Bacterial Siderophores: Classification, Biosynthesis, Perspectives of Use in Agriculture
Abstract
:1. Introduction
2. Siderophore-Producing Bacteria and Their Potential Applications in Agriculture
3. Chemistry and Classification of Siderophores
3.1. Hydroxamate Siderophores
3.2. Catecholate Siderophores
3.3. Carboxylate and Mixed-Type Siderophores
4. Biosynthesis of Siderophores
4.1. Siderophore Biosynthesis by NRPS
4.2. Siderophore Biosynthesis by Polyketide Synthases
4.3. Siderophore Biosynthesis by NIS Synthetase
5. Secretion of Siderophores into the Environment, Transport of Fe–Siderophore Complexes into the Cell
5.1. The Fate of the Fe–Siderophore Complex in the Cell
5.2. The Fate of the Fe–Siderophore Complex outside the Bacterial Cell
6. Application of Siderophores to Control Phytopathogens: Use of Siderophores in Soils Contaminated with Heavy Metals
7. Methods for Siderophore Detection and Characterization
7.1. Method for Determining the Presence of Siderophore-Producing Activity with Chromium Azurolsulfonate
7.2. Identification of Catechin and Hydroxamate Groups
7.3. HPLC, NMR, and Mass-Spectroscopy
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Miethke, M.; Marahiel, M.A. Siderophore-Based Iron Acquisition and Pathogen Control. Microbiol. Mol. Biol. Rev. 2007, 71, 413–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganz, T.; Nemeth, E. Iron Homeostasis in Host Defence and Inflammation. Nat. Rev. Immunol. 2015, 15, 500–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Briat, J.-F.; Dubos, C.; Gaymard, F. Iron Nutrition, Biomass Production, and Plant Product Quality. Trends Plant Sci. 2015, 20, 33–40. [Google Scholar] [CrossRef]
- Tripathi, D.K.; Singh, S.; Gaur, S.; Singh, S.; Yadav, V.; Liu, S.; Singh, V.P.; Sharma, S.; Srivastava, P.; Prasad, S.M.; et al. Acquisition and Homeostasis of Iron in Higher Plants and Their Probable Role in Abiotic Stress Tolerance. Front. Environ. Sci. 2018, 5, 86. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Chauhan, P.K.; Upadhyay, S.K.; Singh, R.K.; Dwivedi, P.; Wang, J.; Jain, D.; Jiang, M. Mechanistic Insights and Potential Use of Siderophores Producing Microbes in Rhizosphere for Mitigation of Stress in Plants Grown in Degraded Land. Front. Microbiol. 2022, 13, 898979. [Google Scholar] [CrossRef]
- Raymond, K.N.; Dertz, E.A.; Kim, S.S. Enterobactin: An Archetype for Microbial Iron Transport. Proc. Natl. Acad. Sci. USA 2003, 100, 3584–3588. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Chen, W.-H.; Bruner, S.D. Microbial Siderophore-Based Iron Assimilation and Therapeutic Applications. BioMetals 2016, 29, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Ratledge, C.; Dover, L.G. Iron Metabolism in Pathogenic Bacteria. Annu. Rev. Microbiol. 2000, 54, 881–941. [Google Scholar] [CrossRef]
- Dertz, E.A.; Xu, J.; Stintzi, A.; Raymond, K.N. Bacillibactin-Mediated Iron Transport in Bacillus s Ubtilis. J. Am. Chem. Soc. 2006, 128, 22–23. [Google Scholar] [CrossRef]
- Campestre, M.P.; Castagno, L.N.; Estrella, M.J.; Ruiz, O.A. Lotus Japonicus Plants of the Gifu B-129 Ecotype Subjected to Alkaline Stress Improve Their Fe2+ Bio-Availability through Inoculation with Pantoea Eucalypti M91. J. Plant Physiol. 2016, 192, 47–55. [Google Scholar] [CrossRef]
- Timofeeva, A.; Galyamova, M.; Sedykh, S. Prospects for Using Phosphate-Solubilizing Microorganisms as Natural Fertilizers in Agriculture. Plants 2022, 11, 2119. [Google Scholar] [CrossRef] [PubMed]
- Pankievicz, V.C.S.; do Amaral, F.P.; Ané, J.-M.; Stacey, G. Diazotrophic Bacteria and Their Mechanisms to Interact and Benefit Cereals. Mol. Plant-Microbe Interact. 2021, 34, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Latha, P.; Anand, T.; Ragupathi, N.; Prakasam, V.; Samiyappan, R. Antimicrobial Activity of Plant Extracts and Induction of Systemic Resistance in Tomato Plants by Mixtures of PGPR Strains and Zimmu Leaf Extract against Alternaria Solani. Biol. Control 2009, 50, 85–93. [Google Scholar] [CrossRef]
- Alam, A. Soil Degradation: A Challenge to Sustainable Agriculture. Int. J. Sci. Res. Agric. Sci. 2014, 1, 52. [Google Scholar] [CrossRef]
- Sultana, S.; Alam, S.; Karim, M.M. Screening of Siderophore-Producing Salt-Tolerant Rhizobacteria Suitable for Supporting Plant Growth in Saline Soils with Iron Limitation. J. Agric. Food Res. 2021, 4, 100150. [Google Scholar] [CrossRef]
- Hofmann, M.; Heine, T.; Malik, L.; Hofmann, S.; Joffroy, K.; Senges, C.H.R.; Bandow, J.E.; Tischler, D. Screening for Microbial Metal-Chelating Siderophores for the Removal of Metal Ions from Solutions. Microorganisms 2021, 9, 111. [Google Scholar] [CrossRef]
- De Serrano, L.O. Biotechnology of Siderophores in High-Impact Scientific Fields. Biomol. Concepts 2017, 8, 169–178. [Google Scholar] [CrossRef] [Green Version]
- Szparaga, A.; Kuboń, M.; Kocira, S.; Czerwińska, E.; Pawłowska, A.; Hara, P.; Kobus, Z.; Kwaśniewski, D. Towards Sustainable Agriculture—Agronomic and Economic Effects of Biostimulant Use in Common Bean Cultivation. Sustainability 2019, 11, 4575. [Google Scholar] [CrossRef] [Green Version]
- Mannino, G.; Gentile, C.; Ertani, A.; Serio, G.; Bertea, C.M. Anthocyanins: Biosynthesis, Distribution, Ecological Role, and Use of Biostimulants to Increase Their Content in Plant Foods—A Review. Agriculture 2021, 11, 212. [Google Scholar] [CrossRef]
- Castiglione, A.M.; Mannino, G.; Contartese, V.; Bertea, C.M.; Ertani, A. Microbial Biostimulants as Response to Modern Agriculture Needs: Composition, Role and Application of These Innovative Products. Plants 2021, 10, 1533. [Google Scholar] [CrossRef]
- Baars, O.; Zhang, X.; Morel, F.M.M.; Seyedsayamdost, M.R. The Siderophore Metabolome of Azotobacter Vinelandii. Appl. Environ. Microbiol. 2016, 82, 27–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero-Perdomo, F.; Abril, J.; Camelo, M.; Moreno-Galván, A.; Pastrana, I.; Rojas-Tapias, D.; Bonilla, R. Azotobacter Chroococcum as a Potentially Useful Bacterial Biofertilizer for Cotton (Gossypium hirsutum): Effect in Reducing N Fertilization. Rev. Argent. Microbiol. 2017, 49, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Baek, K.-H. Salicylic Acid Biosynthesis and Metabolism: A Divergent Pathway for Plants and Bacteria. Biomolecules 2021, 11, 705. [Google Scholar] [CrossRef] [PubMed]
- Kesaulya, H.; Hasinu, J.V.; Tuhumury, G.N. Potential of Bacillus Spp Produces Siderophores Insuppressing Thewilt Disease of Banana Plants. IOP Conf. Ser. Earth Environ. Sci. 2018, 102, 012016. [Google Scholar] [CrossRef]
- Sandy, M.; Butler, A. Chrysobactin Siderophores Produced by Dickeya Chrysanthemi EC16. J. Nat. Prod. 2011, 74, 1207–1212. [Google Scholar] [CrossRef] [Green Version]
- Sah, S.; Singh, R. Siderophore: Structural And Functional Characterisation—A Comprehensive Review. Agric. 2015, 61, 97–114. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhang, Y.; Wang, X.; Ding, F.; Fu, Y.; Zhao, J.; Song, W.; Opiyo, O.J.; Zhang, F.; Chen, X. Siderophores in Clinical Isolates of Klebsiella Pneumoniae Promote Ciprofloxacin Resistance by Inhibiting the Oxidative Stress. Biochem. Biophys. Res. Commun. 2017, 491, 855–861. [Google Scholar] [CrossRef]
- Singh, R.K.; Singh, P.; Li, H.-B.; Guo, D.-J.; Song, Q.-Q.; Yang, L.-T.; Malviya, M.K.; Song, X.-P.; Li, Y.-R. Plant-PGPR Interaction Study of Plant Growth-Promoting Diazotrophs Kosakonia radicincitans BA1 and Stenotrophomonas maltophilia COA2 to Enhance Growth and Stress-Related Gene Expression in Saccharum Spp. J. Plant Interact. 2020, 15, 427–445. [Google Scholar] [CrossRef]
- Juma, P.O.; Fujitani, Y.; Alessa, O.; Oyama, T.; Yurimoto, H.; Sakai, Y.; Tani, A. Siderophore for Lanthanide and Iron Uptake for Methylotrophy and Plant Growth Promotion in Methylobacterium Aquaticum Strain 22A. Front. Microbiol. 2022, 13, 921635. [Google Scholar] [CrossRef]
- Hoshino, Y.; Chiba, K.; Ishino, K.; Fukai, T.; Igarashi, Y.; Yazawa, K.; Mikami, Y.; Ishikawa, J. Identification of Nocobactin NA Biosynthetic Gene Clusters in Nocardia Farcinica. J. Bacteriol. 2011, 193, 441–448. [Google Scholar] [CrossRef]
- Soutar, C.D.; Stavrinides, J. The Evolution of Three Siderophore Biosynthetic Clusters in Environmental and Host-Associating Strains of Pantoea. Mol. Genet. Genom. 2018, 293, 1453–1467. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Yang, Q.; Ge, K.; Hu, X.; Qi, G.; Du, B.; Liu, K.; Ding, Y. Promotion of Iron Nutrition and Growth on Peanut by Paenibacillus Illinoisensis and Bacillus Sp. Strains in Calcareous Soil. Braz. J. Microbiol. 2017, 48, 656–670. [Google Scholar] [CrossRef] [PubMed]
- Baune, M.; Qi, Y.; Scholz, K.; Volmer, D.A.; Hayen, H. Structural Characterization of Pyoverdines Produced by Pseudomonas Putida KT2440 and Pseudomonas Taiwanensis VLB120. BioMetals 2017, 30, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Gerc, A.J.; Stanley-Wall, N.R.; Coulthurst, S.J. Role of the Phosphopantetheinyltransferase Enzyme, PswP, in the Biosynthesis of Antimicrobial Secondary Metabolites by Serratia Marcescens Db10. Microbiology 2014, 160, 1609–1617. [Google Scholar] [CrossRef] [Green Version]
- Gáll, T.; Lehoczki, G.; Gyémánt, G.; Emri, T.; Szigeti, Z.M.; Balla, G.; Balla, J.; Pócsi, I. Optimization of Desferrioxamine E Production by Streptomyces Parvulus. Acta Microbiol. Immunol. Hung. 2016, 63, 475–489. [Google Scholar] [CrossRef] [Green Version]
- Bal, H.B.; Das, S.; Dangar, T.K.; Adhya, T.K. ACC Deaminase and IAA Producing Growth Promoting Bacteria from the Rhizosphere Soil of Tropical Rice Plants. J. Basic Microbiol. 2013, 53, 972–984. [Google Scholar] [CrossRef]
- Matthijs, S.; Tehrani, K.A.; Laus, G.; Jackson, R.W.; Cooper, R.M.; Cornelis, P. Thioquinolobactin, a Pseudomonas Siderophore with Antifungal and Anti-Pythium Activity. Environ. Microbiol. 2007, 9, 425–434. [Google Scholar] [CrossRef]
- Scavino, A.F.; Pedraza, R.O. The Role of Siderophores in Plant Growth-Promoting Bacteria. In Bacteria in Agrobiology: Crop Productivity; Springer: Berlin/Heidelberg, Germany, 2013; pp. 265–285. [Google Scholar]
- Singh, P.; Singh, R.K.; Li, H.-B.; Guo, D.-J.; Sharma, A.; Lakshmanan, P.; Malviya, M.K.; Song, X.-P.; Solanki, M.K.; Verma, K.K.; et al. Diazotrophic Bacteria Pantoea Dispersa and Enterobacter Asburiae Promote Sugarcane Growth by Inducing Nitrogen Uptake and Defense-Related Gene Expression. Front. Microbiol. 2021, 11, 3272. [Google Scholar] [CrossRef]
- Shariati, J.V.; Malboobi, M.A.; Tabrizi, Z.; Tavakol, E.; Owlia, P.; Safari, M. Comprehensive Genomic Analysis of a Plant Growth-Promoting Rhizobacterium Pantoea Agglomerans Strain P5. Sci. Rep. 2017, 7, 15610. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.K.; Singh, P.; Guo, D.-J.; Sharma, A.; Li, D.-P.; Li, X.; Verma, K.K.; Malviya, M.K.; Song, X.-P.; Lakshmanan, P.; et al. Root-Derived Endophytic Diazotrophic Bacteria Pantoea Cypripedii AF1 and Kosakonia Arachidis EF1 Promote Nitrogen Assimilation and Growth in Sugarcane. Front. Microbiol. 2021, 12, 774707. [Google Scholar] [CrossRef]
- Ferreira, C.M.H.; Vilas-Boas, Â.; Sousa, C.A.; Soares, H.M.V.M.; Soares, E.V. Comparison of Five Bacterial Strains Producing Siderophores with Ability to Chelate Iron under Alkaline Conditions. AMB Express 2019, 9, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Megías, E.; dos Reis Junior, F.B.; Ribeiro, R.A.; Ollero, F.J.; Megías, M.; Hungria, M. Draft Genome Sequence of Pantoea Ananatis Strain 1.38, a Bacterium Isolated from the Rhizosphere of Oryza Sativa Var. Puntal That Shows Biotechnological Potential as an Inoculant. Genome Announc. 2018, 6, e01547-17. [Google Scholar] [CrossRef] [PubMed]
- da Silva, J.F.; Barbosa, R.R.; de Souza, A.N.; da Motta, O.V.; Teixeira, G.N.; Carvalho, V.S.; de Souza, A.L.S.; de Souza Filho, G.A. Isolation of Pantoea Ananatis from Sugarcane and Characterization of Its Potential for Plant Growth Promotion. Genet. Mol. Res. 2015, 14, 15301–15311. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, S.M.; Shaharoona, B.; Arshad, M.; Crowley, D.E. Population Density and Functional Diversity of Plant Growth Promoting Rhizobacteria Associated with Avocado Trees in Saline Soils. Appl. Soil Ecol. 2012, 62, 147–154. [Google Scholar] [CrossRef]
- Lastochkina, O. Effect of Endophytic Bacillus Subtilis on Drought Stress Tolerance of Triticum aestivum L. Plants of Steppe Volga and Forest-Steppe West Siberian Agroecological Groups. In Proceedings of the Abstract book of the 2nd International Scientific Conference “Plants and Microbes: The Future of Biotechnology”, Saratov, Russia, 5–9 October 2020. PLAMIC2020 Organizing Committee (Agricultural Education and Science, Saratov, Russia): 29 December 2020. [Google Scholar]
- Ghazy, N.; El-Nahrawy, S. Siderophore Production by Bacillus Subtilis MF497446 and Pseudomonas Koreensis MG209738 and Their Efficacy in Controlling Cephalosporium Maydis in Maize Plant. Arch. Microbiol. 2021, 203, 1195–1209. [Google Scholar] [CrossRef]
- Ahmad, Z.; Wu, J.; Chen, L.; Dong, W. Isolated Bacillus Subtilis Strain 330-2 and Its Antagonistic Genes Identified by the Removing PCR. Sci. Rep. 2017, 7, 1777. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Singh, R.K.; Zhou, Y.; Wang, J.; Jiang, Y.; Shen, N.; Wang, Y.; Yang, L.; Jiang, M. Unlocking the Strength of Plant Growth Promoting Pseudomonas in Improving Crop Productivity in Normal and Challenging Environments: A Review. J. Plant Interact. 2022, 17, 220–238. [Google Scholar] [CrossRef]
- Raaijmakers, J.M.; Mazzola, M. Diversity and Natural Functions of Antibiotics Produced by Beneficial and Plant Pathogenic Bacteria. Annu. Rev. Phytopathol. 2012, 50, 403–424. [Google Scholar] [CrossRef]
- Singh, D.P.; Singh, V.; Gupta, V.K.; Shukla, R.; Prabha, R.; Sarma, B.K.; Patel, J.S. Microbial Inoculation in Rice Regulates Antioxidative Reactions and Defense Related Genes to Mitigate Drought Stress. Sci. Rep. 2020, 10, 4818. [Google Scholar] [CrossRef] [Green Version]
- Raaijmakers, J.M.; Weller, D.M.; Thomashow, L.S. Frequency of Antibiotic-Producing Pseudomonas Spp. in Natural Environments. Appl. Environ. Microbiol. 1997, 63, 881–887. [Google Scholar] [CrossRef]
- Sharma, A.; Johri, B.N. Growth Promoting Influence of Siderophore-Producing Pseudomonas Strains GRP3A and PRS9 in Maize (Zea mays L.) under Iron Limiting Conditions. Microbiol. Res. 2003, 158, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Chai, X.; Huang, Y.; Wang, X.; Han, Z.; Xu, X.; Wu, T.; Zhang, X.; Wang, Y. Siderophore Production in Pseudomonas SP. Strain SP3 Enhances Iron Acquisition in Apple Rootstock. J. Appl. Microbiol. 2022, 133, 720–732. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Ma, Y.; Wang, J.; Xia, Z.; Wei, H. Genomic Insights into a Plant Growth-promoting Pseudomonas Koreensis Strain with Cyclic Lipopeptide-mediated Antifungal Activity. Microbiologyopen 2020, 9, e1092. [Google Scholar] [CrossRef] [PubMed]
- Yoneyama, F.; Yamamoto, M.; Hashimoto, W.; Murata, K. Azotobacter Vinelandii Gene Clusters for Two Types of Peptidic and Catechol Siderophores Produced in Response to Molybdenum. J. Appl. Microbiol. 2011, 111, 932–938. [Google Scholar] [CrossRef] [PubMed]
- Kraepiel, A.M.L.; Bellenger, J.P.; Wichard, T.; Morel, F.M.M. Multiple Roles of Siderophores in Free-Living Nitrogen-Fixing Bacteria. BioMetals 2009, 22, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Abdel Latef, A.A.H.; Omer, A.M.; Badawy, A.A.; Osman, M.S.; Ragaey, M.M. Strategy of Salt Tolerance and Interactive Impact of Azotobacter Chroococcum and/or Alcaligenes Faecalis Inoculation on Canola (Brassica napus L.) Plants Grown in Saline Soil. Plants 2021, 10, 110. [Google Scholar] [CrossRef]
- Hmaeid, N.; Wali, M.; Metoui-Ben Mahmoud, O.; Pueyo, J.J.; Ghnaya, T.; Abdelly, C. Efficient Rhizobacteria Promote Growth and Alleviate NaCl-Induced Stress in the Plant Species Sulla Carnosa. Appl. Soil Ecol. 2019, 133, 104–113. [Google Scholar] [CrossRef]
- Abdel Latef, A.A.H.; Abu Alhmad, M.F.; Kordrostami, M.; Abo–Baker, A.-B.A.-E.; Zakir, A. Inoculation with Azospirillum Lipoferum or Azotobacter Chroococcum Reinforces Maize Growth by Improving Physiological Activities Under Saline Conditions. J. Plant Growth Regul. 2020, 39, 1293–1306. [Google Scholar] [CrossRef]
- Cassán, F.; Maiale, S.; Masciarelli, O.; Vidal, A.; Luna, V.; Ruiz, O. Cadaverine Production by Azospirillum Brasilense and Its Possible Role in Plant Growth Promotion and Osmotic Stress Mitigation. Eur. J. Soil Biol. 2009, 45, 12–19. [Google Scholar] [CrossRef]
- Díaz-Zorita, M.; Fernández-Canigia, M.V. Field Performance of a Liquid Formulation of Azospirillum Brasilense on Dryland Wheat Productivity. Eur. J. Soil Biol. 2009, 45, 3–11. [Google Scholar] [CrossRef]
- Mohammed, A.F.; Oloyede, A.R.; Odeseye, A.O. Biological Control of Bacterial Wilt of Tomato Caused by Ralstonia Solanacearum Using Pseudomonas Species Isolated from the Rhizosphere of Tomato Plants. Arch. Phytopathol. Plant Prot. 2020, 53, 1–16. [Google Scholar] [CrossRef]
- Styczynski, M.; Biegniewski, G.; Decewicz, P.; Rewerski, B.; Debiec-Andrzejewska, K.; Dziewit, L. Application of Psychrotolerant Antarctic Bacteria and Their Metabolites as Efficient Plant Growth Promoting Agents. Front. Bioeng. Biotechnol. 2022, 10, 772891. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, L.P.; Cipriano, M.A.P.; dos Santos Freitas, S.; Carazzolle, M.F.; da Silva, M.J.; Mondego, J.M.C. Genomic and Physiological Evaluation of Two Root Associated Pseudomonas from Coffea Arabica. Microbiol. Res. 2022, 263, 127129. [Google Scholar] [CrossRef] [PubMed]
- Hider, R.C.; Kong, X. Chemistry and Biology of Siderophores. Nat. Prod. Rep. 2010, 27, 637. [Google Scholar] [CrossRef]
- Barry, S.M.; Challis, G.L. Recent Advances in Siderophore Biosynthesis. Curr. Opin. Chem. Biol. 2009, 13, 205–215. [Google Scholar] [CrossRef]
- Ustiatik, R.; Nuraini, Y.; Suharjono, S.; Handayanto, E. Siderophore Production of the Hg-Resistant Endophytic Bacteria Isolated from Local Grass in the Hg-Contaminated Soil. J. Ecol. Eng. 2021, 22, 129–138. [Google Scholar] [CrossRef]
- Butler, A.; Theisen, R.M. Iron(III)–Siderophore Coordination Chemistry: Reactivity of Marine Siderophores. Coord. Chem. Rev. 2010, 254, 288–296. [Google Scholar] [CrossRef] [Green Version]
- Feistner, G.J.; Stahl, D.C.; Gabrik, A.H. Proferrioxamine Siderophores OfErwinia Amylovora. A Capillary Liquid Chromatographic/Electrospray Tandem Mass Spectrometric Study. Org. Mass Spectrom. 1993, 28, 163–175. [Google Scholar] [CrossRef]
- Byers, B.R.; Powell, M.V.; Lankford, C.E. Iron-Chelating Hydroxamic Acid (Schizokinen) Active in Initiation of Cell Division in Bacillus Megaterium. J. Bacteriol. 1967, 93, 286–294. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Boyer, G.L. Siderophore-Mediated Aluminum Uptake by Bacillus Megaterium ATCC 19213. Appl. Environ. Microbiol. 1996, 62, 4044–4048. [Google Scholar] [CrossRef]
- Storey, E.P.; Boghozian, R.; Little, J.L.; Lowman, D.W.; Chakraborty, R. Characterization of ‘Schizokinen’; a Dihydroxamate-Type Siderophore Produced by Rhizobium Leguminosarum IARI 917. BioMetals 2006, 19, 637–649. [Google Scholar] [CrossRef] [PubMed]
- Kamber, T.; Lansdell, T.A.; Stockwell, V.O.; Ishimaru, C.A.; Smits, T.H.M.; Duffy, B. Characterization of the Biosynthetic Operon for the Antibacterial Peptide Herbicolin in Pantoea Vagans Biocontrol Strain C9-1 and Incidence in Pantoea Species. Appl. Environ. Microbiol. 2012, 78, 4412–4419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, M.J.; Neilands, J.B. Rhizobactin, a Siderophore from Rhizobium Meliloti. J. Plant Nutr. 1984, 7, 449–458. [Google Scholar] [CrossRef]
- Smith, M.J.; Shoolery, J.N.; Schwyn, B.; Holden, I.; Neilands, J.B. Rhizobactin, a Structurally Novel Siderophore from Rhizobium Meliloti. J. Am. Chem. Soc. 1985, 107, 1739–1743. [Google Scholar] [CrossRef]
- Persmark, M.; Pittman, P.; Buyer, J.S.; Schwyn, B.; Gill, P.R.; Neilands, J.B. Isolation and Structure of Rhizobactin 1021, a Siderophore from the Alfalfa Symbiont Rhizobium Meliloti 1021. J. Am. Chem. Soc. 1993, 115, 3950–3956. [Google Scholar] [CrossRef]
- Wright, W.; Little, J.; Liu, F.; Chakraborty, R. Isolation and Structural Identification of the Trihydroxamate Siderophore Vicibactin and Its Degradative Products from Rhizobium Leguminosarum ATCC 14479 Bv. Trifolii. BioMetals 2013, 26, 271–283. [Google Scholar] [CrossRef]
- Aguirre-Noyola, J.L.; Rosenblueth, M.; Santiago-Martínez, M.G.; Martínez-Romero, E. Transcriptomic Responses of Rhizobium Phaseoli to Root Exudates Reflect Its Capacity to Colonize Maize and Common Bean in an Intercropping System. Front. Microbiol. 2021, 12, 740818. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Bera, T.; Chakrabarty, A.M. Microbial Siderophore—A Boon to Agricultural Sciences. Biol. Control 2020, 144, 104214. [Google Scholar] [CrossRef]
- Bachhawat, A.K.; Ghosh, S. Iron Transport in Azospirillum Brasilense: Role of the Siderophore Spirilobactin. Microbiology 1987, 133, 1759–1765. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.; Karkhanis, V.; Desai, A. Isolation and Characterization of Siderophore, with Antimicrobial Activity, FromAzospirillum Lipoferum M. Curr. Microbiol. 1992, 25, 347–351. [Google Scholar] [CrossRef]
- Tindale, A.E.; Mehrotra, M.; Ottem, D.; Page, W.J. Dual Regulation of Catecholate Siderophore Biosynthesis in Azotobacter Vinelandii by Iron and Oxidative Stress The GenBank Accession Number for the Sequence Reported in This Paper Is AF238500. Microbiology 2000, 146, 1617–1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, T. Enzymatic Determination of Itoic Acid, a Bacillus Subtilis Siderophore, and 2,3-Dihydroxybenzoic Acid. Appl. Environ. Microbiol. 1993, 59, 2343–2345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- May, J.J.; Wendrich, T.M.; Marahiel, M.A. The Dhb Operon of Bacillus SubtilisEncodes the Biosynthetic Template for the Catecholic Siderophore 2,3-Dihydroxybenzoate-Glycine-Threonine Trimeric Ester Bacillibactin. J. Biol. Chem. 2001, 276, 7209–7217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, M.K.; Abergel, R.J.; Raymond, K.N.; Arceneaux, J.E.L.; Byers, B.R. Siderophores of Bacillus Anthracis, Bacillus Cereus, and Bacillus Thuringiensis. Biochem. Biophys. Res. Commun. 2006, 348, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Feistner, G.; Ishimaru, C. Proferrioxamine Profiles of Erwinia Herbicola and Related Bacteria. Biometals 1996, 9, 337–344. [Google Scholar] [CrossRef]
- Eng-Wilmot, D.L.; Van der Helm, D. Molecular and Crystal Structure of the Linear Tricatechol Siderophore, Agrobactin. J. Am. Chem. Soc. 1980, 102, 7719–7725. [Google Scholar] [CrossRef]
- Ong, S.A.; Peterson, T.; Neilands, J.B. Agrobactin, a Siderophore from Agrobacterium Tumefaciens. J. Biol. Chem. 1979, 254, 1860–1865. [Google Scholar] [CrossRef]
- Budzikiewicz, H. Secondary Metabolites from Fluorescent Pseudomonads. FEMS Microbiol. Lett. 1993, 104, 209–228. [Google Scholar] [CrossRef]
- Budzikiewicz, H. Siderophores of Fluorescent Pseudomonads. Z. Naturforsch. C 1997, 52, 713–720. [Google Scholar] [CrossRef]
- Ringel, M.T.; Brüser, T. The Biosynthesis of Pyoverdines. Microb. Cell 2018, 5, 424–437. [Google Scholar] [CrossRef]
- Philson, S.B.; Llinás, M. Siderochromes from Pseudomonas Fluorescens. I. Isolation and Characterization. J. Biol. Chem. 1982, 257, 8081–8085. [Google Scholar] [CrossRef]
- Bultreys, A.; Gheysen, I.; Maraite, H.; de Hoffmann, E. Characterization of Fluorescent and Nonfluorescent Peptide Siderophores Produced by Pseudomonas Syringae Strains and Their Potential Use in Strain Identification. Appl. Environ. Microbiol. 2001, 67, 1718–1727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beiderbeck, H.; Risse, D.; Budzikiewicz, H.; Taraz, K. A New Pyoverdin from Pseudomonas Aureofaciens. Zeitschrift für Naturforsch. C 1999, 54, 1–5. [Google Scholar] [CrossRef]
- Bulen, W.A.; LeComte, J.R. Isolation and Properties of a Yellow-Green Fluorescent Peptide from Azotobacter Medium. Biochem. Biophys. Res. Commun. 1962, 9, 523–528. [Google Scholar] [CrossRef]
- Schaffner, E.M.; Hartmann, R.; Taraz, K.; Budzikiewicz, H. Structure Elucidation of Azotobactin 87, Isolated from Azotobacter Vinelandii ATCC 12837*, **. Z. Naturforsch. C 1996, 51, 139–150. [Google Scholar] [CrossRef]
- Teintze, M.; Leong, J. Structure of Pseudobactin A, a Second Siderophore from Plant Growth Promoting Pseudomonas B10. Biochemistry 1981, 20, 6457–6462. [Google Scholar] [CrossRef]
- Youard, Z.A.; Mislin, G.L.A.; Majcherczyk, P.A.; Schalk, I.J.; Reimmann, C. Pseudomonas Fluorescens CHA0 Produces Enantio-Pyochelin, the Optical Antipode of the Pseudomonas Aeruginosa Siderophore Pyochelin. J. Biol. Chem. 2007, 282, 35546–35553. [Google Scholar] [CrossRef] [Green Version]
- Mossialos, D.; Meyer, J.-M.; Budzikiewicz, H.; Wolff, U.; Koedam, N.; Baysse, C.; Anjaiah, V.; Cornelis, P. Quinolobactin, a New Siderophore of Pseudomonas Fluorescens ATCC 17400, the Production of Which Is Repressed by the Cognate Pyoverdine. Appl. Environ. Microbiol. 2000, 66, 487–492. [Google Scholar] [CrossRef] [Green Version]
- Matthijs, S.; Budzikiewicz, H.; Schäfer, M.; Wathelet, B.; Cornelis, P. Ornicorrugatin, a New Siderophore from Pseudomonas Fluorescens AF76. Z. Naturforsch. C 2008, 63, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Aznar, A.; Dellagi, A. New Insights into the Role of Siderophores as Triggers of Plant Immunity: What Can We Learn from Animals? J. Exp. Bot. 2015, 66, 3001–3010. [Google Scholar] [CrossRef]
- Ambrosi, C.; Leoni, L.; Putignani, L.; Orsi, N.; Visca, P. Pseudobactin Biogenesis in the Plant Growth-Promoting Rhizobacterium Pseudomonas Strain B10: Identification and Functional Analysis of the l -Ornithine N 5 -Oxygenase (PsbA) Gene. J. Bacteriol. 2000, 182, 6233–6238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornish, A.; Page, W. Production of the Triacetecholate Siderophore Protochelin by Azotobacter Vinelandii. Biometals 1995, 8, 332–338. [Google Scholar] [CrossRef]
- Corbin, J.L.; Bulen, W.A. Isolation and Identification of 2,3-Dihydroxybenzoic Acid and N2,N6-Di(2,3-Dihydroxybenzoyl)-L-Lysine Formed by Iron-Deficient Azotobacter Vinelandii. Biochemistry 1969, 8, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Boyer, G. Isolation and Characterization of the Siderophore N-Deoxyschizokinen from Bacillus Megaterium ATCC 19213. Biometals 1995, 8, 357–364. [Google Scholar] [CrossRef]
- Ito, T.; Neilands, J.B. Products of “Low-Iron Fermentation” with Bacillus Subilis: Isolation, Characterization and Synthesis of 2,3-Dihydroxybenzoylglycine 1,2. J. Am. Chem. Soc. 1958, 80, 4645–4647. [Google Scholar] [CrossRef]
- Wendenbaum, S.; Demange, P.; Dell, A.; Meyer, J.M.; Abdallah, M.A. The Structure of Pyoverdine Pa, the Siderophore of Pseudomonas Aeruginosa. Tetrahedron Lett. 1983, 24, 4877–4880. [Google Scholar] [CrossRef]
- Briskot, G.; Taraz, K.; Budzikiewicz, H. Siderophore Vom Pyoverdin-Typ Aus Pseudomonas Aeruginosa [1]/Pyoverdine Type Siderophores from Pseudomonas Aeruginosa. Z. Naturforsch. C 1986, 41, 497–506. [Google Scholar] [CrossRef]
- Lamb, A.L. Breaking a Pathogen’s Iron Will: Inhibiting Siderophore Production as an Antimicrobial Strategy. Biochim. Biophys. Acta—Proteins Proteom. 2015, 1854, 1054–1070. [Google Scholar] [CrossRef] [Green Version]
- Miller, B.R.; Gulick, A.M. Structural Biology of Nonribosomal Peptide Synthetases; Humana Press: New York, NY, USA, 2016; pp. 3–29. [Google Scholar]
- Gulick, A.M. Conformational Dynamics in the Acyl-CoA Synthetases, Adenylation Domains of Non-Ribosomal Peptide Synthetases, and Firefly Luciferase. ACS Chem. Biol. 2009, 4, 811–827. [Google Scholar] [CrossRef] [Green Version]
- Condurso, H.L.; Bruner, S.D. Structure and Noncanonical Chemistry of Nonribosomal Peptide Biosynthetic Machinery. Nat. Prod. Rep. 2012, 29, 1099. [Google Scholar] [CrossRef]
- Lazos, O.; Tosin, M.; Slusarczyk, A.L.; Boakes, S.; Cortés, J.; Sidebottom, P.J.; Leadlay, P.F. Biosynthesis of the Putative Siderophore Erythrochelin Requires Unprecedented Crosstalk between Separate Nonribosomal Peptide Gene Clusters. Chem. Biol. 2010, 17, 160–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stachelhaus, T.; Mootz, H.D.; Marahiel, M.A. The Specificity-Conferring Code of Adenylation Domains in Nonribosomal Peptide Synthetases. Chem. Biol. 1999, 6, 493–505. [Google Scholar] [CrossRef] [Green Version]
- Keating, T.A.; Ehmann, D.E.; Kohli, R.M.; Marshall, C.G.; Trauger, J.W.; Walsh, C.T. Chain Termination Steps in Nonribosomal Peptide Synthetase Assembly Lines: Directed Acyl-S-Enzyme Breakdown in Antibiotic and Siderophore Biosynthesis. ChemBioChem 2001, 2, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Fischbach, M.A.; Lin, H.; Liu, D.R.; Walsh, C.T. In Vitro Characterization of IroB, a Pathogen-Associated C -Glycosyltransferase. Proc. Natl. Acad. Sci. USA 2005, 102, 571–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Challis, G.L.; Ravel, J. Coelichelin, a New Peptide Siderophore Encoded by the Streptomyces Coelicolor Genome: Structure Prediction from the Sequence of Its Non-Ribosomal Peptide Synthetase. FEMS Microbiol. Lett. 2000, 187, 111–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lautru, S.; Deeth, R.J.; Bailey, L.M.; Challis, G.L. Discovery of a New Peptide Natural Product by Streptomyces Coelicolor Genome Mining. Nat. Chem. Biol. 2005, 1, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Fiss, E.; Jacobs, W.R. Analysis of the Exochelin Locus in Mycobacterium Smegmatis: Biosynthesis Genes Have Homology with Genes of the Peptide Synthetase Family. J. Bacteriol. 1998, 180, 4676–4685. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Arceneaux, J.E.L.; Beggs, M.L.; Byers, B.R.; Eisenach, K.D.; Lundrigan, M.D. Exochelin Genes in Mycobacterium Smegmatis: Identification of an ABC Transporter and Two Non-ribosomal Peptide Synthetase Genes. Mol. Microbiol. 1998, 29, 629–639. [Google Scholar] [CrossRef]
- Eisendle, M.; Oberegger, H.; Zadra, I.; Haas, H. The Siderophore System Is Essential for Viability of Aspergillus Nidulans: Functional Analysis of Two Genes Encoding l-Ornithine N 5-Monooxygenase (SidA) and a Non-Ribosomal Peptide Synthetase (SidC). Mol. Microbiol. 2003, 49, 359–375. [Google Scholar] [CrossRef]
- Schwecke, T.; Göttling, K.; Durek, P.; Dueñas, I.; Käufer, N.F.; Zock-Emmenthal, S.; Staub, E.; Neuhof, T.; Dieckmann, R.; von Döhren, H. Nonribosomal Peptide Synthesis in Schizosaccharomyces Pombe and the Architectures of Ferrichrome-Type Siderophore Synthetases in Fungi. ChemBioChem 2006, 7, 612–622. [Google Scholar] [CrossRef]
- Welzel, K.; Eisfeld, K.; Antelo, L.; Anke, T.; Anke, H. Characterization of the Ferrichrome A Biosynthetic Gene Cluster in the Homobasidiomycete Omphalotus Olearius. FEMS Microbiol. Lett. 2005, 249, 157–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keatinge-Clay, A.T. The Structures of Type I Polyketide Synthases. Nat. Prod. Rep. 2012, 29, 1050. [Google Scholar] [CrossRef] [PubMed]
- Khosla, C.; Herschlag, D.; Cane, D.E.; Walsh, C.T. Assembly Line Polyketide Synthases: Mechanistic Insights and Unsolved Problems. Biochemistry 2014, 53, 2875–2883. [Google Scholar] [CrossRef] [PubMed]
- Oves-Costales, D.; Kadi, N.; Challis, G.L. The Long-Overlooked Enzymology of a Nonribosomal Peptide Synthetase-Independent Pathway for Virulence-Conferring Siderophore Biosynthesis. Chem. Commun. 2009, 6530. [Google Scholar] [CrossRef]
- Penwell, W.F.; DeGrace, N.; Tentarelli, S.; Gauthier, L.; Gilbert, C.M.; Arivett, B.A.; Miller, A.A.; Durand-Reville, T.F.; Joubran, C.; Actis, L.A. Discovery and Characterization of New Hydroxamate Siderophores, Baumannoferrin A and B, Produced by Acinetobacter Baumannii. ChemBioChem 2015, 16, 1896–1904. [Google Scholar] [CrossRef]
- Miethke, M.; Bisseret, P.; Beckering, C.L.; Vignard, D.; Eustache, J.; Marahiel, M.A. Inhibition of Aryl Acid Adenylation Domains Involved in Bacterial Siderophore Synthesis. FEBS J. 2006, 273, 409–419. [Google Scholar] [CrossRef]
- Reddy, V.S.; Shlykov, M.A.; Castillo, R.; Sun, E.I.; Saier, M.H. The Major Facilitator Superfamily (MFS) Revisited. FEBS J. 2012, 279, 2022–2035. [Google Scholar] [CrossRef]
- Miethke, M.; Schmidt, S.; Marahiel, M.A. The Major Facilitator Superfamily-Type Transporter YmfE and the Multidrug-Efflux Activator Mta Mediate Bacillibactin Secretion in Bacillus Subtilis. J. Bacteriol. 2008, 190, 5143–5152. [Google Scholar] [CrossRef] [Green Version]
- Nikaido, H.; Pagès, J.-M. Broad-Specificity Efflux Pumps and Their Role in Multidrug Resistance of Gram-Negative Bacteria. FEMS Microbiol. Rev. 2012, 36, 340–363. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, A.D.; Deisenhofer, J. TonB-Dependent Receptors—Structural Perspectives. Biochim. Biophys. Acta—Biomembr. 2002, 1565, 318–332. [Google Scholar] [CrossRef]
- Khan, A.; Singh, P.; Srivastava, A. Synthesis, Nature and Utility of Universal Iron Chelator—Siderophore: A Review. Microbiol. Res. 2018, 212–213, 103–111. [Google Scholar] [CrossRef]
- Celia, H.; Botos, I.; Ni, X.; Fox, T.; De Val, N.; Lloubes, R.; Jiang, J.; Buchanan, S.K. Cryo-EM Structure of the Bacterial Ton Motor Subcomplex ExbB–ExbD Provides Information on Structure and Stoichiometry. Commun. Biol. 2019, 2, 358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kampfenkel, K.; Braun, V. Membrane Topology of the Escherichia Coli ExbD Protein. J. Bacteriol. 1992, 174, 5485–5487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krewulak, K.D.; Vogel, H.J. Structural Biology of Bacterial Iron Uptake. Biochim. Biophys. Acta—Biomembr. 2008, 1778, 1781–1804. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, M.; Simões, M. Advances in the Antimicrobial and Therapeutic Potential of Siderophores. Environ. Chem. Lett. 2019, 17, 1485–1494. [Google Scholar] [CrossRef]
- Noinaj, N.; Guillier, M.; Barnard, T.J.; Buchanan, S.K. TonB-Dependent Transporters: Regulation, Structure, and Function. Annu. Rev. Microbiol. 2010, 64, 43–60. [Google Scholar] [CrossRef] [Green Version]
- Rees, D.C.; Johnson, E.; Lewinson, O. ABC Transporters: The Power to Change. Nat. Rev. Mol. Cell Biol. 2009, 10, 218–227. [Google Scholar] [CrossRef] [Green Version]
- Fukushima, T.; Allred, B.E.; Sia, A.K.; Nichiporuk, R.; Andersen, U.N.; Raymond, K.N. Gram-Positive Siderophore-Shuttle with Iron-Exchange from Fe-Siderophore to Apo-Siderophore by Bacillus Cereus YxeB. Proc. Natl. Acad. Sci. USA 2013, 110, 13821–13826. [Google Scholar] [CrossRef] [Green Version]
- Braun, V.; Hantke, K. Recent Insights into Iron Import by Bacteria. Curr. Opin. Chem. Biol. 2011, 15, 328–334. [Google Scholar] [CrossRef]
- Larsen, N.A.; Lin, H.; Wei, R.; Fischbach, M.A.; Walsh, C.T. Structural Characterization of Enterobactin Hydrolase IroE. Biochemistry 2006, 45, 10184–10190. [Google Scholar] [CrossRef]
- Ahmed, E.; Holmström, S.J.M. Siderophores in Environmental Research: Roles and Applications. Microb. Biotechnol. 2014, 7, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Harrington, J.M.; Duckworth, O.W.; Haselwandter, K. The Fate of Siderophores: Antagonistic Environmental Interactions in Exudate-Mediated Micronutrient Uptake. BioMetals 2015, 28, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, E.; Holmström, S.J.M. The Effect of Soil Horizon and Mineral Type on the Distribution of Siderophores in Soil. Geochim. Cosmochim. Acta 2014, 131, 184–195. [Google Scholar] [CrossRef]
- Powell, P.E.; Szaniszlo, P.J.; Cline, G.R.; Reid, C.P.P. Hydroxamate Siderophores in the Iron Nutrition of Plants. J. Plant Nutr. 1982, 5, 653–673. [Google Scholar] [CrossRef]
- Simanova, A.A.; Persson, P.; Loring, J.S. Evidence for Ligand Hydrolysis and Fe(III) Reduction in the Dissolution of Goethite by Desferrioxamine-B. Geochim. Cosmochim. Acta 2010, 74, 6706–6720. [Google Scholar] [CrossRef]
- Barbeau, K.; Rue, E.L.; Trick, C.G.; Bruland, K.W.; Butler, A. Photochemical Reactivity of Siderophores Produced by Marine Heterotrophic Bacteria and Cyanobacteria Based on Characteristic Fe(III) Binding Groups. Limnol. Oceanogr. 2003, 48, 1069–1078. [Google Scholar] [CrossRef] [Green Version]
- Bucheli-Witschel, M. Environmental Fate and Microbial Degradation of Aminopolycarboxylic Acids. FEMS Microbiol. Rev. 2001, 25, 69–106. [Google Scholar] [CrossRef]
- Pierwola, A.; Krupinski, T.; Zalupski, P.; Chiarelli, M.; Castignetti, D. Degradation Pathway and Generation of Monohydroxamic Acids from the Trihydroxamate Siderophore Deferrioxamine B. Appl. Environ. Microbiol. 2004, 70, 831–836. [Google Scholar] [CrossRef] [Green Version]
- Beneduzi, A.; Ambrosini, A.; Passaglia, L.M.P. Plant Growth-Promoting Rhizobacteria (PGPR): Their Potential as Antagonists and Biocontrol Agents. Genet. Mol. Biol. 2012, 35, 1044–1051. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Dai, C.; Zhou, Y.; Qiao, J.; Tang, B.; Yu, W.; Zhang, R.; Liu, Y.; Lu, S.-E. Pyoverdines Are Essential for the Antibacterial Activity of Pseudomonas Chlororaphis YL-1 under Low-Iron Conditions. Appl. Environ. Microbiol. 2021, 87, e02840-20. [Google Scholar] [CrossRef]
- Bashir, A.; Tian, T.; Yu, X.; Meng, C.; Ali, M.; Li, L. Pyoverdine-Mediated Killing of Caenorhabditis Elegans by Pseudomonas Syringae MB03 and the Role of Iron in Its Pathogenicity. Int. J. Mol. Sci. 2020, 21, 2198. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Ai, C.; Xin, L.; Zhou, G. The Siderophore-Producing Bacterium, Bacillus Subtilis CAS15, Has a Biocontrol Effect on Fusarium Wilt and Promotes the Growth of Pepper. Eur. J. Soil Biol. 2011, 47, 138–145. [Google Scholar] [CrossRef]
- Duhme, A.-K.; Hider, R.C.; Naldrett, M.J.; Pau, R.N. The Stability of the Molybdenum-Azotochelin Complex and Its Effect on Siderophore Production in Azotobacter Vinelandii. JBIC J. Biol. Inorg. Chem. 1998, 3, 520–526. [Google Scholar] [CrossRef]
- Schalk, I.J.; Hannauer, M.; Braud, A. New Roles for Bacterial Siderophores in Metal Transport and Tolerance. Environ. Microbiol. 2011, 13, 2844–2854. [Google Scholar] [CrossRef]
- Baysse, C.; De Vos, D.; Naudet, Y.; Vandermonde, A.; Ochsner, U.; Meyer, J.-M.; Budzikiewicz, H.; Schäfer, M.; Fuchs, R.; Cornelis, P. Vanadium Interferes with Siderophore-Mediated Iron Uptake in Pseudomonas Aeruginosa. Microbiology 2000, 146, 2425–2434. [Google Scholar] [CrossRef] [Green Version]
- Braud, A.; Jézéquel, K.; Bazot, S.; Lebeau, T. Enhanced Phytoextraction of an Agricultural Cr- and Pb-Contaminated Soil by Bioaugmentation with Siderophore-Producing Bacteria. Chemosphere 2009, 74, 280–286. [Google Scholar] [CrossRef]
- Edberg, F.; Kalinowski, B.E.; HolmstrÖm, S.J.M.; Holm, K. Mobilization of Metals from Uranium Mine Waste: The Role of Pyoverdines Produced by Pseudomonas Fluorescens. Geobiology 2010, 8, 278–292. [Google Scholar] [CrossRef]
- Vishnupradeep, R.; Bruno, L.B.; Taj, Z.; Karthik, C.; Challabathula, D.; Tripti; Kumar, A.; Freitas, H.; Rajkumar, M. Plant Growth Promoting Bacteria Improve Growth and Phytostabilization Potential of Zea Mays under Chromium and Drought Stress by Altering Photosynthetic and Antioxidant Responses. Environ. Technol. Innov. 2022, 25, 102154. [Google Scholar] [CrossRef]
- Dimkpa, C.O.; Merten, D.; Svatoš, A.; Büchel, G.; Kothe, E. Siderophores Mediate Reduced and Increased Uptake of Cadmium by Streptomyces Tendae F4 and Sunflower (Helianthus Annuus), Respectively. J. Appl. Microbiol. 2009, 107, 1687–1696. [Google Scholar] [CrossRef]
- Carrillo-Castañeda, G.; Muñoz, J.J.; Peralta-Videa, J.R.; Gomez, E.; Gardea-Torresdey, J.L. Modulation of Uptake and Translocation of Iron and Copper from Root to Shoot in Common Bean by Siderophore-Producing Microorganisms. J. Plant Nutr. 2005, 28, 1853–1865. [Google Scholar] [CrossRef]
- Dimkpa, C.; Svatoš, A.; Merten, D.; Büchel, G.; Kothe, E. Hydroxamate Siderophores Produced by Streptomyces Acidiscabies E13 Bind Nickel and Promote Growth in Cowpea (Vigna unguiculata L.) under Nickel Stress. Can. J. Microbiol. 2008, 54, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Burd, G.I.; Dixon, D.G.; Glick, B.R. Plant Growth-Promoting Bacteria That Decrease Heavy Metal Toxicity in Plants. Can. J. Microbiol. 2000, 46, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Glick, B.R. Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica 2012, 2012, 963401. [Google Scholar] [CrossRef] [Green Version]
- Schwyn, B.; Neilands, J.B. Universal Chemical Assay for the Detection and Determination of Siderophores. Anal. Biochem. 1987, 160, 47–56. [Google Scholar] [CrossRef]
- Mutikanga, H.; Sharma, S.; Vairavamoorthy, K. Investigating Water Meter Performance in Developing Countries: A Case Study of Kampala, Uganda. Water SA 2011, 37, 567–574. [Google Scholar] [CrossRef] [Green Version]
- Payne, S.M. Iron Acquisition in Microbial Pathogenesis. Trends Microbiol. 1993, 1, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Arnow, L.E. Proposed chemical mechanisms for the production of skin erythema and pigmentation by radiant energy. Science (80-) 1937, 86, 176. [Google Scholar] [CrossRef]
- Csáky, T.Z.; Hassel, O.; Rosenberg, T.; Lång (Loukamo), S.; Turunen, E.; Tuhkanen, A. On the Estimation of Bound Hydroxylamine in Biological Materials. Acta Chem. Scand. 1948, 2, 450–454. [Google Scholar] [CrossRef] [Green Version]
- Shenker, M.; Oliver, I.; Helmann, M.; Hadar, Y.; Chen, Y. Utilization by Tomatoes of Iron Mediated by a Siderophore Produced by Rhizopus Arrhizus. J. Plant Nutr. 1992, 15, 2173–2182. [Google Scholar] [CrossRef]
- Palanché, T.; Blanc, S.; Hennard, C.; Abdallah, M.A.; Albrecht-Gary, A.-M. Bacterial Iron Transport: Coordination Properties of Azotobactin, the Highly Fluorescent Siderophore of Azotobacter v Inelandii. Inorg. Chem. 2004, 43, 1137–1152. [Google Scholar] [CrossRef]
- Cornish, A.S.; Page, W.J. The Catecholate Siderophores of Azotobacter Vinelandii: Their Affinity for Iron and Role in Oxygen Stress Management. Microbiology 1998, 144, 1747–1754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fekete, F.A.; Lanzi, R.A.; Beaulieu, J.B.; Longcope, D.C.; Sulya, A.W.; Hayes, R.N.; Mabbott, G.A. Isolation and Preliminary Characterization of Hydroxamic Acids Formed by Nitrogen-Fixing Azotobacter Chroococcum B-8. Appl. Environ. Microbiol. 1989, 55, 298–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baars, O.; Morel, F.M.M.; Perlman, D.H. ChelomEx: Isotope-Assisted Discovery of Metal Chelates in Complex Media Using High-Resolution LC-MS. Anal. Chem. 2014, 86, 11298–11305. [Google Scholar] [CrossRef] [PubMed]
- Lehner, S.M.; Atanasova, L.; Neumann, N.K.N.; Krska, R.; Lemmens, M.; Druzhinina, I.S.; Schuhmacher, R. Isotope-Assisted Screening for Iron-Containing Metabolites Reveals a High Degree of Diversity among Known and Unknown Siderophores Produced by Trichoderma Spp. Appl. Environ. Microbiol. 2013, 79, 18–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deicke, M.; Mohr, J.F.; Bellenger, J.-P.; Wichard, T. Metallophore Mapping in Complex Matrices by Metal Isotope Coded Profiling of Organic Ligands. Analyst 2014, 139, 6096–6099. [Google Scholar] [CrossRef] [Green Version]
- Essén, S.A.; Johnsson, A.; Bylund, D.; Pedersen, K.; Lundström, U.S. Siderophore Production by Pseudomonas Stutzeri under Aerobic and Anaerobic Conditions. Appl. Environ. Microbiol. 2007, 73, 5857–5864. [Google Scholar] [CrossRef]
Genus | Strain | Gram | Siderophore | Reference | |
---|---|---|---|---|---|
Name | Type | ||||
Azospirillum | Azospirillum brasilense | Negative | Spirilobactin | Catechol | [81] |
Azospirillum lipoferum | Negative | 2,3-DHB, 3,5-DHB-threonine, 3,5-DHB-lysine | Catechol | [82] | |
Azotobacter | Azotobacter vinelandii | Negative | Aminochelin, Azotochelin, Protochelin, 2,3-DHB | Catechol | [68,104,105] |
Azotobacter vinelandii | Negative | Azotobactin | Mixed | [56,96] | |
Negative | Vibrioferrin | Mixed | [21] | ||
Bacillus | Bacillus megaterium | Positive | Schizokinen, N-schizokinen, N-schizokinen-A | Hydroxamate | [71,106] |
Bacillus subtilis, Bacillus thuringiensis | Positive | Itoic acid, Bacillobactin | Catechol | [85,107] | |
Pantoea | Pantoea vagans C9-1 | Negative | Enterobactin-like | Catechol | [74] |
Negative | Desferrioxamine-like | Hydroxamate | [74] | ||
Pantoea eucalypti M91 | Negative | Pyoverdine-like, Pyochelin-like | Mixed | [10] | |
Pseudomonas | Pseudomonas B10 | Negative | Pseudobactin(s) | Mixed | [98] |
Pseudomonas fluorescens, Pseudomonas aeruginosa, Pseudomonas syringae, Pseudomonas aureofaciens | Negative | Pyoverdine(s) | Mixed | [94,95,108,109] | |
Pseudomonas fluorescens | Negative | Ferribactin | Mixed | [93] | |
Rhizobium | Rhizobium radiobacter | Negative | Agrobactin | Catechol | [88,89] |
R. leguminosarum, R. phaseoli | Negative | Vicibactin | Hydroxamate | [78,79] | |
Rhizobium leguminosarum | Negative | Schizokinen | Hydroxamate | [73] | |
Negative | 2,3-DHB-threonine | Catechol | [73] | ||
Rhizobium meliloti | Negative | Rhizobactin | Catechol | [77] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timofeeva, A.M.; Galyamova, M.R.; Sedykh, S.E. Bacterial Siderophores: Classification, Biosynthesis, Perspectives of Use in Agriculture. Plants 2022, 11, 3065. https://doi.org/10.3390/plants11223065
Timofeeva AM, Galyamova MR, Sedykh SE. Bacterial Siderophores: Classification, Biosynthesis, Perspectives of Use in Agriculture. Plants. 2022; 11(22):3065. https://doi.org/10.3390/plants11223065
Chicago/Turabian StyleTimofeeva, Anna M., Maria R. Galyamova, and Sergey E. Sedykh. 2022. "Bacterial Siderophores: Classification, Biosynthesis, Perspectives of Use in Agriculture" Plants 11, no. 22: 3065. https://doi.org/10.3390/plants11223065
APA StyleTimofeeva, A. M., Galyamova, M. R., & Sedykh, S. E. (2022). Bacterial Siderophores: Classification, Biosynthesis, Perspectives of Use in Agriculture. Plants, 11(22), 3065. https://doi.org/10.3390/plants11223065