The Effect of Hot-Melt Extrusion of Mulberry Leaf on the Number of Active Compounds and Antioxidant Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction Method
2.3. Preparation of HME-ML
2.4. HPLC Analysis
2.5. Total Phenolic Content (TPC)
2.6. Total Flavonoid Content (TFC)
2.7. Antioxidant Activity
2.8. Statistical Processing
3. Results and Discussion
3.1. Analysis of Isoquercetin and Rutin Contents of Mulberry Leaf and HME-ML
3.2. Total Phenolic Content
3.3. Total Flavonoid Content
3.4. Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Q.; Liu, J.; Liao, S.; Zou, Y. Mulberry Leaf Polyphenols and Fiber Induce Synergistic Antiobesity and Display a Modulation Effect on Gut Microbiota and Metabolites. Nutrients 2019, 11, 1017. [Google Scholar] [CrossRef] [Green Version]
- Wen, L.; Shi, D.; Zhou, T.; Tu, J.; He, M.; Jiang, Y.; Yang, B. Identification of two novel prenylated flavonoids in mulberry leaf and their bioactivities. Food Chem. 2020, 315, 126236. [Google Scholar] [CrossRef]
- Hao, J.Y.; Wan, Y.; Yao, X.H.; Zhao, W.G.; Hu, R.Z.; Chen, C.; Li, L.; Zhang, D.-Y.; Wu, G.-H. Effect of different planting areas on the chemical compositions and hypoglycemic and antioxidant activities of mulberry leaf extracts in Southern China. PLoS ONE 2018, 13, e0198072. [Google Scholar] [CrossRef]
- Zhang, D.-Y.; Wan, Y.; Hao, J.-Y.; Hu, R.-Z.; Chen, C.; Yao, X.-H.; Zhao, W.-G.; Liu, Z.-Y.; Li, L. Evaluation of the alkaloid, polyphenols, and antioxidant contents of various mulberry cultivars from different planting areas in eastern China. Ind. Crops Prod. 2018, 122, 298–307. [Google Scholar] [CrossRef]
- Sánchez-Salcedo, E.M.; Tassotti, M.; del Rio, D.; Hernández, F.; Martínez, J.J.; Mena, P. (Poly)phenolic fingerprint and chemometric analysis of white (Morus alba L.) and black (Morus nigra L.) mulberry leaves by using a non-targeted UHPLC-MS approach. Food Chem. 2016, 212, 250–255. [Google Scholar] [CrossRef]
- Huang, J.; Wang, Y.; Ying, C.; Liu, L.; Lou, C. Effects of mulberry leaf on experimental hyperlipidemia rats induced by high-fat diet. Exp. Ther. Med. 2018, 16, 547–556. [Google Scholar] [CrossRef] [Green Version]
- Tu, J.; Shi, D.; Wen, L.; Jiang, Y.; Zhao, Y.; Yang, J.; Liu, H.; Liu, G.; Yang, B. Identification of moracin N in mulberry leaf and evaluation of antioxidant activity. Food Chem. Toxicol. 2019, 13, 110730. [Google Scholar] [CrossRef]
- Ma, Y.; Lv, W.; Gu, Y.; Yu, S. 1-Deoxynojirimycin in Mulberry (Morus indica L.) Leaves Ameliorates Stable Angina Pectoris in Patients with Coronary Heart Disease by Improving Antioxidant and Anti-inflammatory Capacities. Front. Pharmacol. 2019, 10, 569. [Google Scholar] [CrossRef]
- Chae, J.Y.; Lee, J.Y.; Hoang, I.S.; Whangbo, D.; Choi, P.W.; Lee, W.C.; Kim, J.-W.; Kim, S.-Y.; Choi, S.-W.; Rhee, S.-J. Analysis of Functional Components of Leaves of Different Mulberry Cultivars. J. Korean Soc. Food Sci. Nutr. 2003, 32, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Li, H.; Zhang, B.; Wang, J.; Shi, X.; Huang, J.; Yang, J.; Zhang, Y.; Deng, Z. Nutritional and functional components of mulberry leaves from different varieties: Evaluation of their potential as food materials. Int. J. Food Prop. 2018, 21, 1495–1507. [Google Scholar] [CrossRef]
- Liang, L.; Wu, X.; Zhu, M.; Zhao, W.; Li, F.; Zou, Y.; Yang, L. Chemical composition, nutritional value, and antioxidant activities of eight mulberry cultivars from China. Pharmacogn. Mag. 2012, 8, 215–224. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Chen, X.; Ou, X.; Ma, L.; Xu, W.; Huang, K. Evaluation of flavonoid and polyphenol constituents in mulberry leaves using HPLC fingerprint analysis. Int. J. Food Sci. Technol. 2019, 55, 526–533. [Google Scholar] [CrossRef]
- Frutos, M.J.; Rincón-Frutos, L.; Valero-Cases, E. Chapter 2.14—Rutin. In Nonvitamin and Nonmineral Nutritional Supplements; Academic Press: Cambridge, MA, USA, 2019; pp. 111–117. [Google Scholar] [CrossRef]
- Valentová, K.; Vrba, J.; Bancířová, M.; Ulrichová, J.; Křen, V. Isoquercitrin: Pharmacology, toxicology, and metabolism. Food Chem. Toxicol. 2014, 68, 267–282. [Google Scholar] [CrossRef]
- Simões, M.F.; Pinto, R.; Simões, S. Hot-melt extrusion in the pharmaceutical industry: Toward filing a new drug application. Drug Discov. 2019, 24, 1749–1768. [Google Scholar] [CrossRef]
- Censi, R.; Gigliobianco, M.R.; Casadidio, C.; di Martino, P. Hot Melt Extrusion: Highlighting Physicochemical Factors to Be Investigated While Designing and Optimizing a Hot Melt Extrusion Process. Pharmaceutics 2018, 10, 89. [Google Scholar] [CrossRef] [Green Version]
- Thakkar, R.; Thakkar, R.; Pillai, A.; Ashour, E.A.; Repka, M.A. Systematic screening of pharmaceutical polymers for hot melt extrusion processing: A comprehensive review. Int. J. Pharm. 2020, 576, 118989. [Google Scholar] [CrossRef]
- Go, E.-J.; Ryu, B.-R.; Ryu, S.-J.; Kim, H.-B.; Lee, H.-T.; Kwon, J.-W.; Baek, J.-S.; Lim, J.-D. An Enhanced Water Solubility and Stability of Anthocyanins in Mulberry Processed with Hot Melt Extrusion. Int. J. Mol. Sci. 2021, 22, 12377. [Google Scholar] [CrossRef]
- Kanikkannan, N. Technologies to Improve the Solubility, Dissolution and Bioavailability of Poorly Soluble Drugs. J. Anal. Pharm. Res. 2018, 7, 00198. [Google Scholar] [CrossRef] [Green Version]
- Charunuch, C.; Tangkanakul, P.; Limsangouan, N.; Sonted, V. Effects of Extrusion Condition on the Physical and Functional Properties of Instant Cereal Beverage Powders Admixed with Mulberry (Morus alba L.) Leaves. Food Sci. Technol. Res. 2008, 14, 421–430. [Google Scholar] [CrossRef]
- Zelikina, D.V.; Gureeva, M.D.; Chebotarev, S.A.; Samuseva, Y.V.; Antipova, A.S.; Martirosova, E.I.; Semenova, M.G. Functional food compositions based on whey protein isolate, fish oil and soy phospholipids. Food Syst. 2020, 3, 16–20. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Chen, F.; Pu, Y.; Qian, F.; Leng, Y.; Mu, G.; Zhu, X. Effects of soy lecithin concentration on the physicochemical properties of whey protein isolate, casein-stabilised simulated infant formula emulsion and their corresponding microcapsules. Int. J. Dairy Technol. 2022, 75, 513–526. [Google Scholar] [CrossRef]
- Chuah, A.M.; Jacob, B.; Jie, Z.; Ramesh, S.; Mandal, S.; Puthan, J.K.; Deshpande, P.; Vaidyanathan, V.V.; Gelling, R.W.; Patel, G.; et al. Enhanced bioavailability and bioefficacy of an amorphous solid dispersion of curcumin. Food Chem. 2014, 1, 227–233. [Google Scholar] [CrossRef]
- Yang, F.; Su, Y.; Zhang, J.; Dinunzio, J.; Leone, A.; Huang, C.; Brown, C.D. Rheology Guided Rational Selection of Processing Temperature to Prepare Copovidone–Nifedipine Amorphous Solid Dispersions via Hot Melt Extrusion (HME). Mol. Pharm. 2016, 13, 3494–3505. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, R.; Chen, Y.; Ke, X.; Hu, D.; Han, M. Application of Carrier and Plasticizer to Improve the Dissolution and Bioavailability of Poorly Water-Soluble Baicalein by Hot Melt Extrusion. AAPS PharmSciTech 2014, 15, 560–568. [Google Scholar] [CrossRef] [Green Version]
- Nie, S.; Pan, W.; Li, X.; Wu, X. The effect of citric acid added to hydroxypropyl methylcellulose (HPMC) matrix tablets on the release profile of vinpocetine. Drug Dev. Ind. Pharm. 2004, 30, 627–635. [Google Scholar] [CrossRef]
- Schilling, S.U.; Shah, N.H.; Malick, A.W.; Infeld, M.H.; McGinity, J.W. Citric acid as a solid-state plasticizer for Eudragit RS PO. J. Pharm. Pharmacol. 2007, 59, 1493–1500. [Google Scholar] [CrossRef]
- Rajput, A.S.; Jha, D.K.; Gurram, S.; Shah, D.S.; Amin, P.D. RP-HPLC method development and validation for the quantification of Efonidipine hydrochloride in HME processed solid dispersions. Futur. J. Pharm. Sci. 2020, 6, 70. [Google Scholar] [CrossRef]
- Avgerinos, T.; Kantiranis, N.; Panagopoulou, A.; Malamataris, S.; Kachrimanis, K.; Nikolakakis, I. Mechanical properties and drug release of venlafaxine HCl solid mini matrices prepared by hot-melt extrusion and hot or ambient compression. Drug Dev. Ind. Pharm. 2018, 44, 338–348. [Google Scholar] [CrossRef]
- Sohrabi, Y.; Panahi-Azar, V.; Barzegar, A.; Ezzati Nazhad Dolatabadi, J.; Dehghan, P. Spectroscopic, thermodynamic and molecular docking studies of bovine serum albumin interaction with ascorbyl palmitate food additive. Bioimpacts 2017, 7, 241–246. [Google Scholar] [CrossRef]
- Sohrabi, Y.; Mohammadzadeh-Aghdash, H.; Baghbani, E.; Dehghan, P.; Ezzati Nazhad Dolatabadi, J. Cytotoxicity and Genotoxicity Assessment of Ascorbyl Palmitate (AP) Food Additive. Adv. Pharm. Bull. 2018, 8, 341–346. [Google Scholar] [CrossRef]
- Fratter, A.; Mason, V.; Pellizzato, M.; Valier, S.; Cicero, A.F.G.; Tedesco, E.; Meneghetti, E.; Benetti, F. Lipomatrix: A Novel Ascorbyl Palmitate-Based Lipid Matrix to Enhancing Enteric Absorption of Serenoa Repens Oil. Int. J. Mol. Sci. 2019, 20, 669. [Google Scholar] [CrossRef] [Green Version]
- Park, M.-O.; Park, C.-I.; Jin, S.-J.; Park, M.-R.; Choi, I.-Y.; Park, C.-H.; Adnan, M. Comparison in Content of Total Polyphenol, Flavonoid, and Antioxidant Capacity from Different Organs and Extruded Condition of Moringa oleifera Lam. Processes 2022, 10, 819. [Google Scholar] [CrossRef]
- Yoon, S.-D. Cross-Linked Potato Starch-Based Blend Films Using Ascorbic Acid as a Plasticizer. J. Agric. Food Chem. 2014, 62, 1755–1764. [Google Scholar] [CrossRef]
- Han, J.H.; Hwang, H.M.; Min, S.; Krochta, J.M. Coating of peanuts with edible whey protein film containing alpha-tocopherol and ascorbyl palmitate. J. Food Sci. 2008, 73, E349–E355. [Google Scholar] [CrossRef]
- Lim, J.D.; Yu, C.Y.; Kim, M.J.; Yun, S.J.; Lee, S.J.; Kim, N.Y.; Chung, I.-M. Comparison of SOD Activity and Phenolic Compound Contents in Various Korean Medicinal Plants. Korean J. Med. Crop Sci. 2004, 12, 191–202. [Google Scholar]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef] [Green Version]
- Khan, R.A.; Khan, M.R.; Sahreen, S.; Ahmed, M. Evaluation of phenolic contents and antioxidant activity of various solvent extracts of Sonchus asper (L.) Hill. Chem. Cent. J. 2012, 6, 12. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.B.; Kim, S.L.; Seok, Y.S.; Lee, S.H.; Jo, Y.Y.; Kweon, H.Y.; Lee, K.-G. Quantitative analysis of rutin with mulberry leaves (I). J. Sericult. Entomol. Sci. 2014, 52, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Gullón, B.; Lú-Chau, T.A.; Moreira, M.T.; Lema, J.M.; Eibes, G. Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends Food Sci. Techonol. 2017, 67, 220–235. [Google Scholar] [CrossRef]
- Crowley, M.M.; Zhang, F.; Repka, M.A.; Thumma, S.; Upadhye, S.B.; Battu, S.K.; McCinity, J.W.; Martin, C. Pharmaceutical applications of Hot-Melt Extrusion: Part I. Drug Dev. Ind. Pharm. 2008, 33, 909–926. [Google Scholar] [CrossRef]
- Maniruzzaman, M.; Rana, M.M.; Boateng, J.S.; Mitchell, J.C.; Douroumis, D. Dissolution enhancement of poorly water-soluble APIs processed by hot-melt extrusion using hydrophilic polymers. Drug Dev. Ind. Pharm. 2013, 39, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Azad, M.O.K.; Kang, W.S.; Lim, J.D.; Park, C.H. Bio-Fortification of Angelica gigas Nakai Nano-Powder Using Bio-Polymer by Hot Melt Extrusion to Enhance the Bioaccessibility and Functionality of Nutraceutical Compounds. Pharmaceuticals 2019, 13, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, M.O.; Park, C.I.; Jin, S.J.; Park, M.R.; Choi, I.Y.; Park, C.H. Yeast and hot melt extrusion enhance polyphenol and flavonoids. Fagopyrum 2022, 39, 13–18. [Google Scholar] [CrossRef]
- Azad, M.O.K.; Adnan, M.; Sung, I.J.; Lim, J.D.; Baek, J.S.; Lim, Y.S.; Park, C.H. Development of value-added functional food by fusion of colored potato and buckwheat flour through hot-melt extrusion. J. Food Processs. Preserv. 2022, 46, e15312. [Google Scholar] [CrossRef]
- Jurisic, V.; Julson, J.L.; Kricka, T.; Curic, D.; Voca, N.; Karunanithy, C. Effect of Extrusion Pretreatment on Enzymatic Hydrolysis of Miscanthus for the Purpose of Ethanol Production. J. Agric. Sci. 2015, 7, 132–142. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Kang, Q.; Liu, N.; Zhang, Q.; Zhang, Y.; Li, H.; Zhao, B.; Chen, Y.; Lan, Y.; Ma, Q.; et al. Enhanced dissolution rate and oral bioavailability of Ginkgo biloba extract by preparing solid dispersion via hot-melt extrusion. Fitoterapia 2015, 102, 189–197. [Google Scholar] [CrossRef]
- Korus, J.; Gumul, D.; Czechowsak, K. Effect of Extrusion on the Phenolic Composition and Antioxidant Activity of Dry Beans of Phaseolus vulgaris L. Food Technol. Biotechnol. 2007, 45, 139–146. [Google Scholar]
Chemical Formulation (%) | HME− Cheongol | HME− Iksu | HME− Cheongil |
---|---|---|---|
Mulberry leaf | 79 | 79 | 79 |
WPI | 10 | 10 | 10 |
Soy Lecithin | 2.5 | 2.5 | 2.5 |
Vit C | 2 | 2 | 2 |
Vit E 50 | 2 | 2 | 2 |
Citric acid | 2 | 2 | 2 |
Ascorbyl palmitate | 2.5 | 2.5 | 2.5 |
Total Ratio (%) | 100 | 100 | 100 |
Column | YMC-ODS AM C18 (5 µm, 12 nm) 250 mm × 4.6 mm | |
Detector | UV-VIS detector (356 nm) | |
Solvent A | Water containing 0.5% acetic acid | |
Solvent B | Acetonitrile (ACN) | |
Flow rate | 1 mL/min | |
Oven | 35 °C | |
Injection volume | 10 µL | |
Time (min) | Gradient elution system | |
% A | % B | |
Initial | 82 | 18 |
9 | 65 | 35 |
11 | 82 | 18 |
22 | 82 | 18 |
Sample | TPC | TFC | DPPH |
---|---|---|---|
GAE·mg/g | QE·mg/g | IC50 (µg/mL) | |
Cheongol | 14.48 ± 0.73 cd | 8.82 ± 0.35 b | 7880.56 ± 1084.82 b |
HME−Cheongol | 31.14 ± 4.63 a | 19.68 ± 1.48 a | 4480.83 ± 35.63 d |
Iksu | 11.96 ± 4.15 d | 8.77 ± 0.66 b | 8733.33 ± 196.392 a |
HME−Iksu | 15.72 ± 0.58 cd | 22.12 ± 3.91 a | 4530.83 ± 51.30 d |
Cheongil | 11.17 ± 4.31 d | 12.26 ± 1.12 b | 8963.33 ± 297.75 a |
HME−Cheongil | 23.96 ± 5.78 ab | 22.02 ± 2.97 a | 5778.33 ± 235.39 c |
Ascorbic acid | - | - | 167.49 ± 15.69 e |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-B.; Ryu, S.; Baek, J.-S. The Effect of Hot-Melt Extrusion of Mulberry Leaf on the Number of Active Compounds and Antioxidant Activity. Plants 2022, 11, 3019. https://doi.org/10.3390/plants11223019
Kim H-B, Ryu S, Baek J-S. The Effect of Hot-Melt Extrusion of Mulberry Leaf on the Number of Active Compounds and Antioxidant Activity. Plants. 2022; 11(22):3019. https://doi.org/10.3390/plants11223019
Chicago/Turabian StyleKim, Hyun-Bok, Suji Ryu, and Jong-Suep Baek. 2022. "The Effect of Hot-Melt Extrusion of Mulberry Leaf on the Number of Active Compounds and Antioxidant Activity" Plants 11, no. 22: 3019. https://doi.org/10.3390/plants11223019
APA StyleKim, H. -B., Ryu, S., & Baek, J. -S. (2022). The Effect of Hot-Melt Extrusion of Mulberry Leaf on the Number of Active Compounds and Antioxidant Activity. Plants, 11(22), 3019. https://doi.org/10.3390/plants11223019