Transcriptome Profiling in Leaves of Wheat Genotype under Heat Stress
Abstract
:1. Introduction
2. Results
2.1. Selection of WH-1184
2.2. RNA Sequencing and QC Check of Raw Reads
2.3. Alignment and Expression Analysis
2.4. Differential Expression of Genes
2.5. Gene Ontology
2.6. KEGG Ontology Analysis
2.7. KEGG Pathway
3. Discussion
4. Material and Methods
4.1. Plant Material and Stress Treatment
4.2. Samples Collection
4.3. RNA Extraction
4.4. RNA Integrity and Quantification Check
4.5. mRNA Enrichment and Library Preparation
4.6. Library Quantification and Validation
4.7. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gaupp, F.; Hall, J.; Mitchell, D.; Dadson, S. Increasing risks of multiplebreadbasket failure under 1.5 and 2_C global warming. Agric. Syst. 2019, 175, 34–45. [Google Scholar] [CrossRef] [Green Version]
- Tomás, D.; Viegas, W.; Silva, M. Grain transcriptome dynamics induced by heat in commercial and traditional bread wheat genotypes. Front. Plant Sci. 2022, 13, 842599. [Google Scholar] [CrossRef] [PubMed]
- Gibson, L.R.; Paulsen, G.M. Yield components of wheat grown under high temperature stress during reproductive growth. Crop Sci. 1999, 39, 1841–1846. [Google Scholar] [CrossRef]
- Kuchel, H.; Williams, K.; Langridge, P.; Eagles, H.A.; Jefferies, S.P. Genetic dissection of grain yield in bread wheat. II. QTL-by-environment interaction. Theor. Appl. Genet. 2007, 115, 1015–1027. [Google Scholar] [CrossRef] [PubMed]
- Bennett, D.; Izanloo, A.; Reynolds, M.; Kuchel, H.; Langridge, P.; Schnurbusch, T. Genetic dissection of grain yield and physical grain quality in bread wheat (Triticum aestium L.) under water-limited environments. Theor. Appl. Genet. 2012, 125, 255–271. [Google Scholar] [CrossRef]
- Wahid, A.; Gelani, S.; Ashraf, M.; Foolad, M.R. Heat tolerance in plants: An overview. Environ. Exp. Bot. 2007, 61, 199–223. [Google Scholar] [CrossRef]
- Goswami, S.; Kumar, R.R.; Sharma, S.K.; Kala, Y.K.; Singh, K.; Gupta, R.; Dhavan, G.; Rai, G.K.; Singh, G.P.; Pathak, H.; et al. Calcium triggers protein kinases-induced signal transduction for augmenting the thermotolerance of developing wheat (Triticum aestivum) grain under the heat stress. J. Plant Biochem. Biotechnol. 2015, 24, 441–452. [Google Scholar] [CrossRef]
- Kotak, S.; Larkindale, J.; Lee, U.; von Koskull-Döring, P.; Vierling, E.; Scharf, K.D. Complexity of the heat stress response in plants. Curr. Opin. Plant Biol. 2007, 10, 310–316. [Google Scholar] [CrossRef]
- Nandha, A.; Mehta, D.; Tulsani, N.; Umretiya, N.; Delvadiya, N.; Kachhadiya, H.J. Transcriptome analysis of response to heat stress in heat tolerance and heat susceptible wheat (Triticum aestivum L.) genotypes. J. Pharma Phytochem. 2019, 8, 275–284. [Google Scholar]
- Kumar, R.R.; Sharma, S.K.; Goswami, S.; Singh, G.P.; Singh, R.; Singh, K.; Pathak, H.; Rai, R.D. Characterization of differentially expressed stress associated proteins in starch granule development under heat stress in wheat (Triticum aestivum L.). Ind. J. Biochem. Biophys. 2013, 50, 126–138. [Google Scholar]
- Rensink, W.A.; Buell, C.R. Microarray expression profiling resources for plant genomics. Trends Plant Sci. 2005, 10, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Mochida, K.; Kawaura, K.; Shimosaka, E.; Kawakami, N.; Shin-i, T.; Kohara, Y.; Yamazaki, Y.; Ogihara, Y. Tissue expression map of a large number of expressed sequence tags and its application to in silico screening of stress response genes in common wheat. Mol. Genet. Genom. 2006, 276, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Nagalakshmi, U.; Waern, K.; Snyder, M. RNA-seq: A method for comprehensive transcriptome analysis. Curr. Protoc. Mol. Biol. 2010, 4–11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.; Alisoltan, A.; Shiran, B.; Fallahi, H.; Ebrahimie, E.; Imani, A.; Houshmand, S. De-novo transcriptome assembly and comparative analysis of differentially expressed genes in Prunus dulcis Mill. in response to freezing stress. PLoS ONE 2014, 9, e104541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azameti, M.K.; Ranjan, A.; Singh, P.K.; Gaikwad, K.; Singh, A.K.; Dalal, M.; Arora, A.; Rai, V.; Padaria, J.C. Transcriptome profiling reveals the genes and pathways involved in thermo-tolerance in wheat (Triticum aestivum L.) genotype Raj 3765. Sci. Rep. 2022, 12, 14831. [Google Scholar] [CrossRef] [PubMed]
- Kosina, P.; Reynolds, M.; Dixon, J.; Joshi, A. Stakeholder perception of wheat production constraints, capacity building needs, and research partnerships in developing countries. Euphytica 2007, 157, 475–483. [Google Scholar] [CrossRef]
- Rangan, P.; Furtado, A.; Henry, R. Transcriptome profiling of wheat genotypes under heat stress during grain-filling. J. Cereal Sci. 2020, 91, 102895. [Google Scholar] [CrossRef]
- Paul, S.; Duhan, J.S.; Jaiswal, S.; Angadi, U.B.; Sharma, R.; Raghav, N.; Tiwari, R. RNA-Seq Analysis of Developing Grains of Wheat to Intrigue Into the Complex Molecular Mechanism of the Heat Stress Response. Front. Plant Sci. 2022, 13, 904392. [Google Scholar] [CrossRef]
- Kumar, R.R.; Goswami, S.; Sharma, S.K.; Kala, Y.K.; Rai, G.K.; Mishra, D.C.; Rai, R.D. Harnessing next generation sequencing in climate change: RNA-Seq analysis of heat stress-responsive genes in wheat (Triticum aestivum L.). OMICS 2015, 19, 632–647. [Google Scholar] [CrossRef] [Green Version]
- Arenas-M, A.; Castillo, F.M.; Godoy, D.; Canales, J.; Calderini, D.F. Transcriptomic and Physiological Response of Durum Wheat Grain to Short-Term Heat Stress during Early Grain Filling. Plants 2021, 11, 59. [Google Scholar] [CrossRef]
- Zhao, D.; Hamilton, J.P.; Hardigan, M.; Yin, D.; He, T.; Vaillancourt, B.; Reynoso, M.; Pauluzzi, G.; Funkhouser, S.; Cui, Y.; et al. Analysis of ribosome-associated mRNAs in rice reveals the importance of transcript size and GC content in translation. G3 Genes Genomes Genet. 2017, 7, 203–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Dai, Y.; Tao, X.; Wang, J.Z.; Cheng, H.Y.; Yang, H.; Ma, X.R. Heat shock factor genes of tall fescue and perennial ryegrass in response to temperature stress. Front. Plant Sci. 2015, 6, 1226. [Google Scholar] [PubMed]
- Wang, K.; Liu, Y.; Tian, J.; Huang, K.; Shi, T.; Dai, X.; Zhang, W. Transcriptional profiling and identification of heat-responsive genes in perennial ryegrass by RNA-sequencing. Front. Plant Sci. 2017, 8, 1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andjelkovic, V.; Micic, D.I. ESTs analysis in maize developing kernels exposed to single and combined water and heat stresses. Sci. Agric. 2011, 68, 353–360. [Google Scholar] [CrossRef] [Green Version]
- Mishra, V.K.; Gupta, S.; Chand, R.; Yadav, P.S.; Singh, S.K.; Joshi, A.K.; Varadwaj, P.K. Comparative transcriptomic profiling of High-and Low-grain Zinc and Iron containing Indian wheat genotypes. Curr. Plant Biol. 2019, 18, 100105. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, C.; Zhu, D.; He, H.; Wei, Z.; Yuan, Q.; Shang, L. Identifying candidate genes and patterns of heat-stress response in rice using a genome-wide association study and transcriptome analyses. Crop J. 2022. [Google Scholar] [CrossRef]
- Chen, S.; Li, H. Heat stress regulates the expression of genes at transcriptional and post-transcriptional levels, revealed by RNA-seq in Brachypodium distachyon. Front. Plant Sci. 2017, 7, 2067. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.F.; Wang, Y.; Tang, Y.; Kakani, V.G.; Mahalingam, R. Transcriptome analysis of heat stress response in switch grass (Panicum virgatum L.). BMC Plant Biol. 2013, 13, 153–165. [Google Scholar] [CrossRef] [Green Version]
- Lv, S.; Feng, K.; Peng, S.; Wang, J.; Zhang, Y.; Bian, J.; Nie, X. Comparative analysis of the transcriptional response of tolerant and sensitive wheat genotypes to drought stress in field conditions. Agronomy 2018, 8, 247. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Bai, S.; Li, L.; Han, X.; Li, J.; Zhu, Y.; Li, S. Comparative transcriptome analysis of two Aegilops tauschii with contrasting drought tolerance by RNA-Seq. Int. J. Mol. Sci. 2020, 21, 3595. [Google Scholar] [CrossRef]
- Noctor, G.; Gomez, L.; Vanacker, H.; Foyer, C.H. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J. Exp. Bot. 2002, 53, 1283–1304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaichi, M.; Sanjarian, F.; Razavi, K.; Gonzalez-Hernandez, J.L. Analysis of transcriptional responses in root tissue of bread wheat landrace (Triticum aestivum L.) reveals drought avoidance mechanisms under water scarcity. PLoS ONE 2019, 14, e0212671. [Google Scholar] [CrossRef] [PubMed]
- Sairam, R.K.; Rao, K.V.; Srivastava, G.C. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci. 2002, 163, 1037–1046. [Google Scholar] [CrossRef]
- Liu, Z.; Xin, M.; Qin, J.; Peng, H.; Ni, Z.; Yao, Y.; Sun, Q. Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.). BMC Plant Biol. 2015, 15, 152. [Google Scholar] [CrossRef] [PubMed]
Traits | Normal Sown | Late Sown | Percent Reduction | Correlation of GYP in Normal Sown | Correlation of GYP in Late Sown |
---|---|---|---|---|---|
RSI (%) | 16.80 | 24.59 | −46.36 | −0.877 ** | −0.668 ** |
MSI (%) | 83.22 | 75.42 | 9.37 | 0.876 ** | 0.668 ** |
GYP (g) | 955.00 | 584.25 | 38.82 |
Sr. No | Samples | No. of Reads | Data in GBs | GC % | Read Length | %Q20 | %Q30 |
---|---|---|---|---|---|---|---|
1 | WH-1184-Control | 57,386,524 | 8.61 | 52.5 | 150 | 99.75 | 92.10 |
2 | WH-1184-Treatment | 77,403,844 | 11.61 | 55.0 | 150 | 99.59 | 86.69 |
Samples | Reads after QC | Mapped Reads | Mapped Reads % | Uniquely Mapped Reads | Uniquely Mapped Reads % | Unmapped Reads | Unmapped Reads % |
---|---|---|---|---|---|---|---|
WH-1184-Control | 13,720,122 | 9,624,294 | 70.15 | 5,468,104 | 39.85 | 4,095,828 | 29.85 |
WH-1184-Treated | 18,666,082 | 13,809,696 | 73.98 | 7,637,170 | 40.91 | 4,856,386 | 26.02 |
Samples | Total Genes | No. of Expressed Genes |
---|---|---|
WH-1184-Control | 107,891 | 76,012 |
WH-1184-Treated | 107,891 | 87,694 |
Condition | Tested Genes | Differentially Expressed Genes | Up Regulated Genes | Down Regulated Genes |
---|---|---|---|---|
WH-1184-Control_vs_WH-1184-Treated | 86,916 | 4260 | 2308 | 1952 |
Domains | No. of DEGs | DEGs % | No. of Gene IDs |
---|---|---|---|
Biological processes | 257 | 63.6% | 20 |
Cellular components | 35 | 8.7% | 4 |
Molecular functions | 112 | 27.7% | 11 |
Total | 404 | 35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamba, K.; Kumar, M.; Singh, V.; Chaudhary, L.; Sharma, R.; Yadav, S.; Yashveer, S.; Dalal, M.S.; Gupta, V.; Nagpal, S.; et al. Transcriptome Profiling in Leaves of Wheat Genotype under Heat Stress. Plants 2022, 11, 3100. https://doi.org/10.3390/plants11223100
Lamba K, Kumar M, Singh V, Chaudhary L, Sharma R, Yadav S, Yashveer S, Dalal MS, Gupta V, Nagpal S, et al. Transcriptome Profiling in Leaves of Wheat Genotype under Heat Stress. Plants. 2022; 11(22):3100. https://doi.org/10.3390/plants11223100
Chicago/Turabian StyleLamba, Kavita, Mukesh Kumar, Vikram Singh, Lakshmi Chaudhary, Rajat Sharma, Samita Yadav, Shikha Yashveer, Mohinder Singh Dalal, Vijeta Gupta, Shreya Nagpal, and et al. 2022. "Transcriptome Profiling in Leaves of Wheat Genotype under Heat Stress" Plants 11, no. 22: 3100. https://doi.org/10.3390/plants11223100
APA StyleLamba, K., Kumar, M., Singh, V., Chaudhary, L., Sharma, R., Yadav, S., Yashveer, S., Dalal, M. S., Gupta, V., Nagpal, S., Saini, M., Rai, N. K., Pati, R., & Malhotra, K. (2022). Transcriptome Profiling in Leaves of Wheat Genotype under Heat Stress. Plants, 11(22), 3100. https://doi.org/10.3390/plants11223100