brassica napus blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the Leptosphaeria maculans effector AVRLM1. New Phytol. 2013, 197, 595–605. [Google Scholar] [CrossRef]
- Larkan, N.J.; Ma, L.; Haddadi, P.; Buchwaldt, M.; Parkin, I.A.P.; Djavaheri, M.; Borhan, M.H. The Brassica napus Wall-Associated Kinase-Like WAKL, gene Rlm9 provides race-specific blackleg resistance. Plant J. 2020, 104, 892–900. [Google Scholar] [CrossRef]
- Haddadi, P.; Larkan, N.J.; Van de Wouw, A.; Zhang, Y.; Neik, T.X.; Beynon, E.; Bayer, P.; Edwards, D.; Batley, J.; Borhan, M.H. Brassica napus genes Rlm4 and Rlm7, conferring resistance to Leptosphaeria maculans, are alleles of the Rlm9 wall-associated kinase-like resistance locus. Plant Biotechnol. J. 2022, 20, 1229–1231. [Google Scholar] [CrossRef]
- Staal, J.; Kaliff, M.; Dewaele, E.; Persson, M.; Dixelius, C. RLM3, a TIR domain encoding gene involved in broad-range immunity of Arabidopsis to necrotrophic fungal pathogens. Plant J. 2008, 55, 188–200. [Google Scholar] [CrossRef] [PubMed]
- Jehle, A.K.; Fürst, U.; Lipschis, M.; Albert, M.; Felix, G. Perception of the novel MAMP eMax from different Xanthomonas species requires the Arabidopsis receptor-like protein ReMAX and the receptor kinase SOBIR. Plant Signal Behav. 2013, 8, e27408. [Google Scholar] [CrossRef]
- Jehle, A.K.; Lipschis, M.; Albert, M.; Fallahzadeh-Mamaghani, V.; Fürst, U.; Mueller, K.; Felix, G. The Receptor-Like Protein ReMAX of Arabidopsis Detects the Microbe-Associated Molecular Pattern eMax from Xanthomonas. Plant Cell 2013, 25, 2330–2340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albert, I.; Zhang, L.; Bemm, H.; Nürnberger, T. Structure-Function Analysis of Immune Receptor AtRLP23 with Its Ligand nlp20 and Coreceptors AtSOBIR1 and AtBAK1. Mol. Plant Microbe Interact. 2019, 32, 1038–1046. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Kars, I.; Essenstam, B.; Liebrand, T.W.H.; Wagemakers, L.; Elberse, J.; Tagkalaki, P.; Tjoitang, D.; van den Ackerveken, G.; van Kan, J.A.L. Fungal Endopolygalacturonases Are Recognized as Microbe-Associated Molecular Patterns by the Arabidopsis Receptor-Like Protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1. Plant Physiol. 2014, 164, 352–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botella, M.A.; Parker, J.E.; Frost, L.N.; Bittner-Eddy, P.D.; Beynon, J.L.; Daniels, M.J.; Holub, E.B.; Jones, J.D.G. Three Genes of the Arabidopsis RPP1 Complex Resistance Locus Recognize Distinct Peronospora parasitica Avirulence Determinants. Plant Cell 1998, 10, 1847. [Google Scholar] [CrossRef] [Green Version]
- Sinapidou, E.; Williams, K.; Nott, L.; Bahkt, S.; Tör, M.; Crute, I.; Bittner-Eddy, P.; Beynon, J. Two TIR:NB:LRR genes are required to specify resistance to Peronospora parasitica isolate Cala2 in Arabidopsis. Plant J. 2004, 38, 898–909. [Google Scholar] [CrossRef] [Green Version]
- van der Biezen, E.A.; Freddie, C.T.; Kahn, K.; Parker, J.E.; Jones, J.D. Arabidopsis RPP4 is a member of the RPP5 multigene family of TIR-NB-LRR genes and confers downy mildew resistance through multiple signalling components. Plant J. 2002, 29, 439–451. [Google Scholar] [CrossRef] [Green Version]
- Parker, J.E.; Coleman, M.J.; Szabò, V.; Frost, L.N.; Schmidt, R.; van der Biezen, E.A.; Moores, T.; Dean, C.; Daniels, M.J.; Jones, J.D. The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6. Plant Cell 1997, 9, 879–894. [Google Scholar] [CrossRef] [Green Version]
- Barragan, C.A.; Wu, R.; Kim, S.-T.; Xi, W.; Habring, A.; Hagmann, J.; Van de Weyer, A.-L.; Zaidem, M.; Ho, W.W.H.; Wang, G.; et al. RPW8/HR repeats control NLR activation in Arabidopsis thaliana. PLoS Genet. 2019, 15, e1008313. [Google Scholar] [CrossRef]
- Tsuchiya, T.; Eulgem, T. An alternative polyadenylation mechanism coopted to the Arabidopsis RPP7 gene through intronic retrotransposon domestication. Proc. Natl. Acad. Sci. USA 2013, 110, E3535–E3543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDowell, J.M.; Dhandaydham, M.; Long, T.A.; Aarts, M.G.; Goff, S.; Holub, E.B.; Dangl, J.L. Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell 1998, 10, 1861–1874. [Google Scholar] [CrossRef] [PubMed]
- Bittner-Eddy, P.D.; Crute, I.R.; Holub, E.B.; Beynon, J.L. RPP13 is a simple locus in Arabidopsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in Peronospora parasitica. Plant J. 2000, 21, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Goritschnig, S.; Krasileva, K.V.; Dahlbeck, D.; Staskawicz, B.J. Computational Prediction and Molecular Characterization of an Oomycete Effector and the Cognate Arabidopsis Resistance Gene. PLoS Genet. 2012, 8, e1002502. [Google Scholar] [CrossRef] [Green Version]
- Xiao, S.; Ellwood, S.; Calis, O.; Patrick, E.; Li, T.; Coleman, M.; Turner, J.G. Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 2001, 291, 118–120. [Google Scholar] [CrossRef]
- Borhan, M.H.; Holub, E.B.; Beynon, J.L.; Rozwadowski, K.; Rimmer, S.R. The Arabidopsis TIR-NB-LRR gene RAC1 confers resistance to Albugo candida white rust, and is dependent on EDS1 but not PAD4. Mol. Plant Microbe Interact. 2004, 17, 711–719. [Google Scholar] [CrossRef] [Green Version]
- Borhan, M.H.; Gunn, N.; Cooper, A.; Gulden, S.; Tör, M.; Rimmer, S.R.; Holub, E.B. WRR4 encodes a TIR-NB-LRR protein that confers broad-spectrum white rust resistance in Arabidopsis thaliana to four physiological races of Albugo candida. Mol. Plant Microbe Interact. 2008, 21, 757–768. [Google Scholar] [CrossRef] [Green Version]
- Cevik, V.; Boutrot, F.; Apel, W.; Robert-Seilaniantz, A.; Furzer, O.J.; Redkar, A.; Castel, B.; Kover, P.X.; Prince, D.C.; Holub, E.B.; et al. Transgressive segregation reveals mechanisms of Arabidopsis immunity to Brassica-infecting races of white rust Albugo candida. Proc. Natl. Acad. Sci. USA 2019, 116, 2767–2773. [Google Scholar] [CrossRef] [Green Version]
- Arora, H.; Padmaja, K.L.; Paritosh, K.; Mukhi, N.; Tewari, A.K.; Mukhopadhyay, A.; Gupta, V.; Pradhan, A.K.; Pental, D. BjuWRR1, a CC-NB-LRR gene identified in Brassica juncea, confers resistance to white rust caused by Albugo candida. Theor. Appl. Genet. 2019, 132, 2223–2236. [Google Scholar] [CrossRef]
- Hatakeyama, K.; Niwa, T.; Kato, T.; Ohara, T.; Kakizaki, T.; Matsumoto, S. The tandem repeated organization of NB-LRR genes in the clubroot-resistant CRb locus in Brassica rapa L. Mol. Genet. Genom. 2017, 292, 397–405. [Google Scholar] [CrossRef]
- Ueno, H.; Matsumoto, E.; Aruga, D.; Kitagawa, S.; Matsumura, H.; Hayashida, N. Molecular characterization of the CRa gene conferring clubroot resistance in Brassica rapa. Plant Mol. Biol. 2012, 80, 621–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatakeyama, K.; Suwabe, K.; Tomita, R.N.; Kato, T.; Nunome, T.; Fukuoka, H.; Matsumoto, S. Identification and Characterization of Crr1a, a Gene for Resistance to Clubroot Disease Plasmodiophora brassicae Woronin, in Brassica rapa L. PLoS ONE 2013, 8, e54745. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, M.; Pu, Z.J.; Kawanabe, T.; Kitashiba, H.; Matsumoto, S.; Ebe, Y.; Sano, M.; Funaki, T.; Fukai, E.; Fujimoto, R.; et al. Map-based cloning of a candidate gene conferring Fusarium yellows resistance in Brassica oleracea. Theor. Appl. Genet. 2015, 128, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Quan, X.; Jia, G.; Xiao, J.; Cloutier, S.; You, F.M. RGAugury: A pipeline for genome-wide prediction of resistance gene analogs RGAs, in plants. BMC Genom. 2016, 17, 852. [Google Scholar] [CrossRef] [Green Version]
- Kioukis, A.; Michalopoulou, V.A.; Briers, L.; Pirintsos, S.; Studholme, D.J.; Pavlidis, P.; Sarris, P.F. Intraspecific diversification of the crop wild relative Brassica cretica Lam. using demographic model selection. BMC Genom. 2020, 21, 48. [Google Scholar] [CrossRef] [Green Version]
- Kasianov, A.S.; Klepikova, A.V.; Kulakovskiy, I.V.; Gerasimov, E.S.; Fedotova, A.V.; Besedina, E.G.; Kondrashov, A.S.; Logacheva, M.D.; Penin, A.A. High-quality genome assembly of Capsella bursa-pastoris reveals asymmetry of regulatory elements at early stages of polyploid genome evolution. Plant J. 2017, 91, 278–291. [Google Scholar] [CrossRef] [Green Version]
- Platts, A.; Shu, S.; Wright, S.; Barry, K.; Edger, P.; Pires, J.C.; Schmutz, J. WGS Assembly of Sinapis alba; DOE Joint Genome Institute: Berkeley, CA, USA, 2020.
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [Green Version]
- Rameneni, J.J.; Lee, Y.; Dhandapani, V.; Yu, X.; Choi, S.R.; Oh, M.-H.; Lim, Y.P. Genomic and Post-Translational Modification Analysis of Leucine-Rich-Repeat Receptor-Like Kinases in Brassica rapa. PLoS ONE 2015, 10, e0142255. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, J.; Yang, S.; Song, Y. Identification and expression analysis of the LRR-RLK gene family in tomato Solanum lycopersicum, Heinz 1706. Genome 2015, 58, 121–134. [Google Scholar] [CrossRef]
- Yang, H.; Bayer, P.E.; Tirnaz, S.; Edwards, D.; Batley, J. Genome-Wide Identification and Evolution of Receptor-Like Kinases RLKs, and Receptor like Proteins RLPs in Brassica juncea. Biology 2021, 10, 17. [Google Scholar] [CrossRef]
- Willing, E.-M.; Rawat, V.; Mandáková, T.; Maumus, F.; James, G.V.; Nordström, K.J.; Becker, C.; Warthmann, N.; Chica, C.; Szarzynska, B. Genome expansion of Arabis alpina linked with retrotransposition and reduced symmetric DNA methylation. Nat. Plants 2015, 1, nplants201423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kagale, S.; Koh, C.; Nixon, J.; Bollina, V.; Clarke, W.E.; Tuteja, R.; Spillane, C.; Robinson, S.J.; Links, M.G.; Clarke, C. The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure. Nat. Commun. 2014, 5, 3706. [Google Scholar] [CrossRef] [PubMed]
- Holub, E.B. The arms race is ancient history in Arabidopsis, the wildflower. Nat. Rev. Genet. 2001, 2, 516–527. [Google Scholar] [CrossRef] [PubMed]
- Jupe, F.; Pritchard, L.; Etherington, G.J.; Mackenzie, K.; Cock, P.J.; Wright, F.; Sharma, S.K.; Bolser, D.; Bryan, G.J.; Jones, J.D.; et al. Identification and localisation of the NB-LRR gene family within the potato genome. BMC Genom. 2012, 13, 75. [Google Scholar] [CrossRef] [PubMed]
Cloned Gene (RGA Subclass) | Same RGA Domain | Different RGA Domain (Total) | Total |
---|---|---|---|
At_ADR1 (NL) | 33 NL | 5 CNL, 6 NBS, 1 TNL (12) | 45 |
At_BAK1 (LRR-RLK) | 117 LRR-RLK | 2 Other-RLK (2) | 119 |
At_FLS2 (LRR-RLK) | 24 LRR-RLK | 0 | 24 |
At_NDR1 (TM) | 0 | 0 | 0 |
At_NRG1a (RNL) | 0 | 31 CNL, 28 NL, 1 LRR-RLP, 3 CN, 3 NBS (66) | 66 |
At_NRG1b (RNL) | 0 | 31 CNL, 26 NL, 1 LRR-RLP, 3 CN, 3 NBS (64) | 64 |
At_PBS1 (Other-RLK) | 20 Other-RLK | 0 | 20 |
At_RAC1 (TNL) | 48 TNL | 10 NL, 3 NBS, 13 TN, 6 TX, 1 Other-NLR (33) | 81 |
At_RFO1 (Other-RLK) | 119 Other-RLK | 0 | 119 |
At_RFO2 (LRR-RLP) | 31 LRR-RLP | 28 LRR-RLK (28) | 59 |
At_RFO3 (Other-RLK) | 50 Other-RLK | 0 | 50 |
At_RIN4 (CC) | 0 | 0 | 0 |
At_RLM1a (TNL) | 61 TNL | 5 NBS, 12 NL, 9 Other-NLR, 16 TN, 38 TX (80) | 141 |
At_RLM1b (TNL) | 81 TNL | 4 NBS, 23 NL, 8 Other-NLR, 16 TN, 31 TX, 1 LRR-RLP (83) | 164 |
At_RLM3 (TN) | 5 TN | 3 NL, 2 NBS, 1 Other-NLR, 7 TNL, 4 TX (17) | 22 |
At_RLP1 (LRR-RLP) | 36 LRR-RLP | 0 | 36 |
At_RLP23 (LRR-RLP) | 117 LRR-RLP | 0 | 117 |
At_RLP30 (LRR-RLP) | 47 LRR-RLP | 0 | 47 |
At_RLP32 (LRR-RLP) | 159 LRR-RLP | 1 LRR-RLK (1) | 160 |
At_RLP42 (LRR-RLP) | 112 LRR-RLP | 0 | 112 |
At_RPM1 (NL) | 14 NL | 1 LRR-RLP, 1 NBS (2) | 16 |
At_RPP1 (TNL) | 26 TNL | 1 CNL, 22 Other-NLR, 2 NBS, 6 NL, 15 TN, 30 TX (76) | 102 |
At_RPP13 (CNL) | 14 CNL | 4 NBS, 1 CN, 16 NL (21) | 35 |
At_RPP2a (TNL) | 56 TNL | 19 NL, 9 Other-NLR, 7 TN, 7 TX (42) | 98 |
At_RPP2b (TNL) | 20 TNL | 1 CNL, 2 NBS, 3 NL, 4 Other-NLR (10) | 30 |
At_RPP39 (CNL) | 71 CNL | 11 CN, 3 NBS, 26 NL, 3 LRR-RLP (43) | 114 |
At_RPP4 (TNL) | 8 TNL | 3 NL, 2 Other-NLR, 5 TN, 5 TX (15) | 23 |
At_RPP5 (TNL) | 8 TNL | 2 NL, 3 Other-NLR, 6 TN, 11 TX (22) | 30 |
At_RPP7 (NL) | 56 NL | 1 CN, 12 CNL, 1 LRR-RLP, 10 NBS (24) | 80 |
At_RPP8 (CNL) | 80 CNL | 12 CN, 6 NBS, 24 NL (42) | 122 |
At_RPS2 (NL) | 6 NL | 18 CNL, 3 NBS (21) | 27 |
At_RPS4 (TNL) | 32 TNL | 1 NBS, 6 NL, 7 Other-NLR (14) | 46 |
At_RPS5 (TNL) | 0 | 58 CNL, 6 CN, 7 NBS, 22 NL (93) | 93 |
At_Rpw8.1 (RNL) | 0 | 0 | 0 |
At_Rpw8.2 (RNL) | 0 | 0 | 0 |
At_RRS1 (TNL) | 26 TNL | 0 (15) | 41 |
At_SOBIR1 (LRR-RLK) | 26 LRR-RLK | 1 Other-RLK (1) | 27 |
At_WRR12 (TNL) | 29 TNL | 5 NL, 2 TX, 4 LRR-RLP (11) | 40 |
At_WRR4a (TNL) | 37 TNL | 4 NL, 4 Other-NLR, 6 TN, 33 TX (47) | 84 |
At_WRR4b (TNL) | 51 TNL | 2 LRR-RLP, 5 NL, 6 Other-NLR, 17 TN, 38 TX (68) | 119 |
At_WRR8 (TNL) | 56 TNL | 12 TN, 4 NBS, 11 NL, 2 Other-NLR, 6 TX (35) | 91 |
At_WRR9 (NL) | 6 NL | 1 NBS, 1 Other-NLR, 9 TN, 35 TNL, 16 TX (62) | 68 |
Bju_WRR1 (CNL) | 39 CNL | 10 NL, 9 CN, 3 NBS (22) | 61 |
Bna_LepR3/Rlm2 (LRR-RLP) | 97 LRR-RLP | 0 | 97 |
Bna_MAPk (Other-RLK) | 8 Other-RLK | 0 | 8 |
Bna_Rlm9/4/7 (Other-RLK) | 101 Other-RLK | 0 | 101 |
Bol_FocBo1 (TNL) | 23 TNL | 3 Other-NLR, 7 TN, 14 TX, 8 NL (32) | 55 |
Bra_cRa/cRb (TNL) | 14 TNL | 1 Other-NLR, 5 TN, 1NBS, 7 TX (14) | 28 |
Bra_Crr1a (TNL) | 28 TNL | 7 NL, 6 Other-NLR, 28 TN, 19 TX, 2 NBS (62) | 90 |
Total | 1992 | 1181 | 3172 |
Gene (Accession ID/Reference) | Pathogen |
---|---|
At_ADR1 (Q9FW44 U) [121,122,123] | Hyaloperonospora arabidopsidis F, Erysiphe cichoracearum F and Pseudomonas syringae B |
At_BAK1 (Q94F62 U) and At_SOBIR1 (Q9SKB2 U) [124,125] and At_RLP30 (Q9MA83 U) [115,126] | P. syringae and Sclerotinia sclerotiorum F |
At_RPS2 (Q42484 U) [127], At_RPS4 (Q9XGM3 U) [128] and At_RPS5 (O64973 U) [129], At_FLS2 (Q9FL28 U) [130,131], At_NDR1 (O48915 U) [132], At_PBS1 (Q9FE20 U) [133], At_RLP32 (Q9M9X0 U) [116], At_RPM1 (Q39214 U) [134,135], At_RIN4 (Q8GYN5 U) [136,137,138,139,140] and At_RRS1 (P0DKH5 U) [141,142] | P. syringae |
At_NGR1a (Q9FKZ1 U) and At_NGR1b (Q9FKZ0 U) [122,123] | Albugo candidaF, H. arabidopsidis, and P. syringae |
At_RFO1 (Q8RY17 U) [143], At_RFO2 (Q9SHI4 U) [144] and At_RFO3 (Q9LW83 U) [145] | Fusarium oxysporum matthioli F |
At_RLM1a (F4I594 U) and At_RLM1b (Q9CAK1 U) [146], Bna_MPK9 (A0A078IFE9 U) [147], Bna_LepR3/Rlm2 (I7C3X3 U/A0A0B5L618 U) [118,148], Bna_Rlm9/4/7 (CDX67982.1 N) [149,150] | Leptosphaeria maculans F |
At_RLM3 (Q9FT77 U) [151] | L. maculans, Botrytis cinerea F, Alternaria brassicicola F and A. brassicae F |
At_RLP1 (Q9LNV9 U) [152,153] | Xanthomonas spp. B |
At_RLP23 (O48849 U) [125,154] | S. sclerotiorum |
At_RLP42 (Q9LJS0 U) [155] | B. cinerea and H. arabidopsidis |
At_RPP1 (F4J339 U) [156], At_RPP2a (F4JT78 U) and At_RPP2b (F4JT80 U) [157], At_RPP4 (F4JNA9 U) [158], At_RPP5 (F4JNB7 U) [159], At_RPP7 (Q8W3K0 U) [160,161], At_RPP8 (Q8W4J9 U) [162], At_RPP13 (Q9M667 U) [163] and At_RPP39 (H9BPR9 U) [164] | H. arabidopsidis |
At_Rpw8.1 (Q9C5Z7 U) and At_Rpw8.2 (Q9C5Z6 U) [165] | E. cichoracearum |
At_RAC1 (Q6QX58 U) [166], At_WRR4a (Q9C7X0 U) and At_WRR4b (MK034466 N) [167], At_WRR8 (MK034463 N), At_WRR9 (MK034464 N), At_WRR12 (MK034462 N) [168] and Bju_WRR1 (A0A0B5L618 U) [169] | A. candida |
Bra_cRa/cRb (M5A8J3 U) [170,171] and Bra_Crr1a (AB605024.1 N) [172] | Plasmodiophora brassicae F |
Bol_FocBo1 (BAQ21734.1 N) [173] | F. oxysporum f. sp. Conglutinans F |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cantila, A.Y.; Thomas, W.J.W.; Bayer, P.E.; Edwards, D.; Batley, J. Predicting Cloned Disease Resistance Gene Homologs (CDRHs) in Radish, Underutilised Oilseeds, and Wild Brassicaceae Species. Plants 2022, 11, 3010. https://doi.org/10.3390/plants11223010
Cantila AY, Thomas WJW, Bayer PE, Edwards D, Batley J. Predicting Cloned Disease Resistance Gene Homologs (CDRHs) in Radish, Underutilised Oilseeds, and Wild Brassicaceae Species. Plants. 2022; 11(22):3010. https://doi.org/10.3390/plants11223010
Chicago/Turabian StyleCantila, Aldrin Y., William J. W. Thomas, Philipp E. Bayer, David Edwards, and Jacqueline Batley. 2022. "Predicting Cloned Disease Resistance Gene Homologs (CDRHs) in Radish, Underutilised Oilseeds, and Wild Brassicaceae Species" Plants 11, no. 22: 3010. https://doi.org/10.3390/plants11223010
APA StyleCantila, A. Y., Thomas, W. J. W., Bayer, P. E., Edwards, D., & Batley, J. (2022). Predicting Cloned Disease Resistance Gene Homologs (CDRHs) in Radish, Underutilised Oilseeds, and Wild Brassicaceae Species. Plants, 11(22), 3010. https://doi.org/10.3390/plants11223010