Research Progress on Dormancy Mechanism and Germination Technology of Kobresia Seeds
Abstract
:1. Introduction
2. Results
2.1. Reasons for the Low Germination Rate
2.1.1. Mechanical Obstruction of the Seed Coat
2.1.2. Existence of Endogenous Inhibitors
2.1.3. Others
2.2. Methods of Relieving Seed Dormancy and Increasing the Germination Rate of Kobresia
2.2.1. Physical Treatment
2.2.2. Chemical Treatment
3. Materials and Methods
3.1. Botanical Characterization and Distribution
3.1.1. Botany
3.1.2. Plant Description
3.1.3. Geographical Distribution
3.1.4. Modes of Reproduction
3.2. Methods
3.2.1. Search Strategy
3.2.2. Study Selection
3.2.3. Data Extraction
4. Conclusions and Future Prospective Developments
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, L.; Yu, W.B.; Han, F.L.; Lu, Y.; Zhang, T.Q. Effects of desertification on permafrost environment in Qinghai-Tibetan Plateau. J. Environ. Manag. 2020, 262, 582. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.L.; He, Y.H.; Zhou, R.L.; Su, Y.Z.; Li, Y.Q.; Drake, S. Effects of desertification on soil organic C and N content in sandy farmland and grassland of Inner Mongolia. Catena 2009, 773, 187–191. [Google Scholar] [CrossRef]
- Gomes, L.; Arrúe, J.L.; López, M.V.; Sterk, G.; Richard, D.; Gracia, R.; Sabre, M.; Gaudichet, A.; Frangi, J.P. Wind erosion in a semiarid agricultural area of Spain: The WELSONS project. Catena 2003, 52, 235–256. [Google Scholar] [CrossRef] [Green Version]
- Lian, J.; Zhao, X.Y.; Wang, S.K.; Wang, X.Y.; Yue, X.F.; Han, J.J.; Huang, W.D. Impacts of wind erosion on the distribution patterns of soil organic carbon and total nitrogen in Horqin Sandy Land, China. Chin. J. Ecol. 2013, 323, 529–535. [Google Scholar]
- Santiago, J.H.D.; Lucas-Borja, M.E.; Wic-Baena, C.; Andres-Abellan, M.; de las Heras, J. Effects of thinning and induced drought on microbiological soil properties and plant species diversity at dry and semiarid locations. Land Degrad. Dev. 2016, 274, 1151–1162. [Google Scholar] [CrossRef]
- Ning, Y.; Zhou, X.; Yan, Z.; Zhang, S.; Chen, L.; Wan, G. Response of soil ciliates community to ecological restoration after the implementation of returning grazing to grasslands project: A case study of Maqu county, Gansu province. Acta Ecol. Sin. 2020, 407, 2386–2395. [Google Scholar]
- Zhang, D.J.; Qi, Q.; Tong, S.Z.; Wang, X.H.; An, Y.; Zhang, M.Y.; Lu, X.G. Soil degradation effects on plant diversity and nutrient in tussock meadow wetlands. J. Soil Sci. Plant Nutr. 2019, 193, 535–544. [Google Scholar] [CrossRef]
- Dixon, A.B. The hydrological impacts and sustainability of wetland drainage cultivation in Illubabor, Ethiopia. Land Degrad. Dev. 2002, 131, 17–31. [Google Scholar] [CrossRef]
- Qi, Q.; Zhang, D.J.; Tong, S.Z.; Zhang, M.Y.; Wang, X.H.; An, Y.; Lu, X.G. The driving mechanisms for community expansion in a restored Carex tussock wetland. Ecol. Indic. 2021, 121, 107040. [Google Scholar] [CrossRef]
- Lawrence, B.A.; Zedler, J.B. Carbon storage by Carex stricta tussocks: A restorable ecosystem service? Wetlands 2013, 333, 483–493. [Google Scholar] [CrossRef]
- Taddeo, S.; Dronova, I. Indicators of vegetation development in restored wetlands. Ecol. Indic. 2018, 94, 454–467. [Google Scholar] [CrossRef]
- Ho, M.C.; Richardson, C.J. A five year study of floristic succession in a restored urban wetland. Ecol. Eng. 2013, 61, 511–518. [Google Scholar] [CrossRef]
- Wu, J.G.; Zhou, Q.F. Geographical distribution pattern and climate characteristics of adaptation for Kobresia in China. Acta Phytoecol. Sin. 2012, 3603, 199–221. [Google Scholar] [CrossRef]
- Jiao, S.; Wang, L.; Liu, G. Prediction of tibetan plateau permafrost distribution in global warming. Acta Sci. Nat. Univ. Pekin. 2016, 52, 249–256. [Google Scholar] [CrossRef]
- Li, L.H.; Zhang, Y.L.; Wu, J.S.; Li, S.C.; Zhang, B.H.; Zu, J.X.; Zhang, H.M.; Ding, M.J.; Paudel, B. Increasing sensitivity of alpine grasslands to climate variability along an elevational gradient on the Qinghai-Tibet Plateau. Sci. Total Environ. 2019, 678, 21–29. [Google Scholar] [CrossRef]
- Zhang, R.; Su, F.; Jiang, Z.; Gao, X.; Guo, D.; Ni, J.; You, Q.; Lan, C.; Zhou, B. An overview of projected climate and environmental changes across the Tibetan Plateau in the 21st century. Chin. Sci. Bull. 2015, 60, 3036–3047. [Google Scholar] [CrossRef]
- Govaerts, R.; Simpson, D.A.; Bruhl, J.J. World checklist of Cyperaceae. Royal Botanic Gardens; Kew: London, UK, 2007; pp. 100–395. [Google Scholar]
- Semmouri, I.; Bauters, K.; Leveille-Bourret, E.; Starr, J.R.; Goetghebeur, P.; Larridon, I. Phylogeny and Systematics of Cyperaceae, the Evolution and Importance of Embryo Morphology. Bot. Rev. 2019, 851, 1–39. [Google Scholar] [CrossRef]
- Bezerra, J.J.L.; Pinheiro, A.A.V. Traditional uses, phytochemistry, and anticancer potential of Cyperus rotundus L. (Cyperaceae): A systematic review. S. Afr. J. Bot. 2022, 144, 175–186. [Google Scholar] [CrossRef]
- Wei, Y.Q.; Wang, X.G.; Kong, L.Q.; Liu, F.; Zhang, Y. The effect of acid scarification, alkali scarification and temperature on dormancy break of three Carex seeds. Caoye Yu Xumu 2016, 2, 3–9. [Google Scholar] [CrossRef]
- Downer, R.G.; Hyatt, P.E. Recommendations concerning the identification of Carex retroflexa and Carex texensis (Cyperaceae; section Phaestoglochin Dumort). Castanea 2003, 68, 245–253. [Google Scholar]
- Huh, M.K. Allozyme variation and population structure of Carex humilis var. nana (Cyperaceae) in Korea. Can. J. Bot. 2001, 794, 457–463. [Google Scholar] [CrossRef]
- Xue, H.; Sha, W.; Ni, H.W. Research overview of Carex plants. J. Qiqihar Univ. 2005, 4, 81–86. [Google Scholar]
- Zhang, S.R. Revision of Kobresia(Cyperaceae) in Xizang(Tibet). Acta Phytotaxon. Sin. 2004, 3, 194–221. [Google Scholar]
- Wei, W.; Zhou, J.J.; Baima, G.W.; Qu, G.P. Study of resource investigation of Kobresia in Tibetan Plateau. Chin. Wild Plant Resour. 2019, 38, 80–85. [Google Scholar] [CrossRef]
- Li, Q.X.; Zhao, Q.F.; Ma, S.R.; Cui, Y. Effects of temperature and chemical drugs on seed germination of Kobresia setchwanensis. J. Northwest Norm. Univ. (Nat. Sci.) 2008, 445, 78–82. [Google Scholar] [CrossRef]
- Miehe, G.; Schleuss, P.M.; Seeber, E.; Babel, W.; Biermann, T.; Braendle, M.; Chen, F.; Coners, H.; Foken, T.; Gerken, T. The Kobresia pygmaea ecosystem of the Tibetan highlands–Origin, functioning and degradation of the world’s largest pastoral alpine ecosystem: Kobresia pastures of Tibet. Sci. Total Environ. 2019, 648, 754–771. [Google Scholar] [CrossRef]
- Zhou, H.K.; Zhao, X.Q.; Tang, Y.H.; Gu, S.; Zhou, L. Alpine grassland degradation and its control in the source region of the Yangtze and Yellow Rivers, China. Jpn. Soc. Grassl. Sci. 2005, 51, 191–203. [Google Scholar] [CrossRef]
- Miehe, G.; Miehe, S.; Kaiser, K.; Jianquan, L.; Zhao, X.Q. Status and dynamics of the Kobresia pygmaea ecosystem on the Tibetan Plateau. AMBIO J. Hum. Environ. 2008, 374, 272–279. [Google Scholar] [CrossRef]
- Harris, R.B. Rangeland degradation on the Qinghai-Tibetan plateau: A review of the evidence of its magnitude and causes. J. Arid Environ. 2010, 741, 1–12. [Google Scholar] [CrossRef]
- Kang, X.; Jiao, J.J. Review on climate change on the Tibetan Plateau during the last half century. J. Geophys. Res. Atmos. 2016, 1218, 3979–4007. [Google Scholar] [CrossRef] [Green Version]
- Shang, Z.; Long, R. Formation causes and recovery of the “Black Soil Type” degraded alpine grassland in Qinghai-Tibetan Plateau. Front. Agric. China 2007, 12, 197–202. [Google Scholar] [CrossRef]
- Bhatia, H.; Srivastava, G.; Mehrotra, R.C. Legumes from the Paleocene sediments of India and their ecological significance. Plant Divers. 2022, in press. [Google Scholar] [CrossRef]
- Wang, Y.; Wesche, K. Vegetation and soil responses to livestock grazing in Central Asian grasslands: A review of Chinese literature. Biodivers. Conserv. 2016, 2512, 2401–2420. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, J.; Smith, P.; Tang, Y.; Chen, A.; Ji, C.; Hu, H.; Rao, S.; Tan, K.; HE, J.S. Changes in topsoil carbon stock in the Tibetan grasslands between the 1980s and 2004. Glob. Change Biol. 2009, 1511, 2723–2729. [Google Scholar] [CrossRef]
- Unteregelsbacher, S.; Hafner, S.; Guggenberger, G.; Miehe, G.; Xu, X.; Liu, J.; Kuzyakov, Y. Response of long-, medium-and short-term processes of the carbon budget to overgrazing-induced crusts in the Tibetan Plateau. Biogeochemistry 2012, 1111, 187–201. [Google Scholar] [CrossRef]
- Holdsworth, M.J.; Bentsink, L.; Soppe, W.J.J. Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol. 2008, 1791, 33–54. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, M.D.; McKibbin, R.S.; Bailey, P.C.; Flintham, J.E.; Gale, M.D.; Lenton, J.R.; Holdsworth, M.J. Use of comparative molecular genetics to study pre harvest sprouting in wheat. Euphytica 2002, 1261, 27–33. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; Zhang, R.; Fu, Q.; Tang, F.; Shi, F.; Temuer, B.; Zhang, Z. Comparative transcriptome and anatomic characteristics of stems in two alfalfa genotypes. Plants 2022, 1119, 2601. [Google Scholar] [CrossRef] [PubMed]
- Kettenring, K.M.; Tarsa, E.E. Need to seed? Ecological, genetic, and evolutionary keys to seed-based wetland restoration. Front. Environ. Sci. 2020, 8, 109. [Google Scholar] [CrossRef]
- Lobato-de Magalhaes, T.; Rico, Y.; Cabrera-Toledo, D.; Martinez, M. Plant functional connectivity of Nymphoides fallax in geographically isolated temporary wetlands in Mexican highlands. Aquat. Bot. 2020, 164, 103215. [Google Scholar] [CrossRef]
- Baskin, C.C.; Baskin, J.M. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination, 2nd ed.; Academic Press: San Diego, CA, USA, 2014; pp. 33–77. [Google Scholar]
- Chen, W.; Ma, S.B.; Chen, H.W. Summary of the seed dormancy types and the breaking methods. J. Anhui Agric. Sci. 2009, 3733, 16237–16239. [Google Scholar] [CrossRef]
- Huang, Y. Study on seed dormancy and germination characteristics of 10 species of Cyperaceae. Doctoral Dissertation, Nanjing Agriculture University, Nanjing, China, 2019; p. 6. [Google Scholar]
- Chen, X.C. Micromorphology and germination of Peganum multisectum (Maxim.) Bobr. seed and its ecological adaptive strategy. Master’s Thesis, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China, 2016; p. 6. [Google Scholar]
- Chen, X.L.; Jing, G.H.; Guo, H. Ornamentation characteristics of seed coats in nineteen plants of Pedicularis from alpine meadow in east Qinghai-Xizang plateau and its ecological significance. Acta Prataculturae Sin. 2007, 2, 60–68. [Google Scholar]
- Bewley, J.D.; Black, M. Seeds: Physiology of Development and Germination; Springer Science & Business Media: Berlin, Germany, 2013; pp. 42–166. [Google Scholar]
- Huang, B.N.; Li, X.L. A report of the experimental study on using fine species of Kobresia to resume vegetation of black soil patch. J. Chin. Qinghai J. Anim. Vet. Sci. 1996, 1, 1–5. [Google Scholar]
- Zheng, H.M. Study on seed germination characteristics and molecular phylogeny of Kobresia Willd. in Tibetan Plateau. Acta Agrestia Sin. 2008, 16, 542–544. Available online: manu40.magtech.com.cn/Jweb_cdxb/EN/10.11733/j.issn.1007-0435.2008.05.023 (accessed on 7 October 2022).
- Zhang, G.Y.; Hu, T.M.; Wang, Q.Z.; Zheng, H.M. Effects of different treatments on structure of seeds vessel and germination percentage of 7 species of Kobresia seeds in Tibet. J. Northwest AF Univ. (Nat. Sci. Ed.) 2008, 11, 21–28. [Google Scholar] [CrossRef]
- Li, X.L. Study on Germination and Anatomy Characteristics of Kobresia humilis Seed in Different Region. Seed 2002, 6, 12–13. [Google Scholar] [CrossRef]
- Li, X. Seed dormancy types and the breaking methods. Mod. Agric. Sci. Technol. 2016, 22, 57. [Google Scholar] [CrossRef]
- Deng, Z.F.; Xie, X.L.; Wang, Q.J.; Zhou, X.M. A primary study on propagation strategy of kobresia pygmaea and kobresia humilis under different degenerative gradation in alpine meadow. Chin. J. Ecol. 2001, 6, 68–70. [Google Scholar]
- Deng, Z.F.; Xie, X.L.; Zhou, X.M.; Wang, Q.J. Study on reproductive ecology of Kobresia pygmaea population in alpine meadow. Acta Bot. Boreali Occident. Sin. 2002, 22, 136–141. [Google Scholar]
- Huang, J.H.; Hu, T.M.; Zheng, H.M. The break dormancy and quantity of abscisic acid in Kobresia Willd. Acta Agric. Boreali-Occident. Sin. 2009, 18, 152–155. [Google Scholar]
- Deng, D.S.; Liu, J.Q.; Deng, Z.F.; Wang, W. A preliminary study on the reproductive characters of kobresia in qinghai-xizang plateau. J. Qinghai Norm. Univ. (Nat. Sci. Ed.) 1995, 2, 24–29. [Google Scholar] [CrossRef]
- Yu, X.; Xu, C.; Jing, Y.; Duan, C.; Xiao, H.; Zhao, Z.; Li, S. Effects of stratification in the winter on the seed germination characteristics of 5 alpine meadow plant species. Pratacultural Sci. 2015, 323, 427–432. [Google Scholar]
- Kang, J.J.; Zhao, M.; Ma, H.; Lu, Y.C.; Zhu, L.L.; Zhang, Y.D. Kobresia robusta Maxim: Seed Biology and Germination Characteristics. J. Chin. Agric. Sci. Bull. 2016, 3218, 89–95. [Google Scholar]
- Probert, R.J. Seeds: The Ecology of Regeneration in Plant Communities; CABI Digital Library: Boston, MA, USA, 2000. [Google Scholar] [CrossRef]
- Gworek, J.R.; Vander Wall, S.B.; Brussard, P.F. Changes in biotic interactions and climate determine recruitment of Jeffrey pine along an elevation gradient. For. Ecol. Manag. 2007, 239, 57–68. [Google Scholar] [CrossRef]
- Lloret, F.; Penuelas, J.; Estiarte, M. Experimental evidence of reduced diversity of seedlings due to climate modification in a Mediterranean-type community. Glob. Change Biol. 2004, 102, 248–258. [Google Scholar] [CrossRef]
- Walck, J.L.; Hidayati, S.N.; Dixon, K.W.; Thompson, K.; Poschlod, P. Climate change and plant regeneration from seed. Glob. Change Biol. 2011, 176, 2145–2161. [Google Scholar] [CrossRef]
- Lesica, P. Arctic-alpine plants decline over two decades in Glacier National Park, Montana, USA. Arct. Antarct. Alp. Res. 2014, 462, 327–332. [Google Scholar] [CrossRef]
- Finch-Savage, W.E.; Leubner-Metzger, G. Seed dormancy and the control of germination. New Phytol. 2006, 1713, 501–523. [Google Scholar] [CrossRef]
- Penfield, S. Seed biology–from lab to field. J. Exp. Bot. 2017, 68, 761–763. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Zhang, G.J.; Chen, Y.M.; Li, F.M. A comparative researches on seed germination of 15 plant species from alpine meadow. Acta Ecol. Sin. 2004, 6, 1150–1156. [Google Scholar]
- Milberg, P.; Andersson, L. Does cold stratification level out differences in seed germinability between populations? Plant Ecol. 1998, 1342, 225–234. [Google Scholar] [CrossRef]
- Rave, W.S. The effect of cold stratification and light on the seed germination of temperate sedges (Carex) from various habitats and implications for regenerative strategies. Plant Ecol. 1999, 1442, 215–230. [Google Scholar] [CrossRef]
- Chen, X.; Yi-Feng, X.U.; Zhang, Z.Y. Dormancy Mechanism and Breaking Techniques of Sorbus folgneri Seeds. Seed 2011, 30, 33–37. [Google Scholar]
- Lea, P.; Leegood, R.C. Plant Biochemistry and Molecular Biology; Wiley: Hoboken, NJ, USA, 2002. [Google Scholar]
- Ma, H.Y.; Liang, Z.W. Effects of storage conditions and sowing methods on seed germination of Leymus chinensis. Chin. J. Appl. Ecol. 2007, 5, 999–1004. [Google Scholar]
- Gu, A.L.; Yi, J. Holubowicz, R.; Broda, Z. Effects of Low-temperatures on Seed Germination of Leymus chinensis and Pascopyrum smithii. Grassl. China 2005, 2, 50–54. [Google Scholar]
- Allen, P.S.; Meyer, S.E. Ecological Aspects of Seed Dormancy Loss; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Baskin, C.C.; Milberg, P.; Andersson, L.; Baskin, J.M. Seed dormancy-breaking and germination requirements of Drosera anglica, an insectivorous species of the Northern Hemisphere. Acta Oecologica 2001, 221, 1–8. [Google Scholar] [CrossRef]
- Zhang, G.Y.; Li, Y.F.; Hu, T.M. Effects of Sodium Hydroxide and Cold Stratifying Treatments on Germination of Kobresia seeds. Acta Agric. Boreali-Occident. Sin. 2010, 12, 104–108. [Google Scholar]
- Gou, G.X.; Zhao, D.M. Study on seed germination of three kobresia species. Qinghai Prataculture 2006, 2, 21–23. [Google Scholar]
- Wu, Y.; Zhou, Y.J.; Hu, H.; Shen, Y.B. Advances in Molecular Mechanisms of Seed Dormancy and Release. Seed 2021, 4005, 63–70. [Google Scholar] [CrossRef]
- Finch-Savage, W.E.; Footitt, S. Seed dormancy cycling and the regulation of dormancy mechanisms to time germination in variable field environments. J. Exp. Bot. 2017, 684, 843–856. [Google Scholar] [CrossRef] [Green Version]
- Castro-Camba, R.; Sánchez, C.; Vidal, N.; Vielba, J.M. Plant Development and Crop Yield: The Role of Gibberellins. Plants 2022, 1119, 2650. [Google Scholar] [CrossRef] [PubMed]
- Li, T.S. Study on Seed Dormancy and Germination Characteristics of Narrow -Leaf Wild Pea. Master’s Thesis, Lanzhou University, Lanzhou, China, 2013; p. 6. [Google Scholar]
- Li, Q.X.; Zhao, Q.F.; Cui, Y.; Ma, S.R. Genetic diversity of Kobresia setchwanensis along the east-southern of Qinghai-Tibet plateau. J. Northwest Norm. Univ. (Nat. Sci.) 2006, 21, 69–73. [Google Scholar] [CrossRef]
- Sano, N.; Marion-Poll, A. ABA Metabolism and Homeostasis in Seed Dormancy and Germination. Int. J. Mol. Sci. 2021, 2210, 5069. [Google Scholar] [CrossRef] [PubMed]
- Gattward, J.N.; Almeida, A.A.F.; Souza, J.J.O.; Gomes, F.P.; Kronzucker, H.J. Sodium–potassium synergism in Theobroma cacao: Stimulation of photosynthesis, water-use efficiency and mineral nutrition. Physiol. Plant. 2012, 1463, 350–362. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Xu, H.Q.; Hu, T.M.; He, X.Q. Study on seed dormancy and germination of Kobresia tibetica. Acta Agrestia Sin. 2019, 272, 421–430. [Google Scholar]
- Zhang, S.R.; Liang, S.Y.; Dai, L.K. A study on the geographic distribution of the genus Kobresia willd. Acta Phytotaxon. Sin. 1995, 2, 144–160. [Google Scholar]
- Editorial Committee of Flora of China, Chinese Academy of Sciences. Flora of China; Science Press: Beijing, China, 2020; Volume 21, pp. 164–461. [Google Scholar]
- Chinese Field Herbarium. Available online: https://cfh.ac.cn/ (accessed on 27 July 2022).
- Cui, N.R. Main Forage Plants of Xinjiang; Xinjiang People ‘s Publishing House: Urumqi City, China, 1990; pp. 113–187. [Google Scholar]
- Xu, Y.M.; Miao, Y.J.; Hu, T.M.; Wang, Q.Z.; Zheng, H.M. Evaluation of Germplasm Resources of Kobresia littledalei in Tibet. Chin. J. Grassl. 2009, 31, 41–46. [Google Scholar]
- Editorial Committee of China Forage Plants. Forage plants of China; China Agriculture Press: Beijing, China, 1989; pp. 47–122. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Zhang, Z.; Xu, W.; Zhou, H.; Ning, R. Research Progress on Dormancy Mechanism and Germination Technology of Kobresia Seeds. Plants 2022, 11, 3192. https://doi.org/10.3390/plants11233192
Wang N, Zhang Z, Xu W, Zhou H, Ning R. Research Progress on Dormancy Mechanism and Germination Technology of Kobresia Seeds. Plants. 2022; 11(23):3192. https://doi.org/10.3390/plants11233192
Chicago/Turabian StyleWang, Na, Zhonghua Zhang, Wenhua Xu, Huakun Zhou, and Rongchun Ning. 2022. "Research Progress on Dormancy Mechanism and Germination Technology of Kobresia Seeds" Plants 11, no. 23: 3192. https://doi.org/10.3390/plants11233192
APA StyleWang, N., Zhang, Z., Xu, W., Zhou, H., & Ning, R. (2022). Research Progress on Dormancy Mechanism and Germination Technology of Kobresia Seeds. Plants, 11(23), 3192. https://doi.org/10.3390/plants11233192