Essential Oil Variability of Superior Myrtle (Myrtus communis L.) Accessions Grown under the Same Conditions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Essential Oil Content of Myrtle Accessions under Greenhouse Conditions
2.2. EO Compositions of Myrtle Accessions under Greenhouse Conditions
2.3. Cluster Analysis of the Myrtle Chemotypes Based on the Main Compounds
2.4. Principal Component Analysis (PCA)
3. Materials and Methods
3.1. Plant Materials and Site Description
3.2. EO Isolation and Phytochemical Analysis
3.3. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mozaffarian, V. A Dictionary of Iranian Plant Names; Farhang Moaser: Tehran, Iran, 1996. [Google Scholar]
- Shahbazian, D.; Karami, A.; Eshghi, S.; Maggi, F. Variation in the essential oil yields and compositions of Myrtle (Myrtus communis L.) Populations collected from natural habitats of Southern Iran. J. Essent. Oil Res. 2018, 30, 369–378. [Google Scholar] [CrossRef]
- Messaoud, C.; Béjaoui, A.; Boussaid, M. Fruit color, chemical and genetic diversity and structure of Myrtus communis L. var. italica Mill. morph populations. Biochem. Syst. Ecol. 2011, 39, 570–580. [Google Scholar] [CrossRef]
- Yangui, I.; Zouaoui Boutiti, M.; Boussaid, M.; Messaoud, C. Essential oils of Myrtaceae species growing wild in Tunisia: Chemical variability and antifungal activity against Biscogniauxia mediterranea, the causative agent of charcoal canker. Chem. Biodivers. 2017, 14, e1700058. [Google Scholar] [CrossRef] [PubMed]
- Messaoud, C.; Boussaid, M. Myrtus communis berry color morphs: A comparative analysis of essential oils, fatty acids, phenolic compounds, and antioxidant activities. Chem. Biodivers. 2011, 8, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Mulas, M.; Cani, M.R.; Brigaglia, N. Characters useful to cultivation in spontaneous populations of Myrtus communis L. Acta Hort. 1998, 457, 271–278. [Google Scholar] [CrossRef]
- Wannes, W.A.; Marzouk, B. Characterization of myrtle seed (Myrtus communis var. baetica) as a source of lipids, phenolics, and antioxidant activities. J. Food. Drug Anal. 2016, 24, 316–323. [Google Scholar]
- Flamini, G.; Pier Luigi, C.; Morelli, I.; Maccioni, S.; Baldini, R. Phytochemical typologies in some populations of Myrtus communis L. on Caprione Promontory (East Liguria, Italy). Food Chem. 2004, 85, 599–604. [Google Scholar] [CrossRef]
- Wannes, W.A.; Mhamdi, B.; Kchouk, M.E.; Marzouk, B. Composition of fruit volatiles and annual changes in the leaf volatiles of Myrtus communis var. baetica in Tunisia. Riv. Ital. Sostanze Gr. 2011, 88, 128–134. [Google Scholar]
- Snoussi, A.; Chaabouni, M.M.; Bouzouita, N.; Kachouri, F. Chemical composition and antioxidant activity of Myrtus communis L. floral buds essential oil. J. Essent. Oil Res. 2011, 23, 10–14. [Google Scholar] [CrossRef]
- Wannes, W.A.; Mhamdi, B.; Sriti, J.; Marzouk, B. Glycerolipid and fatty acid in pericarp, seed and whole fruit oils of Myrtus communis var. italica. Ind. Crops Prod. 2010, 31, 77–83. [Google Scholar] [CrossRef]
- Berka-Zougali, B.; Ferhat, M.A.; Hassani, A.; Chemat, F.; Allaf, K.S. Comparative study of essential oils extracted from Algerian Myrtus communis L. leaves using microwaves and hydrodistillation. Int. J. Mol. Sci. 2012, 13, 4673–4695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouzabata, A.; Boussaha, F.; Casanova, J.; Tomi, F. Composition and chemical variability of leaf oil of Myrtus communis from north-eastern Algeria. Nat. Prod. Commun. 2010, 5, 1659–1662. [Google Scholar] [CrossRef] [PubMed]
- Asllani, U. Chemical composition of Albanian myrtle oil (Myrtus communis L.). J. Essent. Oil Res. 2000, 12, 140–142. [Google Scholar] [CrossRef]
- Ghasemi, E.; Raofie, F.; Mashkouri Najafi, N. Application of response surface methodology and central composite design for the optimization of supercritical fluid extraction of essential oils from Myrtus communis L. leaves. Food Chem. 2011, 126, 1449–1453. [Google Scholar] [CrossRef]
- Ghasemi Pirbalouti, A.; Craker, L.E. Diversity in chemical compositions of essential oil of myrtle leaves from various natural habitats in south and southwest Iran. J. For. Res. 2015, 26, 971–981. [Google Scholar] [CrossRef]
- Rahimmalek, M.; Mirzakhani, M.; Ghasemi Pirbalouti, A. Essential oil variation among 21 wild myrtles (Myrtus communis L.) populations collected different geographical regions in Iran. Ind. Crops Prod. 2013, 51, 328–333. [Google Scholar] [CrossRef]
- Yadegarinia, D.; Gachkar, L.; Rezaei, M.B.; Taghizadeh, M.; Alipoor Astaneh, S.; Rasooli, I. Biochemical activities of Iranian Mentha piperita L. and Myrtus communis L. essential oils. Phytochemistry 2006, 67, 1249–1255. [Google Scholar] [CrossRef]
- Chryssavgi, G.; Vassiliki, P.; Athanasios, M.; Kibouris, T.; Michael, K. Essential oil composition of Pistacia lentiscus L. and Myrtus communis L.: Evaluation of antioxidant capacity of methanolic extracts. Food Chem. 2008, 107, 1120–1130. [Google Scholar]
- Aboutabl, E.A.; Meselhy, K.M.; Elkhreisy, E.M.; Nassar, M.I.; Fawzi, R. Composition and bioactivity of essential oils from leaves and fruits of Myrtus communis and Eugenia supraxillaris (Myrtaceae) grown in Egypt. J. Essent. Oil Bear. Plants 2011, 1492, 192–200. [Google Scholar] [CrossRef]
- Anwar, S.; Crouch, R.A.; Ali, N.A.; AlFatimi, M.A.; Setzer, W.N.; Wessjohann, L. Hierarchical cluster analysis and chemical characterization of Myrtus communis L. essential oil from Yemen region and its antimicrobial, antioxidant and anti-colorectal adenocarcinoma properties. Nat. Prod. Res. 2017, 31, 2158–2163. [Google Scholar] [CrossRef]
- Cakir, A. Essential oil and fatty acid composition of the fruits of Hippophaer hamnoides L. (Sea Buckthorn) and Myrtus communis L. Biochem. Syst. Ecol. 2004, 32, 809–816. [Google Scholar] [CrossRef]
- Mimica-Dukić, N.; Bugarin, D.; Grbović, S.; Mitić Ćulafić, D.; Vuković-Gačić, B.; Orčić, D.; Jovin, E.; Couladis, M. Essential oil of Myrtus communis L. as a potential antioxidant and antimutagenic agents. Molecules 2010, 15, 2759–2770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barboni, T.; Venturini, N.; Paolini, L.; Desjobert, J.M.; Chiaramonti, N.; Costa, J. Characterisation of volatiles and polyphenols for quality assessment of alcoholic beverages prepared from Corsican Myrtus communis berries. Food Chem. 2010, 122, 1304–1312. [Google Scholar] [CrossRef]
- Bradesi, T.P.; Casanova, J.; Costa, J.; Bernardini, A.F. Chemical composition of Myrtle leaf oil from Corsica France. J. Essent. Oil Res. 1997, 9, 283–288. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2017. [Google Scholar]
Compound | RI a | RI b | KH1 | KH3 | AT1 | AT2 | AT3 | AT4 | AT5 | BN1 | BN2 | BN5 | KA1 | KA2 | KA3 | KA4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
α-Pinene | 936 | 939 | 3.21 | 16.28 | 37.44 | 53.09 | 2.35 | 2.63 | 25.00 | 5.10 | 11.26 | 17.28 | 31.23 | 6.95 | 25.93 | 30.64 |
o-Cymene | 1022 | 1022 | - | 8.05 | - | - | - | - | 0.65 | 3.96 | 1.05 | - | 0.73 | - | 0.92 | 1.26 |
p-Cymene | 1026 | 1024 | - | 13.18 | - | 0.72 | - | - | 0.78 | 4.76 | - | - | 0.78 | - | - | - |
Limonene | 1029 | 1029 | - | 3.44 | 2.51 | 2.27 | - | - | 1.64 | - | 17.38 | 15.64 | 2.29 | 12.03 | 2.53 | 2.92 |
1,8-Cineole | 1031 | 1031 | 18.04 | 3.96 | 7.60 | 6.74 | 2.02 | - | 4.91 | - | 14.43 | 7.16 | 13.19 | 7.52 | 17.43 | 17.64 |
(E)-β-Ocimene | 1044 | 1050 | - | - | - | - | - | - | 0.46 | - | - | - | - | - | - | - |
γ-Terpinene | 1056 | 1059 | - | 8.35 | - | - | - | - | 0.45 | 4.40 | 0.81 | - | 0.48 | - | - | - |
Linalool | 1098 | 1096 | 24.70 | - | 16.83 | 13.78 | 24.97 | - | 19.57 | 13.10 | 23.15 | 24.89 | 17.70 | 23.69 | 18.74 | 20.53 |
α-Terpineol | 1190 | 1188 | 7.37 | 5.02 | 4.092 | 0.57 | 3.68 | 1.14 | 2.44 | 3.99 | 4.016 | 2.70 | 3.17 | 4.11 | 3.69 | 3.29 |
Geraniol | 1253 | 1252 | 5.028 | 3.63 | 1.84 | 0.79 | - | 6.56 | 1.73 | 2.99 | 1.11 | - | 1.74 | 2.76 | 2.16 | 2.018 |
Linalyl acetate | 1258 | 1257 | 19.08 | 1.66 | 10.09 | - | 45.29 | - | 23.10 | 18.28 | 13.45 | 16.97 | 16.83 | 22.21 | 14.56 | 12.05 |
α-Terpinyl acetate | 1347 | 1349 | 5.78 | - | 1.16 | 0.54 | - | 3.81 | 0.97 | 4.51 | 1.90 | 0.78 | 1.69 | 2.19 | 2.11 | 1.81 |
Neryl acetate | 1361 | 1361 | - | - | - | 11.48 | - | - | 0.81 | - | 0.92 | 0.99 | 0.77 | 1.42 | - | - |
Geranyl acetate | 1381 | 1381 | 6.99 | 5.90 | 2.75 | 2.14 | 6.41 | 4.38 | 2.99 | 10.90 | 4.40 | 3.89 | 2.02 | 3.91 | 2.25 | 1.74 |
Methyl eugenol | 1402 | 1403 | - | - | 1.55 | - | - | 12.23 | 1.04 | 4.99 | - | 0.92 | - | - | - | - |
(E)-β-Damascone | 1413 | 1413 | 5.32 | 2.96 | 3.67 | 1.09 | 3.34 | 4.46 | 1.77 | 5.35 | 1.18 | 2.74 | 1.87 | - | ||
(E)-β-Caryophyllene | 1417 | 1417 | - | 8.90 | 2.41 | 2.17 | 5.86 | - | 2.97 | 4.96 | 1.10 | 0.71 | 1.42 | 1.20 | 1.66 | - |
α-Humulene | 1450 | 1452 | - | 9.84 | 1.80 | 0.50 | 3.46 | 18.97 | 2.80 | 3.98 | 0.76 | 0.45 | 1.10 | - | 0.89 | 0.82 |
Germacrene D | 1481 | 1482 | - | - | 2.95 | - | - | 19.19 | - | - | - | - | - | 2.74 | - | - |
α-Amorphene | 1485 | 1483 | - | - | - | 1.15 | - | - | - | - | - | 3.23 | - | - | 2.67 | 1.01 |
(E)-Methyl isoeugenol | 1495 | 1492 | - | 3.63 | - | - | - | 4.42 | 3.98 | - | - | - | - | - | - | - |
Caryophyllene oxide | 1581 | 1583 | 4.02 | 5.02 | 2.42 | 0.56 | 2.58 | 21.80 | 1.04 | 8.10 | 4.25 | 0.97 | 1.51 | 4.61 | 1.48 | 2.25 |
Total | 99.54 | 99.83 | 99.12 | 97.59 | 99.96 | 99.59 | 99.104 | 99.37 | 99.98 | 97.76 | 96.65 | 98.09 | 98.89 | 97.98 | ||
EO (%) | 0.56 | 0.45 | 0.60 | 0.52 | 0.57 | 0.61 | 0.55 | 0.44 | 0.42 | 2.62 | 0.95 | 1.50 | 0.87 | 0.50 |
No. | Accession Names | Collection Site | Latitude | Longitude | Altitude (m) |
---|---|---|---|---|---|
1–2 | KH1-KH3 | Khergheh, Firozabad, Fars, Iran | 285,345.7 N | 522,240.3 E | 1497 |
3–6 | KA1-KA2-KA3-KA4 | Kavar, Fars, Iran | 290,600.4 N | 524,811.1 E | 1525 |
7–11 | AT1-AT2-AT3-AT4-AT5 | Atashkadeh, Fars, Iran | 290,808.1 N | 533,712.8 E | 1478 |
12–14 | BN1-BN2-BN5 | Bagh nari, Noorabad mamasani, Fars, Iran | 301,056.4 N | 514,623.5 E | 1293 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahbazian, D.; Karami, A.; Raouf Fard, F.; Eshghi, S.; Maggi, F. Essential Oil Variability of Superior Myrtle (Myrtus communis L.) Accessions Grown under the Same Conditions. Plants 2022, 11, 3156. https://doi.org/10.3390/plants11223156
Shahbazian D, Karami A, Raouf Fard F, Eshghi S, Maggi F. Essential Oil Variability of Superior Myrtle (Myrtus communis L.) Accessions Grown under the Same Conditions. Plants. 2022; 11(22):3156. https://doi.org/10.3390/plants11223156
Chicago/Turabian StyleShahbazian, Donya, Akbar Karami, Fatemeh Raouf Fard, Saeid Eshghi, and Filippo Maggi. 2022. "Essential Oil Variability of Superior Myrtle (Myrtus communis L.) Accessions Grown under the Same Conditions" Plants 11, no. 22: 3156. https://doi.org/10.3390/plants11223156
APA StyleShahbazian, D., Karami, A., Raouf Fard, F., Eshghi, S., & Maggi, F. (2022). Essential Oil Variability of Superior Myrtle (Myrtus communis L.) Accessions Grown under the Same Conditions. Plants, 11(22), 3156. https://doi.org/10.3390/plants11223156