UV-B Radiation Effects on the Alpine Plant Kobresia humilis in a Qinghai-Tibet Alpine Meadow
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Sites and Growth Conditions
2.2. Experimental Design and Irradiation
2.3. Measurement
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farman, J.C.; Gardiner, B.G.; Shanklin, J.D. Large Losses of total ozone in Antarctic reveal seasonal ClOX-NOX interaction. Nature 1985, 315, 207–210. [Google Scholar] [CrossRef]
- Pyle, J.A. Global ozone depletion: Observation and theory. In Plants and UV-B; Lumsden, P.J., Ed.; Cambridge University Press: New York, NY, USA, 1997; pp. 3–12. [Google Scholar]
- Nowack, P.J.; Abraham, N.L.; Braesicke, P.; Pyle, J.A. Stratospheric ozone changes under solar geoengineering: Implications for UV exposure and air quality. Atmos. Chem. Phys. 2016, 16, 4191–4203. [Google Scholar] [CrossRef] [Green Version]
- Bornman, J.F.; Barnes, P.W.; Robinson, S.A.; Ballaré, C.L.; Flinte, S.D.; Caldwell, M.M. Solar ultraviolet radiation and ozone depletion-driven climate change: Effects on terrestrial ecosystems. Photochem. Photobiol. Sci. 2015, 14, 88–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parihar, P.; Singh, S.; Singh, R.; Singh, V.P.; Prasad, S.M. Changing scenario in plant UV-B research:UV-B from a generic stressor to a specific regulator. J. Photochem. Photobiol. B Biol. 2015, 153, 334–343. [Google Scholar] [CrossRef]
- Bais, A.F.; McKenzie, R.L.; Bernhard, G.; Aucamp, P.J.; Ilyas, M.; Madronichf, S.; Tourpalia, K. Ozone depletion and climate change: Impacts on UV radiation. Photochem. Photobiol. Sci. 2015, 14, 19–52. [Google Scholar] [CrossRef]
- Keiller, D.R.; Holmes, M.G. Effects of long-term exposure to elevated UV-B radiation on the photosynthetic performance of five broad-leaved tree species. Photosynth. Res. 2001, 67, 229–240. [Google Scholar] [CrossRef]
- Gaberščik, A.; Vončina, M.; Trošt, T.; Germ, M.; Björn, L.O. Growth and production of buckwheat (Fagopyrum esculentum) treated with reduced, ambient, and enhanced UV-B radiation. J. Photochem. Photobiol. B Biol. 2002, 66, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Huang, Y.; Liu, G.; Qin, F.; Yang, S.; Xu, X. Effects of enhanced UV-B radiation on morphology, physiology, biomass, leaf anatomy and ultrastructure in male and female mulberry (Morus alba) saplings. Environ. Exp. Bot. 2016, 129, 85–93. [Google Scholar] [CrossRef]
- Coffey, A.; Prinsen, E.; Jansen, M.A.K.; Conway, J. The UVB photoreceptor UVR8 mediates accumulation of UV absorbing pigments, but not changes in plant morphology, under outdoor conditions. Plant Cell Environ. 2017, 40, 2250–2260. [Google Scholar] [CrossRef]
- Correia, C.M.; Torres-Pereira, M.S.; Torres-Pereira, J.M.G. Growth, photosynthesis and UV-B absorbing compounds of Portuguese Barbela wheat exposed to ultraviolet-B radiation. Environ. Pollut. 1999, 104, 383–388. [Google Scholar] [CrossRef]
- Bassman, J.H.; Edwards, G.E.; Robberecht, R. Long-term exposure to enhanced UV-B radiation is not detrimental to growth and photosynthesis in Douglas-fir. New Phytol. 2002, 154, 107–120. [Google Scholar] [CrossRef]
- Mazza, C.A.; Giménez, P.I.; Kantolic, A.G.; Ballaré, C.L. Beneficial effects of solar UV-B radiation on soybean yield mediated by reduced insect herbivory under field conditions. Physiol. Plant. 2012, 147, 307–315. [Google Scholar] [CrossRef]
- Rozema, J.; van de Staaij, J.W.M.; Tosserams, M. Effects of UV-B Radiation Plants from Agro- to Natural Ecosystems. In Plants and UV-B; Lumsden, P.J., Ed.; Cambridge University Press: New York, NY, USA, 1997; pp. 213–232. [Google Scholar] [CrossRef]
- Caldwell, M.M.; Björn, L.O.; Bornman, J.F.; Flint, S.D.; Kulandaivelu, G.; Teramura, A.H.; Tevini, M. Effects of increased solar ultraviolet radiation on terrestrial ecosystems. J. Photochem. Photobiol. B Biol. 1998, 46, 40–52. [Google Scholar] [CrossRef]
- Madronich, S.; McKenzie, R.L.; Caldwell, M.M.; Björn, L.O. Changes in ultraviolet radiation reaching the Earth’s surface. Ambio 1995, 24, 143–152. [Google Scholar]
- Mandi, S.S. Natural UV Radiation in Enhancing Survival Value and Quality of Plants; Springer: New Delhi, India, 2016. [Google Scholar] [CrossRef]
- Zhou, X.J.; Luo, C.; Li, W.L.; Shi, J.E. Changes of Chinese regional ozone column and its low value center in Qinghai-Plateau. Chin. Sci. Bull. 1995, 40, 1396–1398, (In Chinese with English abstract). [Google Scholar]
- Shi, S.B.; Ben, G.Y.; Han, F. Solar UV-B Radiation and Plants UV-B-Absorbing Compounds in Alpine Meadow Regions. In Formation and Evolution, Environmental Changes and Sustainable Development on the Tibetan Plateau; Zheng, D., Ed.; Academy Press: Beijing, China, 1998; pp. 381–386. [Google Scholar]
- Caldwell, M.M.; Ballaré, C.L.; Bornman, J.F.; Flint, S.D.; Björn, L.O.; Teramura, A.H.; Kulandaivelu, G.; Tevini, M. Terrestrial ecosystems, increased solar ultraviolet radiation and interactions with other climatic change factors. Photochem. Photobiol. Sci. 2003, 2, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Zhou, L.; Zhao, X.; Liu, W.; Li, Y.; Gu, S.; Zhou, X. Stability of alpine meadow ecosystem on the Qinghai-Tibetan Plateau. Chin. Sci. Bull. 2006, 51, 320–327, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Yu, B.H.; Lu, C.H. Assessment of ecological vulnerability on the Tibetan Plateau. Geogr. Res. 2011, 30, 2289–2295, (In Chinese with English abstract). [Google Scholar]
- Zhao, X.Q.; Zhou, X.M. Ecological basis of alpine meadow ecosystem management in Tibet: Haibei Alpine Meadow Ecosystem Research Station. Ambio 1999, 28, 642–647. [Google Scholar]
- Wang, G.; Bai, W.; Li, N.; Hu, H. Climate changes and its impact on tundra ecosystem in Qinghai-Tibet Plateau, China. Clim. Chang. 2011, 106, 463–482. [Google Scholar] [CrossRef]
- eFloras. Missouri Botanical Garden, St. Louis, MO & Harvard University Herbaria, Cambridge, MA, USA. Available online: http://www.efloras.org (accessed on 31 May 2018).
- Björn, L.O.; Callaghan, T.; Gehrke, C.; Gunnarsson, T.; Holmgren, B.; Johanson, U.; Snogerup, S.; Sonesson, M.; Sterner, O.; Yu, S.G. Effects on subarctic vegetation of enhanced UV-B radiation. In Plants and UV-B; Lumsden, P.J., Ed.; Cambridge University Press: New York, NY, USA, 1997; pp. 233–246. [Google Scholar] [CrossRef]
- Chinese Soil Taxonomy Research Group. Chinese Soil Taxonomy; Agricultural Science and Technology Press: Beijing, China, 1995; pp. 58–147. (In Chinese) [Google Scholar]
- Shi, S.-B.; Zhu, W.-Y.; Li, H.-M.; Zhou, D.-W.; Zhao, X.-Q.; Tang, Y.-H. Photosynthesis of Saussurea superba and Gentiana straminea is not reduced after long-term enhancement of UV-B radiation. Environ. Exp. Bot. 2004, 51, 75–83. [Google Scholar] [CrossRef]
- Björn, L.O.; Teramura, A.H. Environmental UV Photobiology. In Simulation of Daylight Ultraviolet Radiation and Effects of Ozone Depletion; Young, A.R., Björn, L.O., Moan, J., Nultsch, W., Eds.; Plenum Press: New York, NY, USA, 1993; pp. 41–71. [Google Scholar]
- Li, D.Y.; Qiu, G.X.; Shen, Y.G. Some technical problems in using oxygen electrode. Plant Physiol. Commun. 1982, 5, 23–25, (In Chinese with English abstract). [Google Scholar]
- Day, T.A.; Howells, B.W.; Rice, W.J. Ultraviolet absorption and epidermal-transmittance spectra in foliage. Physiol. Plant. 1994, 92, 207–218. [Google Scholar] [CrossRef]
- Wellburn, A.R. The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Tevini, M.; Braun, J.; Fieser, G. The Protective Function of the Epidermal Layer of Rye Seedlings Against Ultraviolet-B Radiation. Photochem. Photobiol. 1991, 53, 329–333. [Google Scholar] [CrossRef]
- Rozema, J.; Björn, L.O.; Bornman, J.F.; Gaberščik, A.; Häder, D.P.; Trošt, T.; Germ, M.; Klisch, M.; Gröniger, A.; Sinha, R.P.; et al. The role of UV-B radiation in aquatic and terrestrial ecosystem—An experimental and functional analysis of the evolution of UV-absorbing compounds. J. Photochem. Photobiol. B Biol. 2002, 66, 2–12. [Google Scholar] [CrossRef]
- Shi, S.B.; Li, H.M.; Zhu, W.Y.; Han, F. Effects of long-term exposure to enhanced UV-A and UV-B radiation on Kobresia humilis in Qinghai-Tibet alpine meadow. In Proceedings of the Program and Abstracts of the 4th International Symposium on the Tibetan Plateau, Lhasa, Tibet, China, 4–7 August 2004; pp. 195–196. [Google Scholar]
- Strid, A.; Porra, R.J. Alterations in Pigment Content in Leaves of Pisum sativum After Exposure to Supplementary UV-B. Plant Cell Physiol. 1992, 33, 1015–1023. [Google Scholar] [CrossRef]
- Brouwer, B.; Gardeström, P.; Keech, O. In response to partial plant shading, the lack of phytochrome A does not directly induce leaf senescence but alters the fine-tuning of chlorophyll biosynthesis. J. Exp. Bot. 2014, 65, 4037–4049. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.M. Primary studies on morphological-ecological traits of eight Kobresia species in Qinghai-Tibet Plateau. Acta Phytol. Sin. 1979, 21, 135–142, (In Chinese with English abstract). [Google Scholar]
- Barnes, P.W.; Ballaré, C.L.; Caldwell, M.M. Photomorphogenic Effects of UV-B Radiation on Plants: Consequences for Light Competition. J. Plant Physiol. 1996, 148, 15–20. [Google Scholar] [CrossRef]
- Antonelli, F.; Bussotti, F.; Grifoni, D.; Grossoni, P.; Mori, B.; Tani, C.; Zipoli, G. Oak (Quercus robur L.) seedlings responses to a realistic increase in UV-B radiation under open space condition. Chemosphere 1998, 36, 841–845. [Google Scholar] [CrossRef]
- Yang, Y.; Niu, K.; Hu, Z.; Niklas, K.J.; Sun, S. Linking species performance to community structure as affected by UV-B radiation: An attenuation experiment. J. Plant Ecol. 2018, 11, 286–296. [Google Scholar] [CrossRef] [Green Version]
- Newsham, K.K.; McLeod, A.R.; Greenslade, P.D.; Emmett, B.A. Appropriated controls in outdoor UV-B supplementation experiments. Glob. Chang. Biol. 1996, 2, 319–324. [Google Scholar] [CrossRef]
- Paul, N.D. Interaction between trophic levels. In Plants and UV-B; Lumsden, P.J., Ed.; Cambridge University Press: New York, NY, USA, 1997; pp. 317–340. [Google Scholar]
Parameters | Ambient UV-B | Enhanced UV-B | p-Value | Sample Size | |
---|---|---|---|---|---|
Plant height | cm | 3.41 ± 0.58 | 3.49 ± 0.78 | 0.64 | 60 |
Leaf length | cm | 2.98 ± 0.91 | 3.37 ± 0.71 | 0.01 | 60 |
Leaf width | cm | 0.18 ± 0.06 | 0.21 ± 0.05 | 0.01 | 60 |
Leaf thickness | mm | 0.20 ± 0.02 | 0.24 ± 0.05 | 0 | 120 |
Parameters | Ambient UV-B | Enhanced UV-B | Change (%) | |
---|---|---|---|---|
IV | 4.58 | 3.98 | −13.10 | |
Biomass | g | 4.14 | 3.24 | −21.74 |
% | 6.43 | 5.83 | −9.33 |
Parameters | Ambient UV-B | Enhanced UV-B | p-Value | |
---|---|---|---|---|
Pn | μmol O2 m−2 s−1 | 5.23 ± 1.14 | 6.44 ± 1.29 | 0.21 |
Chlorophyll | mg Chl g−1 (FW) | 1.93 ± 0.09 | 2.62 ± 0.35 | 0.01 |
μg Chl cm−2 (leaf area) | 29.86 ± 1.54 | 39.27 ± 6.56 | 0.03 | |
Carotenoids | mg Chl g−1 (FW) | 0.58 ± 0.05 | 0.70 ± 0.06 | 0.02 |
μg Chl cm−2 (leaf area) | 9.04 ± 0.42 | 10.58 ± 1.68 | 0.05 | |
UV-B absorbing pigments | A300 g−1 (FW) | 4.92 ± 0.65 | 5.54 ± 1.32 | 0.44 |
A300 cm−2/(leaf area) | 1.13 ± 0.70 | 1.61 ± 0.29 | 0.25 |
Parameters | Ambient UV-B | Enhanced UV-B | p-Value | Measured Time |
---|---|---|---|---|
Tiller number | 540 ± 144 | 480 ± 100 | 0.587 | 1 July 2005 |
Number of spikelet stems | 46.00 ± 12.52 | 73.33 ± 23.94 | 0.038 | 23 June 2004 |
Flower number | 22.67 ±9.33 | 45.83 ± 7.59 | 0.021 | 4 June 2004 |
Flowers/spikelet stem | 0.547 ± 0.220 | 0.691 ± 0.129 | 0.197 | 4 June 2004 |
Nutlets/spikelet stem | 0.032 ± 0.018 | 0.046 ± 0.013 | 0.532 | 4 June 2004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, S.; Shi, R.; Li, T.; Zhou, D. UV-B Radiation Effects on the Alpine Plant Kobresia humilis in a Qinghai-Tibet Alpine Meadow. Plants 2022, 11, 3102. https://doi.org/10.3390/plants11223102
Shi S, Shi R, Li T, Zhou D. UV-B Radiation Effects on the Alpine Plant Kobresia humilis in a Qinghai-Tibet Alpine Meadow. Plants. 2022; 11(22):3102. https://doi.org/10.3390/plants11223102
Chicago/Turabian StyleShi, Shengbo, Rui Shi, Tiancai Li, and Dangwei Zhou. 2022. "UV-B Radiation Effects on the Alpine Plant Kobresia humilis in a Qinghai-Tibet Alpine Meadow" Plants 11, no. 22: 3102. https://doi.org/10.3390/plants11223102
APA StyleShi, S., Shi, R., Li, T., & Zhou, D. (2022). UV-B Radiation Effects on the Alpine Plant Kobresia humilis in a Qinghai-Tibet Alpine Meadow. Plants, 11(22), 3102. https://doi.org/10.3390/plants11223102