Mechanisms of Microbial Plant Protection and Control of Plant Viruses
Abstract
:1. Introduction
2. Microorganisms Used in the Management of Plant Virus Diseases
2.1. Actinomycetes in Plant Virus Inhibition
2.2. Bacteria and Its Consortium against Plant Viruses
2.3. Fungi in Plant Virus Inhibition
2.4. Virus-Based Control of Plant Viruses
3. Microbe-Induced Antiviral Mechanisms against Plant Virus Infection
3.1. Cross-Protection
3.2. Antiviral/Antibiotic Compounds
3.3. Lipopeptides
3.4. Ribonucleases against Plant RNA Viruses
3.5. Plant Growth-Promoting Rhizobacteria-Induced Resistance in Plants
4. Future Prospects
5. Conclusions and Way Forward
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, P.K.; Cunningham, A.A.; Patel, N.G.; Morales, F.J.; Epstein, P.R.; Daszak, P. Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 2004, 19, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Noman, A.; Aqeel, M.; Javed, M.T.; Zafar, S.; Ali, Q.; Islam, W.; Irshad, M.K.; Buriro, M.; Kanwal, H.; Khalid, N. Histological changes in Hibiscus rosasinensis endorse acclimation and phytoremediation of industrially polluted sites. J. Anim. Plant Sci. 2017, 27, 1637–1648. [Google Scholar]
- He, S.; Krainer, K.M. Pandemics of people and plants: Which is the greater threat to food security? Mol. Plant 2020, 13, 933–934. [Google Scholar] [CrossRef] [PubMed]
- Rubio, L.; Galipienso, L.; Ferriol, I. Detection of plant viruses and disease management: Relevance of genetic diversity and evolution. Front. Plant Sci. 2020, 11, 1092. [Google Scholar] [CrossRef] [PubMed]
- De Fazio, G.; Caner, J.; Vicente, M. Effect of virazole (ribavirin) on tomato spotted wilt virus in two systemic hosts, tomato and tobacco. Arch. Virol. 1980, 63, 305–309. [Google Scholar] [CrossRef]
- Jones, R.A.C. Global plant virus disease pandemics and epidemics. Plants 2021, 10, 233. [Google Scholar] [CrossRef]
- Chung, B.N.; Yoon, J.Y.; Palukaitis, P. Engineered resistance in potato against potato leaf roll virus, potatovirus A and potato virus Y. Virus Genes 2013, 47, 86–92. [Google Scholar] [CrossRef]
- Li, H.; Ding, X.; Wang, C.; Ke, H.; Wu, Z.; Wang, Y.; Liu, H.; Guo, J. Control of tomato yellow leaf curl virus disease by Enterobacter asburiae BQ9 as a result of priming plant resistance in tomatoes. Turk. J. Biol. 2016, 40, 150–159. [Google Scholar] [CrossRef]
- Mishra, J.; Tewari, S.; Singh, S.; Arora, N.K. Biopesticides: Where we stand? In Plant-Microbes Symbiosis: Applied Facets; Arora, N.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 37–75. [Google Scholar] [CrossRef]
- Maksimov, I.V.; Maksimova, T.I.; Sarvarova, E.R.; Blagova, D.K. Endophytic bacteria as effective agents of new-generation biopesticides (A Review). Appl. Biochem. Microbiol. 2018, 54, 128–140. [Google Scholar] [CrossRef]
- Maksimov, I.V.; Sorokan, A.V.; Burkhanova, G.F.; Veselova, S.V.; Alekseev, V.Y.; Shein, M.Y.; Avalbaev, A.M.; Dhaware, P.D.; Mehetre, G.T.; Singh, B.P.; et al. Mechanisms of plant tolerance to RNA viruses induced by plant-growth-promoting microorganisms. Plants 2019, 8, 575. [Google Scholar] [CrossRef]
- Clay, K. Fungal endophytes of grasses: A defensive mutualism between plants and fungi. Ecology 1988, 69, 10–16. [Google Scholar] [CrossRef]
- Siegel, M.R.; Latch, G.C.M. Expression of antifungal activity in agarculture by isolates of grass endophytes. Mycologia 1991, 83, 529–537. [Google Scholar] [CrossRef]
- Bouizgarne, B. Bacteria for plant growth promotion and disease management. In Bacteria in Agrobiology: Disease Management; Maheshwari, D.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 15–46. [Google Scholar]
- LeCocq, K.; Gurr, S.J.; Hirsch, P.R.; Mauchline, T.H. Exploitation of endophytes for sustainable agricultural intensification. Mol. Plant Pathol. 2017, 18, 469–473. [Google Scholar] [CrossRef] [Green Version]
- Kunoh, H. Endophytic actinomycetes: Attractive biocontrol agents. J. Gen. Plant Pathol. 2002, 68, 249–252. [Google Scholar] [CrossRef]
- Salwan, R.; Sharma, V. Role of actinobacteria in production of industrial enzymes. In Book Volume on Actinobacteria: Diversity and Biotechnological Applications; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780444639950. [Google Scholar]
- Pandey, R.N.; Gandhi, K.B.; Manjunatha, L. In vitro evaluation of actinobacteria for biocontrol of dry root rot and Fusarium wilt diseases in chickpea (Cicer arietnum L.). J. Food Legumes 2021, 34, 245–247. [Google Scholar]
- Dong, D.; Wang, C.M.; Wu, Y.H. Antiphytoviral action mechanism of cytosine peptidemycin’s complexation chemical pesticide 06. J. Shenyang Agric. Univ. 2006, 37, 593–596. [Google Scholar]
- Wang, Y.H.; Wu, Y.H.; Zhu, C.Y.; Du, C.M. Studies on a new antiviral component of cytosinpeptidemycin. J. Shenyang Agric. Univ. 2006, 37, 44–47. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Han, L.R.; Zhang, G.F.; Zhang, X.; Feng, J.T. Purification and characterization of a novel glycoprotein from Streptomyces sp. ZX01. Int. J. Biol. Macromol. 2015, 78, 195–201. [Google Scholar] [CrossRef]
- Han, Y.; Luo, Y.; Qin, S.; Xi, L.; Wan, B.; Du, L. Induction of systemic resistance against tobacco mosaic virus by ningnanmycin in tobacco. Pestic. Biochem. Phys. 2014, 111, 14–18. [Google Scholar] [CrossRef]
- Lam, K.S. Discovery of novel metabolites from marine actinomycetes. Curr. Opion. Microbiol. 2006, 9, 245–255. [Google Scholar] [CrossRef]
- Latake, S.B.; Borkar, S.G. Characterization of marine actinomycete having antiviral activity against cucumber mosaic virus. Curr. Sci. 2017, 113, 1442–1447. [Google Scholar] [CrossRef]
- Mohamed, S.H.; Galal, A.M. Identification and antiviral activities of some halo tolerant Streptomycetes isolated from Qaroon lake. Int. J. Agric. Biol. 2005, 7, 747–753. [Google Scholar]
- Xing, Z.; Li-Rong, H.; Da-Wei, Z.; Bing-Nian, J.; Jun-Tao, F. Anti-TMV activity of the fermentation product of actinomycetes strain ZX 01. J. Northwest A. F. Univ. 2012, 1, 30–36. [Google Scholar]
- Chen, J.; Liu, H.; Xia, Z.; Zhao, X.; Wu, Y.; An, M. Purification and structural analysis of the effective anti-TMV compound ε-Poly-L-lysine produced by Streptomyces ahygroscopicus. Molecules 2019, 24, 1156. [Google Scholar] [CrossRef] [PubMed]
- Saritha, M.; Prasad, N.V.; Tollamadugu, K.V. The status of research and application of biofertilizers and biopesticides: Global scenario. In Recent Developments in Applied Microbiology and Biochemistry; Academic Press: Cambridge, MA, USA, 2019; pp. 195–207. [Google Scholar]
- Ramzan, M.; Bushra, T.; Idrees, A.N.; Anwar, K.M.; Tariq, M.F.A.; Naila, S.; Abdul, Q.R.; Muhammad, U.B.; Nida, T.; Tayyab, H. Identification and application of biocontrol agents against Cotton leaf curl virus disease in Gossypium hirsutum under greenhouse conditions. Biotechnol. Biotechnol. Equip. 2016, 30, 469–478. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.; Jagadeesh, K.S.; Krishnaraj, P.U.; Prem, S. Biocontrol of tomato leaf curl virus (ToLCV) in tomato with chitosan supplemented formulations of Pseudomonas sp. under field conditions. Aust. J. Crop Sci. 2014, 8, 347–355. [Google Scholar]
- Murphy, J.F.; Zehnder, G.W.; Schuster, D.J.; Sikora, E.J.; Polston, J.E.; Kloepper, J.W. Plant growth-promoting rhizobacterial mediated protection in tomato against Tomato mottle virus. Plant Dis. 2000, 84, 779–784. [Google Scholar] [CrossRef] [Green Version]
- Kandan, A.; Radjacommare, R.; Ramiah, M.; Ramanathan, A.; Samiyappan, R. PGPR induced systemic resistance in cowpea against tomato spotted wilt virus by activating defense against tomato spotted wilt virus by activating defense related enzymes and compound. In Proceedings of the Sixth International Workshop on Plant Growth Promoting Rhizobacteria, Calicut, India, 5–10 October 2003; Sarma, Y.R., Ed.; IISR Publishers: Calicut, India, 2003; pp. 480–486. [Google Scholar]
- Maurhofer, M.; Reimmann, C.; Schmidli-Sacherer, P.; Heeb, S.; Haas, D.; Défago, G. Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain p3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology 1998, 88, 678–684. [Google Scholar] [CrossRef] [Green Version]
- Zehnder, G.W.; Yao, C.; Murphy, J.F.; Sikora, E.R.; Kloepper, J.W.; Schuster, D.J.; Polston, J.E. Microbe-induced resistance against pathogens and herbivores: Evidence of effectiveness in agriculture. In Induced Plant Defenses Against Pathogens and Herbivores: Biochemistry, Ecology, and Agriculture; Agrawal, A.A., Tuzun, S., Bent, E., Eds.; American Phytopathological Society: St. Paul, MN, USA, 1999; pp. 335–355. [Google Scholar]
- Anonymous. Available online: http://minsemlab.ru/agrobakter/biogran (accessed on 4 December 2019).
- Beris, D.; Theologidis, I.; Skandalis, N.; Vassilakos, N. Bacillus amyloliquefaciens strain MBI600 induces salicylic acid-dependent resistance in tomato plants against Tomato spotted wilt virus and Potato Virus, Y. Sci. Rep. 2018, 8, 10320. [Google Scholar] [CrossRef] [Green Version]
- Damayanti, T.A.; Katerina, T. Protection of hot pepper against multiple infections of viruses by utilizing root colonizing bacteria. J. ISSAAS 2008, 14, 92–100. [Google Scholar]
- Veselova, S.V.; Sorokan, A.V.; Burkhanova, G.F.; Rumyantsev, S.D.; Cherepanova, E.A.; Alekseev, V.Y.; Sarvarova, E.R.; Kasimova, A.R.; Maksimov, I.V. By Modulating the Hormonal Balance and Ribonuclease Activity of Tomato Plants Bacillus subtilis Induces Defense Response against Potato Virus X and Potato Virus, Y. Biomolecules 2022, 12, 288. [Google Scholar] [CrossRef]
- Vinodkumar, S.; Nakkeeran, S.; Renukadevi, P.; Mohankumar, S. Diversity and antiviral potential of rhizospheric and endophytic Bacillus species and phyto-antiviral principles against tobacco streak virus in cotton. Agric. Ecosyst. Environ. 2018, 267, 42–51. [Google Scholar] [CrossRef]
- Loebenstein, G.; Lovrekovich, L. Interference with tobacco mosaic virus local lesion formation in tobacco by injection heat-killed cells of Pseudomonas syringae. Virology 1966, 30, 587–591. [Google Scholar] [CrossRef]
- Yang, J.; Guo, C.; Zhai, X.; Shen, L.; Qian, Y.; Wang, F. Inactivation of Tobacco mosaic virus in soil by Pseudomonas putida A3-m strain to prevent virus mosaic disease. Afr. J. Microbiol. Res. 2012, 6, 6300–6307. [Google Scholar] [CrossRef]
- Wang, F.D.; Feng, G.H.; Chen, K.S. Burdock fructooligosaccharide induces resistance to tobacco mosaic virus in tobacco seedlings. Physiol. Mol. Plant Pathol. 2009, 74, 34–40. [Google Scholar] [CrossRef]
- Lian, L.; Xie, L.; Zheng, L.; Lin, Q. Induction of systemic resistance in tobacco against Tobacco mosaic virus by Bacillus spp. Biocontrol Sci. Technol. 2011, 21, 281–292. [Google Scholar] [CrossRef]
- Sharipova, M.; Rockstroh, A.; Balaban, N.; Mardanova, A.; Toymentseva, A.; Tikhonova, A.; Vologin, S.; Stashevsky, Z. Antiviral Effect of ribonuclease from Bacillus pumilus against phytopathogenic RNA-Viruses. Agric. Sci. 2015, 6, 1357–1366. [Google Scholar] [CrossRef] [Green Version]
- Ju, Y.P.; Si, Y.Y.; Young, C.K.; Jin-Cheol, K.; Quang, L.D.; Jeong, J.K.; In, S.K. Antiviral peptide from Pseudomonas chlororaphis O6 against tobacco mosaic virus (TMV). J. Korean Soc. Appl. Biol. 2012, 55, 89–94. [Google Scholar]
- Shankar, A.C.; Udaya, N.S.; Chandra, N.-R.S.; Kumar, H.B.; Reddy, M.S.; Niranjana, S.R.; Prakash, H.S. Rhizobacteria mediated resistance against the blackeye cowpea mosaic strain of bean common mosaic virus in cowpea (Vigna unguiculata). Pest Manag. Sci. 2009, 65, 1059–1064. [Google Scholar] [CrossRef]
- Bergstrom, G.C.; Johnson, M.C.; Kuc, J. Effects of local infection of cucumber by Colletotrichum lagenarium, Pseudomonas lachrymans, or tobacco necrosis virus on systemic resistance to cucumber mosaic virus. Phytopathology 1982, 72, 922–926. [Google Scholar] [CrossRef]
- Murphy, J.F.; Reddy, M.S.; Ryu, C.M.; Kloepper, J.W.; Li, R. Rhizobacteria-mediated growth promotion of tomato leads to protection against cucumber mosaic virus. Phytopathology 2003, 93, 1301–1307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zehnder, G.W.; Yao, C.; Murphy, J.F.; Sikora, E.J.; Kloepper, J.W. Induction of resistance in tomato against Cucumber mosaic Cucumovirus by plant growth-promoting rhizobacteria. Biocontrol 2000, 45, 127–137. [Google Scholar] [CrossRef]
- Lee, G.H.; Ryu, C.M. Spraying of Leaf-Colonizing Bacillus amyloliquefaciens Protects Pepper from Cucumber mosaic virus. Plant Dis. 2016, 100, 2099–2105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Chauhan, P.S.; Agrawal, L.; Raj, R.; Srivastava, A.; Gupta, S.; Mishra, S.K.; Yadav, S.; Singh, P.C.; Raj, S.K.; et al. Paenibacillus lentimorbus inoculation enhances tobacco growth and extenuates the virulence of Cucumber mosaic virus. PLoS ONE 2016, 11, e0149980. [Google Scholar] [CrossRef] [PubMed]
- Ryu, C.M.; Murphy, J.F.; Mysore, K.S.; Kloepper, J.W. Plant growth-promoting rhizobacteria systemically protect Arabidopsis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic acid-dependent signaling pathway. Plant J. 2004, 39, 381–392. [Google Scholar] [CrossRef]
- Lee, G.; Lee, S.H.; Kim, K.M.; Ryu, C.M. Foliar application of the leaf-colonizing yeast Pseudozyma churashimaensis elicits systemic defense of pepper against bacterial and viral pathogens. Sci. Rep. 2017, 10, 39432. [Google Scholar] [CrossRef] [Green Version]
- Karthikeyan, G.; Doraisamy, S.; Rabindran, R. Pseudomonas fluorescens mediated systemic resistance against urdbean leaf crinkle virus in blackgram (Vigna mungo). Arch. Phytopathol. Plant Protect. 2009, 42, 201–212. [Google Scholar] [CrossRef]
- Jetiyanon, K.; Fowler, W.; Kloepper, J.W. Broad-spectrum protection against several pathogens by PGPR mixtures under field conditions in Thailand. Plant Dis. 2003, 87, 1390–1394. [Google Scholar] [CrossRef] [Green Version]
- Raupach, G.S.; Liu, L.; Murphy, J.F.; Tuzun, S.; Kloepper, J.W. Induced systemic resistance of cucumber and tomato against cucumber mosaic cucumovirus using plant growth-promoting rhizobacteria (PGPR). Plant Dis. 1996, 80, 891–894. [Google Scholar] [CrossRef]
- Srinivasan, K.; Mathivanan, N. Biological control of sunflower necrosis virus disease with powder and liquid formulations of plant growth promoting microbial consortia under field conditions. Biocontrol 2009, 51, 395–402. [Google Scholar] [CrossRef]
- Abdalla, O.A.; Bibi, S.; Zhang, S. Application of plant growth-promoting rhizobacteria to control Papaya ring spot virus and Tomato chlorotic spot virus. Arch. Phytopathol. Plant Prot. 2017, 50, 584–597. [Google Scholar] [CrossRef]
- Harish, S.; Kavino, M.; Kumar, N.; Saravanakumar, D.; Soorianatha sundaram, K.; Samiyappan, R. Biohardening with plant growth promoting rhizosphere and endophytic bacteria induces systemic resistance against Banana bunchy top virus. Appl. Soil. Ecol. 2008, 39, 187–200. [Google Scholar] [CrossRef]
- Kavino, M.; Harish, S.; Kumar, N.; Saravanakumar, D.; Samiyappan, R. Induction of systemic resistance in banana (Musa spp.) against Banana bunchy top virus (BBTV) by combining chitin with root-colonizing Pseudomonas fluorescens strain CHA0. Eur. J. Plant Pathol. 2008, 120, 353–362. [Google Scholar] [CrossRef] [Green Version]
- Firmansyah, D.; Widodo Hidayat, S.H. Chitosan and Plant Growth Promoting Rhizobacteria Application to Control Squash mosaic virus on Cucumber Plants. Asian J. Plant Pathol. 2017, 11, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Yi, H.-S.; Yang, J.W.; Ryu, C.M. ISR meets SA Routside: Additive action of the endophyte Bacillus pumilus INR7 and the chemical inducer, benzothiadiazole, on induced resistance against bacterial spot in field-grown pepper. Front. Plant Sci. 2013, 4, 122. [Google Scholar] [CrossRef] [Green Version]
- Tollenaere, C.; Lacombe, S.; Wonni, I.; Barro, M.; Ndougonna, C.; Gnacko, F.; Sérémé, D.; Jacobs, J.M.; Hebrard, E.; Cunnac, S.; et al. Virus-bacteria rice co-infection in Africa: Field estimation, reciprocal effects, molecular mechanisms, and evolutionary implications. Front. Plant Sci. 2017, 8, 645. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, L.R.; Salvaudon, L.; Mauck, K.E.; Pulido, H.; De Moraes, C.M.; Stephenson, A.G.; Mescher, M.C. Disease interactions in a shared host plant: Effects of pre-existing viral infection on cucurbit plant defense responses and resistance to bacterial wilt disease. PLoS ONE 2013, 8, e77393. [Google Scholar] [CrossRef]
- Su, P.; Tan, X.; Li, C.; Zhang, D.; Cheng, J.; Zhang, S.; Zhou, X.; Yan, Q.; Peng, J.; Zhang, Z. Photosynthetic bacterium Rhodopseudomonas palustris GJ-22 induces systemic resistance against viruses. Microb. Biotechnol. 2017, 10, 612–624. [Google Scholar] [CrossRef]
- Damayanti, T.A.; Pardede, H.; Mubarik, N.R. Utilization of root-colonizing bacteria to protect hot-pepper against tobacco mosaic tobamovirus. Hayati J. Biosci. 2007, 14, 105–109. [Google Scholar] [CrossRef] [Green Version]
- De Palma, M.; Salzano, M.; Villano, C.; Aversano, R.; Lorito, M.; Ruocco, M.; Docimo, T.; Piccinelli, A.L.; D’Agostino, N.; Tucci, M. Transcriptome reprogramming, epigenetic modifications and alternative splicing orchestrate the tomato root response to the beneficial fungus Trichoderma harzianum. Hortic Res. 2019, 6, 5–15. [Google Scholar] [CrossRef]
- Liu, H.; Carvalhais, L.C.; Crawford, M.; Singh, E.; Dennis, P.G.; Pieterse, C.M.J.; Schenk, P.M. Inner plant values: Diversity, colonization and benefits from endophytic bacteria. Front Microbiol. 2017, 8, 2552. [Google Scholar] [CrossRef]
- Muvea, A.M.; Meyhöfer, R.; Subramanian, S.; Poehling, H.-M.; Ekesi, S.; Maniana, N.K. Colonization of onions by endophytic fungi and their impacts on the biology of Thrips tabaci. PLoS ONE 2014, 9, e108242. [Google Scholar] [CrossRef] [Green Version]
- Muvea, A.M.; Subramanian, S.; Maniania, N.K.; Poehling, H.-M.; Ekesi, S.; Meyhöfer, R. Endophytic colonization of onions induces resistance against viruliferous thrips and virus replication. Front. Plant Sci. 2018, 9, 1785. [Google Scholar] [CrossRef]
- Jung, S.C.; Martinez-Medina, A.; Lopez-Raez, J.A.; Pozo, M.J. Mycorrhiza-Induced Resistance and Priming of Plant Defenses. J. Chem. Ecol. 2012, 38, 651–664. [Google Scholar] [CrossRef]
- Pieterse, C.M.J.; Zamioudis, C.; Berendsen, R.L.; Weller, D.M.; Van Wees, S.C.M.; Bakker, P.A.H.M. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 2014, 52, 347–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selim, S.A.; El-Alfy, S.; Al-Ruwaili, M.; Abdo, A.; Al-Jaouni, S. Susceptibility of imipenem-resistant Pseudomonas aeruginosa to flavonoid glycosides of date palm (Phoenix dactylifera L.) tamar growing in Al Madinah, Saudi Arabia. Afr. J. Biotechnol. 2012, 11, 416–422. [Google Scholar] [CrossRef]
- Lehtonen, P.T.; Helander, M.; Siddiqui, S.A.; Lehto, K.; Saikkonen, K. Endophytic fungus decreases plant virus infections in meadow ryegrass (Lolium pratense). Biol. Lett. 2006, 2, 620–623. [Google Scholar] [CrossRef] [PubMed]
- Schardl, C.L.; Phillips, T.D. Protective grass endophytes: Where are they from and where are they going? Plant Dis. 1997, 81, 430–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehtonen, P.; Helander, M.; Wink, M.; Sporer, F.; Saikkonen, K. Transfer of endophyte-origin defensive alkaloids from a grass to a hemiparasitic plant. Ecol. Lett. 2005, 8, 1256–1263. [Google Scholar] [CrossRef]
- Reddy, A.; Reddy, L.; Mallikarjuna, N.; Abdurahman, M.D.; Reddy, Y.V.; Bramel, P.J.; Reddy, D.V.R. Identification of resistance to peanut bud necrosis virus (PBNV) in wild Arachis germplasm. Ann. Appl. Biol. 2000, 137, 135–139. [Google Scholar] [CrossRef] [Green Version]
- Kandan, A.; Ramiah, M.; Vasanthi, V.J.; Radjacommare, R.; Nandakumar, R.; Ramanathan, A.; Samiyappan, R. Use of Pseudomonas fluorescens-based formulations for management of tomato spotted wilt virus (TSWV) and enhanced yield in tomato. Biocontrol Sci. Technol. 2005, 15, 553–569. [Google Scholar] [CrossRef]
- Van Loon, L.C. Induced resistance in plants and the role of pathogenesis-related proteins. Eur. J. Plant Pathol. 1997, 103, 753–765. [Google Scholar] [CrossRef]
- Kloepper, J.W.; Ryu, C.M.; Zhang, S. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 2004, 94, 1259–1266. [Google Scholar] [CrossRef] [Green Version]
- Rochal, K.K.L.; Pierre, E.; Diane, Y.Y.; Sahu, K.P.; Vanessa, N.D.; Herman, K.W.T.; Louise, N.W. Biological elicitor potential of endospheric Trichoderma and derived consortia against pepper (Capsicum annuum L.) leaf curl virus. Arch. Phytopatholol. Plant Prot. 2021, 54, 1926–1952. [Google Scholar] [CrossRef]
- Peng, C.; Zhang, A.; Wang, Q.; Song, Y.; Zhang, M.; Ding, X.; Li, Y.; Geng, Q.; Zhu, C. Ultrahigh-activity immune inducer from endophytic fungi induces tobacco resistance to virus by SA pathway and RNA silencing. BMC Plant Biol. 2020, 20, 169. [Google Scholar] [CrossRef] [Green Version]
- Jaber, L.R.; Salem, N.M. Endophytic colonization of squash by the fungal entomopathogen, Beauveria bassiana (Ascomycota: Hypocreales) for managing Zucchini yellow mosaic virus in Cucurbits. Biocontrol Sci. Technol. 2014, 24, 1096–1109. [Google Scholar] [CrossRef]
- Salas-Marina, M.A.; Silva-Flores, M.A.; Uresti-Rivera, E.E.; Castro-Longoria, E.; Herrera-Estrella, A.; Casas-Flores, S. Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through Jasmonic acid/Ethylene and Salicylic acid pathways. Eur. J. Plant Pathol. 2011, 131, 15–26. [Google Scholar] [CrossRef]
- Kiarie, S.; Nyasani, J.O.; Gohole, L.S.; Maniania, N.K.; Subramanian, S. Impact of Fungal Endophyte Colonization of Maize (Zea mays L.) on Induced Resistance to Thrips- and Aphid-Transmitted Viruses. Plants 2020, 9, 416. [Google Scholar] [CrossRef] [Green Version]
- Vitti, A.; Pellegrini, E.; Nali, C.; Lovelli, S.; Sofo, A.; Valerio, M.; Scopa, A.; Nuzzaci, M. Trichoderma harzianum T-22 Induces systemic resistance in tomato infected by Cucumber mosaic virus. Front. Plant Sci. 2016, 7, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Feng, C.H.; Hou, C.T.; Hu, L.Y.; Wang, Q.C.; Wu, Y.F. First discovery of acetone extract from cottonseed oil sludge as a novel antiviral agent against plant viruses. PLoS ONE 2015, 10, 117496. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.Y.; Xia, X.M.; Li, P.P.; Wang, K.Y. Inhibitory effect of sulfated lentinan and lentinan against tobacco mosaic virus (TMV) in tobacco seedlings. Int. J. Biol. Macromol. 2013, 61, 264–269. [Google Scholar] [CrossRef]
- Ge, Y.H.; Liu, K.X.; Zhang, J.X.; Mu, S.Z.; Hao, X.J. The limonoids and their antitobacco mosaic virus (TMV) activities from Munronia unifoliolata Oliv. J. Agric. Food Chem. 2012, 60, 4289–4295. [Google Scholar] [CrossRef]
- Kulye, M.; Liu, H.; Zhang, Y.L.; Zeng, H.M.; Yang, X.F.; Qiu, D.W. Hrip1, a novel protein elicitor from necrotrophic fungus, Alternaria tenuissima, elicits cell death, expression of defence-related genes and systemic acquired resistance in tobacco. Plant Cell Environ. 2012, 35, 2104–2120. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.J.; Lin, J.Q.; Wu, Z.J.; Lin, Q.Y.; Xie, L.H. Screening of proteins anti-tobacco mosaic virus in Pleurotus eryngii. Acta Microbiol. Sin. 2003, 43, 29–34. [Google Scholar]
- Fu, M.J.; Wu, Z.J.; Lin, Q.Y.; Xie, L.H. Purification of a antiviral protein in Plearotus citrinopileatus and its activities against tobacco mosaic virus and hepatitis B virus. Virol. Sin. 2002, 17, 350–353. [Google Scholar]
- Zhang, C.; Cao, H.Y.; Chen, L. Preliminary study on the inhibition of polysaccharide of edible fungi to plant virus. J. Anhui Agric. Univ. 2005, 32, 15–18. [Google Scholar]
- Luo, Y.; Zhang, D.D.; Dong, X.W.; Zhao, P.B.; Chen, L.L.; Song, X.Y.; Wang, X.J.; Chen, X.L.; Shi, M.; Zhang, Y.Z. Antimicrobial peptaibols induce defense responses and systemic resistance in tobacco against tobacco mosaic virus. FEMS Microbiol. Lett. 2010, 313, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Shen, S.; Li, W.; Ouyang, M.; Wu, Z.; Lin, Q.; Xie, L. Identification of two marine fungi and evaluation of their antivirus and antitumor activities. Acta Microbiol. Sin. 2009, 49, 1240–1246. [Google Scholar]
- Wu, L.P.; Wu, Z.J.; Lin, Q.Y.; Xie, L.H. Purification and activities of an alkaline protein from mushroom Coprinus comatus. Acta Microbiol Sin. 2003, 43, 793–798. [Google Scholar]
- Wu, Y.B.; Xie, L.Y.; Xie, L.H.; Lin, Q.Y.; Lin, S.F. A preliminary study on anti-TMV activity of polysaccharide from Coprinus comatus. Chin. Agric. Sci. Bull. 2007, 23, 338–341. [Google Scholar]
- Ingwell, L.L.; Eigenbrode, S.D.; Bosque-Pérez, N.A. Plant viruses alter insect behavior to enhance their spread. Sci. Rep. 2012, 2, 578. [Google Scholar] [CrossRef] [Green Version]
- Mauck, K.; Bosque-Pérez, N.A.; Eigenbrode, S.D.; DeMoraes, C.M.; Mescher, M.C. Transmission mechanisms shape pathogen effects on host–vector interactions: Evidence from plant viruses. Funct. Ecol. 2012, 26, 1162–1175. [Google Scholar] [CrossRef]
- Pan, H.; Chen, G.; Li, F.; Wi, Q.; Want, S.; Xie, W.; Liu, B.; Xu, B.; Zhang, Y. Tomato spotted wilt virus infection reduces the fitness of a nonvector herbivore on pepper. J. Econ. Entomol. 2013, 106, 924–928. [Google Scholar] [CrossRef]
- Schenk, M.F.; Hamelink, R.; Van der Vlugt, R.A.A.; Vermunt, A.M.; Kaarsenmaker, R.C.; Stijger, I.C. The use of attenuated isolates of Pepino mosaic virus for cross-protection. Eur. J. Plant Pathol. 2010, 127, 249–261. [Google Scholar] [CrossRef]
- Pechinger, K.; Chooi, K.M.; MacDiarmid, R.M.; Harper, S.J.; Ziebell, H. A New Era for Mild Strain Cross-Protection. Viruses 2019, 11, 670. [Google Scholar] [CrossRef] [Green Version]
- Folimonova, S.Y. Developing an understanding of cross-protection by Citrus tristeza virus. Front. Microbiol. 2013, 4, 76. [Google Scholar] [CrossRef] [Green Version]
- Lu, B.; Stubbs, G.; Culver, J.N. Coat protein interactions involved in tobacco mosaic tobamovirus cross-protection. Virology 1998, 248, 188–198. [Google Scholar] [CrossRef] [Green Version]
- Beachy, R.N. Coat protein-mediated resistance to tobacco mosaic virus: Discovery mechanisms and exploitation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1999, 354, 659–664. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.M.; Tscherne, D.M.; Yun, S.I.; Frolov, I.; Rice, C.M. Dual mechanisms of pestiviral superinfection exclusion at entry and RNA replication. J. Virol. 2005, 79, 3231–3242. [Google Scholar] [CrossRef] [Green Version]
- Ratcliff, F.; MacFarlane, S.; Baulcombe, D.C. Gene silencing without DNA. RNA-mediated cross-protection between viruses. Plant Cell. 1999, 11, 1207–1216. [Google Scholar] [CrossRef] [Green Version]
- Hull, R. Matthews’ Plant Virology; Academic Press: New York, NY, USA, 2002. [Google Scholar]
- Pooggin, M.M. Small RNA-omics for plant virus identification, virome reconstruction, and antiviral defense characterization. Front. Microbiol. 2018, 9, 2779. [Google Scholar] [CrossRef] [PubMed]
- Voinnet, O. RNA silencing as a plant immune system against viruses. Trends Genet. 2001, 17, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, S.; Zamora, A.; Azhar, M.T.; Sacco, M.A.; Lambert, L.H.; Moffett, P. Virus resistance induced by NB-LRR proteins involve Argonaute4-dependent translational control. Plant J. 2009, 58, 940–951. [Google Scholar] [CrossRef] [PubMed]
- Sanfaçon, H. Plant translation factors and virus resistance. Viruses 2015, 7, 3392–3419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, J.J.; Ullman, D.E.; Wheatley, E.; Holly, J.; Gonsalves, D. Commercialization of ZYMV cross-protection for zucchini production in Hawaii. Phytopathology 1992, 82, 1073. [Google Scholar]
- Yarden, G.; Hemo, R.; Livne, H.; Maoz, E.; Lev, E.; Lecoq, H.; Raccah, B. Cross-protection of cucurbitaceae from zucchini yellow mosaic potyvirus. Acta Hortic. 2000, 510, 349–359. [Google Scholar] [CrossRef]
- Hughes, J.d.A.; Ollennu, L.A.A. Mild strain protection of cocoa in Ghana against cocoa swollen shoot virus—A review. Plant Pathol. 1994, 43, 442–457. [Google Scholar] [CrossRef]
- Tien, P.; Zhang, X.H. Control of two plant viruses by protection inoculation in China. Seed Sci. Technol. 1983, 11, 969–972. [Google Scholar]
- Yeh, S.D.; Gonsalves, D.; Wang, H.L.; Namba, R.; Chiu, R.J. Control of papaya ringspot virus by cross protection. Plant Dis. 1988, 72, 375–380. [Google Scholar] [CrossRef]
- Jones, M.K.; Watanabe, M.; Zhu, S.; Graves, C.L.; Keyes, L.R.; Grau, K.R.; Gonzalez-Hernandez, M.B.; Iovine, N.M.; Wobus, C.E.; Vinje, J.; et al. Enteric bacteria promote human and mouse norovirus infection of B cells. Science 2014, 346, 755–759. [Google Scholar] [CrossRef] [Green Version]
- Almand, E.A.; Moore, M.D.; Outlaw, J.; Jaykus, L.A. Human norovirus binding to select bacteria representative of the human gut microbiota. PLoS ONE 2017, 12, e0173124. [Google Scholar] [CrossRef] [Green Version]
- Almand, E.A.; Moore, M.D.; Jaykus, L.A. Virus-bacteria interactions: An emerging topic in human infection. Viruses 2017, 9, 58. [Google Scholar] [CrossRef] [Green Version]
- Pfeiffer, J.K.; Virgin, H.W. Transkingdom control of viral infection and immunity in the mammalian intestine. Science 2016, 351, aad5872. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Feng, C.; Wu, K.; Chen, W.; Chen, Y.; Hao, X.; Wu, Y. Advances and prospects in biogenic substances against plant virus: A review. Pestic. Biochem. Physiol. 2016, 135, 15–26. [Google Scholar] [CrossRef]
- Zhao, L.; Hao, X.A.; Wu, Y.F. Inhibitory effect of polysaccharide peptide (PSP) against tobacco mosaic virus (TMV). Int. J. Biol. Macromol. 2015, 75, 474–478. [Google Scholar] [CrossRef]
- Wang, S.; Zhong, F.D.; Zhang, Y.J.; Wu, Z.J.; Lin, Q.Y.; Xie, L.H. Molecular characterization of a new lectin from the marine algae Ulva pertusa. Acta Biochim. Biophys. Sin. 2004, 36, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Kolase, S.V.; Sawant, D.M. Isolation and efficacy of antiviral principles from Trichoderma spp. against tobacco mosaic virus (TMV) on tomato. J. Maharashtra Agric. Univ. 2007, 32, 108–110. [Google Scholar]
- Calil, I.P.; Fontes, E.P.B. Plant immunity against viruses: Antiviral immune receptors in focus. Ann. Bot. 2016, 119, 711–723. [Google Scholar] [CrossRef] [Green Version]
- Magarvey, N.A.; Keller, J.M.; Bernan, V.; Dworkin, M.; Sherman, D.H. Isolation and characterization of novel marine-derived actinomycete taxa rich in bioactive metabolites. Appl. Environ. Microbiol. 2004, 70, 7520–7529. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, S.; Safaie, N.; Sadeghi, A.; Shamsbakhsh, M. Streptomyces strains induce resistance to Fusarium oxysporumf. sp. lycopersici race 3 in tomato through different molecular mechanisms. Front. Microbiol. 2019, 10, 1505. [Google Scholar] [CrossRef] [Green Version]
- Abd El-Rahim, W.M.; Moawad, H.; Azeiz, A.Z.A.; Sadowsky, M.J. Optimization of conditions for decolorization of azo-based textile dyes by multiple fungal species. J. Biotechnol. 2017, 260, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Galal, A.M. Induction of systemic acquired resistance in cucumber plant against cucumber mosaic cucumovirus by local Streptomyces strains. Plant Pathol. J. 2006, 5, 343–349. [Google Scholar] [CrossRef] [Green Version]
- De Meyer, G.; Audenaert, K.; Hofte, M. Pseudomonas aeruginosa 7NSK2-induced systemic resistance in tobacco depends on in planta salicylic acid accumulation but is not associated with PR1a expression. Eur. J. Plant Pathol. 1999, 105, 513–517. [Google Scholar] [CrossRef]
- Li, Y.; Muhammad, T.; Wang, Y.; Zhang, D.; Crabbe, M.J.C.; Liang, Y. Salicylic acid collaborates with gene silencing to tomato defense against tomato yellow leaf curl virus (TYLCV). Pak. J. Bot. 2018, 50, 2041–2054. [Google Scholar]
- Ara, I.; Bukhari, N.A.; Aref, N.M.; Shinwari, M.M.A.; Bakir, M.A. Antiviral activities of streptomycetes against tobacco mosaic virus (TMV) in Datura plant: Evaluation of different organic compounds in their metabolites. Afr. J. Biotechnol. 2012, 11, 2130–2138. [Google Scholar]
- Askora, A.A. Antiphytoviral Studies from Certain Actinomycetal Isolates. Ph.D. Thesis, Zagazig University, Zagazig, Egypt, 2005. [Google Scholar]
- Thirumalachar, M.J. Antibiotics in the control of plant diseases. Adv. Appl. Microbiol. 1968, 10, 313–332. [Google Scholar]
- Bancroft, J.B.; Key, J.L. Effect of actinomycin and ethylene diamine tetraaceticacid on multiplication of a plant virus in etiolated soybean hypocotyls. Nature 1964, 202, 729–730. [Google Scholar] [CrossRef]
- Hirai, T. Studies on the chemotherapy for the plant virus diseases. Ann. Phytopathol. Soc. Jpn. 1962, 27, 115–121. [Google Scholar] [CrossRef]
- Mace, K.D. Effects of Oxytetracycline and streptomycin on the metabolism of tobacco leaf tissue and tobacco mosaic virus multiplication. Diss. Abstr. 1965, 25, 5220. [Google Scholar]
- Milchenko, K.P. Effects of culture liquids and extracts of some soil bacteria on tobacco mosaic virus. Microbiol. J. USSR 1969, 31, 356–360. [Google Scholar]
- Huang, K.T.; Misato, T. Agricultural antibiotics. Rev. PI. Prot. Res. 1970, 3, 12–23. [Google Scholar]
- Raychaudhuri, S.P. Inhibition of plant viruses by growth regulators. Pl. Dis. Probl. 1970, 489–500. [Google Scholar]
- Kataoka, M.; Doke, N.; Hirai, T. Effects of antibiotics, inhibitors against protein synthesis on tobacco mosaic virus multiplication and the host metabolism. Ann. Phytopathol. Soc. Japan. 1969, 35, 329–338. [Google Scholar] [CrossRef]
- Maduewesi, J.N.C. Biological and biochemical studies with Wisconsin pea streak virus. Diss. Abstr. 1965, 25, 3200–3201. [Google Scholar]
- Maduewesi, J.N.C.; Hegedorn, D.J. The effects of two antibiotics on the multiplication of pea streak virus. J. W. Afr. Sci. Ass. 1966, 11, 73–76. [Google Scholar]
- Jagannathan, T.; Ramakrishnan, K. Inhibition of cucumber mosaic virus by blasticidin S. J. Phytopathol. 1974, 79, 1–7. [Google Scholar] [CrossRef]
- Phatak, H.C.; Batra, H.K. In vitro effects of polemic antibiotics (Pentaene G8) produced by Streptomyces anandi on TMV and SMV viruses. Indian. J. Microbiol. 1966, 6, 49–50. [Google Scholar]
- Freitag, J.H.; Smith, S.H. Effect of tetracycline on symptom expression and leaf- hopper transmission of aster yellows. Phytopathology 1969, 59, 18–20. [Google Scholar]
- Kümmert, J.; Semal, J. Inhibition of the multiplication of bromegrass mosaic virus in barley by antibiotic blasticidin S. Phytopathology 1971, 61, 10–14. [Google Scholar] [CrossRef]
- Govindu, H.C.; Thirumalachar, M.J. Controlling tomato leaf curl by antibiotics. In Proceedings of the 2nd International Congress of Plant Pathology, Minneapolis, MN, USA, 10–12 September 1973. Abstract 0291. [Google Scholar]
- Manjunatha, L.; Patil, M.S.; Thimmegowda, P.R.; Vijaya Mahantesha, S.R.; Basamma. Effect of Antiviral Principle on Groundnut Bud Necrosis Virus. J. Plant Dis. Sci. 2010, 5, 12–15. [Google Scholar]
- Vanthana, M.; Nakkeeran, S.; Malathi, V.G.; Renukadevi, P.; Vinodkumar, S. Induction of in planta resistance by flagellin (Flg) and elongation factor-TU (EF-Tu) of Bacillus amyloliquefaciens (VB7) against groundnut bud necrosis virus in tomato. Microb. Pathog. 2019, 137, 103757. [Google Scholar] [CrossRef] [PubMed]
- Kluge, S.; Paunow, S. Untersuchungen zur Wirkung von Chloramphenikol auf die Virusvermehrung, die Bildung von Lokalläsionen und den Gehalt an löslichen Proteinen virusinfizierter Pflanzen. Arch. Phytopathol. Plant Prot. 1975, 11, 81–87. [Google Scholar] [CrossRef]
- Misra, A.; Nienhaus, R. Inhibition or virus tumor formation in tobacco by antibiotics. Phytopath. Z. 1977; in press. [Google Scholar] [CrossRef]
- Malik, V.S. Chloramphenicol. Adv. Appl. Microbiol. 1972, 15, 297–336. [Google Scholar] [PubMed]
- Conti, G.G. Effects of antibiotic daunomycin on the multiplication and infectivity of tobacco mosaic virus. Riv. Pat. Veg. Pavia 1968, 4, 267–282. [Google Scholar]
- Betto, E.; Conti, G.G.; Vegetti, G. Alcuni aspetti delle’ interazioni virus-piantaospitestudiati con radioisotopl. In Proceedings of the VIII Symposium International Agrochimica su L’ Energia Nucleare in Agricoltura, Venice, Italy; 1971; pp. 123–133. [Google Scholar]
- Dawson, W.U.; Schlegel, D.H. The sequence or inhibition or tobacco mosaic virus synthesis by actinomycin D, 2-thiouracil, cycloheximide in synchronous infection. Phytopathology 1976, 66, 177–181. [Google Scholar] [CrossRef]
- Ohashi, Y.; Shimomura, T. Induction of localized necrotic lesions by actinomycin D on leaves systemically infected with tobacco mosaic virus. Virology 1972, 48, 601–603. [Google Scholar] [CrossRef]
- Noguchi, T.T.; Shomura, Y.; Yasuda, T.; Nuda. Inhibitory effects of miharamycin A on the multiplication of plant viruses and the symptom development. Ann. Phytopathol. Path. Soc. Jpn. 1968, 34, 325–327. [Google Scholar] [CrossRef]
- Misato, T. The development of agricultural antibiotics in Japan. Jpn. Pestic. Inf. 1969, 1, 15–18. [Google Scholar]
- Goldberg, I.H.; Friedman, P.A. Antibiotics and nucleic acids. Ann. Rev. Biochem. 1971, 40, 775–810. [Google Scholar] [CrossRef]
- Schaeffer, D.J.; Krylov, V.S. Anti-HIV activity of extracts and compounds from algae and cyanobacteria. Ecotoxicol. Environ. Saf. 2000, 45, 208–227. [Google Scholar] [CrossRef]
- Morya, V.K.; Kim, J.; Kim, E.K. Algal fucoidan: Structural and size dependent bioactivities and their perspectives. Appl. Microbiol. Biotechnol. 2012, 93, 71–82. [Google Scholar] [CrossRef]
- Pardee, K.I.; Ellis, P.; Bouthillier, M.; Towers, G.H.N.; French, C.J. Plant virus inhibitors from marine algae. Can. J. Bot. 2004, 82, 304–309. [Google Scholar] [CrossRef] [Green Version]
- Nagorskaia, V.P.; Reunov, A.V.; Lapshina, L.A.; Ermak, I.M.; Barabanova, A.O. Influence of kappa/beta-carrageenan from red alga Tichocarpuscrinitus on development of local infection induced by tobacco mosaic virus in Xanthi-nc tobacco leaves. Biol. Bull. 2008, 35, 310–314. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Xie, L.Y.; Wu, Z.J.; Lin, Q.Y.; Xie, L.H. Purification and characterization of anti-TMV protein from a marine algae Ulva pertusa. Acta Phytopathol. Sin. 2005, 35, 256–261. [Google Scholar]
- Shibuya, N.; Minami, E. Oligosaccharide signaling for defence responses in plant. Physiol. Mol. Plant Pathol. 2001, 59, 223–233. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.; West, C.A. Elicitation of diterpene biosynthesis in rice (Oryza sativa L.) by chitin. Plant Physiol. 1992, 99, 1169–1178. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Zhao, X.M.; Wang, W.X.; Yin, H.; Xu, J.G.; Bai, X.F.; Du, Y.G. Inhibition effect on tobacco mosaic virus and regulation effect on calreticulin of oligochitosan in tobacco by induced Ca2+ influx. Carbohydr. Polym. 2010, 82, 136–142. [Google Scholar] [CrossRef]
- Claus-Desbonnet, H.; Nikly, E.; Nalbantova, V.; Karcheva-Bahchevanska, D.; Ivanova, S.; Pierre, G.; Benbassat, N.; Katsarov, P.; Michaud, P.; Lukova, P.; et al. Polysaccharides and their derivatives as potential antiviral molecules. Viruses 2022, 14, 426. [Google Scholar] [CrossRef]
- Perez-Paya, E.; Houghten, R.A.; Blondell, S.E. The role of amphipathicity in the folding, self-association and biological activity of multiple subunit small proteins. J. Biol. Chem. 1995, 270, 1048–1056. [Google Scholar] [CrossRef] [Green Version]
- Marcos, J.F.; Beachy, R.N.; Houghton, R.A. Inhibition of a plant virus infection by analogs of melittin. Proc. Natl. Acad. Sci. USA 1995, 92, 12466–12469. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhu, Y.K.; Wang, H.Y.; Zhang, H.; Wang, K.Y. Inhibitory effects of esterified whey protein fractions by inducing chemical defense against tobacco mosaic virus (TMV) in tobacco seedlings. Ind. Crop. Prod. 2012, 37, 207–212. [Google Scholar] [CrossRef]
- Jarred, Y.B.; Yuanan, L. Marine compounds and their antiviral activities. Antivir. Res. 2010, 86, 231–240. [Google Scholar]
- Zhao, X.M.; She, X.P.; Du, Y.G.; Liang, X.M. Induction of antiviral resistance and stimulary effect by oligochitosan in tobacco. Pestic. Biochem. Physiol. 2007, 87, 78–84. [Google Scholar] [CrossRef]
- Iriti, M.; Franco, F. Abscisic acid is involved in chitosan-induced resistance to tobacco necrosis virus (TNV). Plant Physiol. Biochem. 2008, 46, 1106–1111. [Google Scholar] [CrossRef] [PubMed]
- Iriti, M.; Varoni, E.M. Chitosan-induced antiviral activity and innate immunity in plants. Environ. Sci. Pollut. Res. 2015, 22, 2935–2944. [Google Scholar] [CrossRef]
- Stein, T. Bacillus subtilis antibiotics: Structure, syntheses and specific functions. Mol. Microbiol. 2005, 56, 845–857. [Google Scholar] [CrossRef]
- Zhou, W.W.; Zhang, X.L.; Zhang, B.; Wang, F.; Liang, Z.H.; Niu, T.G. Isolation and characterization of ZH14 with antiviral activity against tobacco mosaic virus. Can. J. Microbiol. 2008, 54, 441–449. [Google Scholar] [CrossRef]
- Shen, L.L.; Wang, F.L.; Yang, J.G.; Qian, Y.M.; Dong, X.W.; Zhan, H.X. Control of tobacco mosaic virus by Pseudomonas fluorescens CZ powder in greenhouses and the field. Crop. Prot. 2014, 56, 87–90. [Google Scholar] [CrossRef]
- Thapa, S.P.; Lee, H.J.; Park, D.H.; Kim, S.K.; Cho, J.M.; Cho, S.; Hur, J.H.; Lim, C.K. Antiviral effects of the culture filtrate from Serratia marcescens Gsm01, against cucumber mosaic virus (CMV). Plant Pathol. J. 2009, 25, 369–375. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.C.; Li, H.; Xue, Y.R.; Liu, C.H. Study of endophytic Bacillus amyloliquefaciens CC09 and its antifungal CLPs. J. Appl. Biol. Biotechnol. 2013, 1, 1–5. [Google Scholar]
- Cortes-Sanchez, A.J.; Hernandez-Sanchez, H.; Jaramillo-Flores, M.E. Biological activity of glycolipids produced by microorganisms: New trends and possible therapeutic alternatives. Microbiol. Res. 2013, 168, 22–32. [Google Scholar] [CrossRef]
- Shekhar, S.; Sundaramanickam, A.; Balasubramanian, T. Biosurfactant producing microbes and their potential applications: A review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1522–1544. [Google Scholar] [CrossRef]
- Inès, M.; Dhouha, G. Lipopeptide surfactants: Production, recovery and pore forming capacity. Peptides 2015, 71, 100–112. [Google Scholar] [CrossRef]
- Desoignies, N.; Schramme, F.; Ongena, M.; Legrève, A. Systemic resistance induced by Bacillus lipopeptides in Beta vulgaris reduces infection by the rhizomania disease vector Polymyxabetae. Mol. Plant Pathol. 2012, 14, 416–421. [Google Scholar] [CrossRef]
- McGrann, G.R.; Grimmer, M.K.; Mutasa-Gottgens, E.S.; Stevens, M. Progress towards the understanding and control of sugar beet rhizomania disease. Mol. Plant Pathol. 2009, 10, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Barr, K.J.; Asher, M.J.; Lewis, B.G. Resistance to Polymyxa betae in wild Beta species. Plant Pathol. 1995, 44, 301–307. [Google Scholar] [CrossRef]
- Su, H.; Song, S.; Yan, X.; Fang, L.; Zeng, B.; Zhu, Y. Endogenous salicylic acid shows different correlation with baicalin and baicalein in the medicinal plant Scutellaria baicalensis Georgi subjected to stress and exogenous salicylic acid. PLoS ONE 2018, 13, e0192114. [Google Scholar] [CrossRef] [Green Version]
- Ilinskaya, O.N.; Mahmud, R.S. Ribonucleases as antiviral agents. Mol Biol. 2014, 48, 615–623. [Google Scholar] [CrossRef]
- Sindarovska, Y.R.; Guzyk, O.I.; Yuzvenko, L.V.; Demchenko, O.A.; Didenko, L.F.; Grynevych, O.I.; Spivak, M.Y. Ribonuclease activity of buckwheat plant (Fagopyrum esculentum) cultivars with different sensitivities to buckwheat burn virus. Ukr. Biochem. J. 2014, 86, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, Y.; Ogawa, T.; Takahashi, H.; Ishida, I.; Takeuchi, Y.; Yamamoto, M.; Okada, Y. Resistance against multiple plant viruses in plants mediated by a double stranded-RNA specific ribonuclease. FEBS Lett. 1995, 372, 165–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milosevic, S.; Simonovic, A.; Cingel, A.; Nikolic, D.; Ninkovic, S.; Subotic, A. Introduction of dsRNA-specific ribonuclease pac1 into Impatiens walleriana provides resistance to Tomato spotted wilt virus. Sci Hortic. 2013, 164, 499–506. [Google Scholar] [CrossRef]
- Ogawa, T.; Toguri, T.; Kudoh, H.; Okamura, M.; Momma, T.; Yoshioka, M.; Kato, K.; Hagiwara, Y.; Sano, T. Double-stranded RNA-specific ribonuclease confers tolerance against Chrysanthemum Stunt Viroid and Tomato Spotted Wilt Virus in transgenic Chrysanthemum plants. Breed Sci. 2005, 55, 49–55. [Google Scholar] [CrossRef]
- Langenberg, W.G.; Zhang, L.; Court, D.L.; Giunchedi, L.; Mitra, A. Transgenic tobacco plants expressing the bacterial rnc gene resist virus infection. Mol Breed. 1997, 3, 391–399. [Google Scholar] [CrossRef]
- Hameed, A.; Iqbal, Z.; Asad, S.; Mansoor, S. Detection of multiple potato viruses in the field suggests synergistic interactions among potato viruses in Pakistan. Plant Pathol. J. 2014, 30, 407–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorokan, A.; Cherepanova, E.; Burkhanova, G.; Veselova, S.; Rumyantsev, S.; Alekseev, V.; Mardanshin, I.; Sarvarova, E.; Khairullin, R.; Benkovskaya, G.; et al. Endophytic Bacillus spp. as a prospective biological tool for control of viral diseases and non-vector Leptinotarsa decemlineata Say. in Solanum tuberosum L. Front. Microbiol. 2020, 11, 569457. [Google Scholar] [CrossRef]
- Ulyanova, V.; Mahmud, R.S.; Dudkina, E.; Vershinina, V.; Domann, E.; Ilinskaya, O. Phylogenetic distribution of extracellular guanyl preferring ribonucleases renews taxonomic status of two Bacillus strains. J. Gen. Appl. Microbiol. 2016, 62, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Ilinskaya, O.; Ulyanova, V.; Lisevich, I.; Dudkina, E.; Zakharchenko, N.; Kusova, A.; Faizullin, D.; Zuev, Y. The native monomer of Bacillus pumilus ribonuclease does not exist extra-cellularly. BioMed Res. Int. 2018, 2018, 4837623. [Google Scholar] [CrossRef] [Green Version]
- Khalaf, E.M.; Raizada, M.N. Bacterial seed endophytes of domesticated cucurbits antagonize fungal and oomycete pathogens including powdery mildew. Front. Microbiol. 2018, 9, 42. [Google Scholar] [CrossRef]
- Yang, X.; Niu, L.; Zhang, W.; Yang, J.; Xing, G.; He, H.; Guo, D.; Du, Q.; Qian, X.; Yao, Y. RNAi-mediated SMV P3 cistron silencing confers significantly enhanced resistance to multiple Potyvirus strains and isolates in transgenic soybean. Plant Cell Rep. 2018, 37, 103–114. [Google Scholar] [CrossRef]
- Aman, R.; Ali, Z.; Butt, H.; Mahas, A.; Aljedaani, F.; Khan, M.Z.; Ding, S.; Mahfouz, M. RNA virus interference via CRISPR/Cas13a system in plants. Genome Biol. 2018, 19, 77–89. [Google Scholar] [CrossRef]
- Pakniat-Jahromy, A.; Behjatnia, S.A.; Dry, I.B.; Izadpanah, K.; Rezaian, M.A. A new strategy for generating geminivirus resistant plants using a DNA betasatellite/split barnase construct. J. Virol. Methods. 2010, 170, 57–66. [Google Scholar] [CrossRef]
- Sahran, B.S.; Nehra, V. Plant growth promoting rhizobacteria: A critical review. Life Sci. Med. Res. LMSR 2011, 21, 1–30. [Google Scholar]
- Choudhary, D.K.; Johri, B.N. Interactions of Bacillus spp. and plants with special reference to induced systemic resistance (ISR). Microbiol. Res. 2009, 68, 1754–1759. [Google Scholar] [CrossRef]
- Maksimov, I.V.; Veselova, S.V.; Nuzhnaya, T.V.; Sarvarova, E.R.; Khairullin, R.M. Plant growth-promoting bacteria in the regulation of plant resistance to stress factors. Russ. J. Plant Physiol. 2015, 62, 715–726. [Google Scholar] [CrossRef]
- Wang, S.; Wu, H.; Qiao, J.; Ma, L.; Liu, J.; Xia, Y.; Gao, X. Molecular mechanism of plant growth promotion and induced systemic resistance to Tobacco mosaic virus by Bacillus spp. J. Microbiol. Biotechnol. 2009, 19, 1250–1258. [Google Scholar] [CrossRef]
- Zvereva, A.S.; Pooggin, M.M. Silencing and innate immunity in plant defense against viral and non-Viral pathogens. Viruses 2012, 4, 2578–2597. [Google Scholar] [CrossRef] [Green Version]
- Boris, K.V.; Kochieva, E.Z. NBS-LRR resistance genes to potato virus X. Biol. Bull. Rev. 2013, 133, 124–132. [Google Scholar] [CrossRef]
- Sorokina, E.V. Toll-like receptors and primary pathogen recognition in infectious and non-infectious cutaneous pathology. Int. J. Immunopathol. Allergol. Infectol. 2012, 2, 6–15. [Google Scholar]
- Guevara-Morato, M.A.; De Lacoba, M.G.; García-Luque, I.; Serra, M.T. Characterization of a pathogenesis related protein 4 (PR-4) induced in Capsicum chinense L3 plants with dual RNA-ase and DNA-ase activities. J. Exp. Bot. 2010, 61, 3259–3271. [Google Scholar] [CrossRef] [Green Version]
- Bai, S.; Dong, C.; Li, B.; Dai, H. A PR-4 gene identified from Malus domestica is involved in the defenseresponses against Botryosphaeria dothidea. Plant Physiol. Biochem. 2013, 62, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Niehl, A.; Wyrsch, I.; Boller, T.; Heinlein, M. Double-stranded RNAs induce a pattern-triggered immune signaling pathway in plants. New Phytol. 2016, 211, 1008–1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zvereva, A.S.; Golyaev, V.; Turco, S.; Gubaeva, E.G.; Rajeswaran, R.; Schepetilnikov, M.V.; Srour, O.; Ryabova, L.A.; Boller, T.; Pooggin, M.M. Viral protein suppresses oxidative burst and salicylic acid dependent autophagy and facilitates bacterial growth on virus-infected plants. New Phytol. 2016, 211, 1020–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glick, B.R. Plant Growth-Promoting Bacteria: Mechanisms and Applications; Hindawi Publishing Corporation, Scientifica: London, UK, 2012. [Google Scholar]
- Nelson, L.M. Plant Growth Promoting Rhizobacteria: Prospects for new inoculants. Crop Manag. 2004, 3, 1–7. [Google Scholar] [CrossRef]
- Makarova, S.S.; Makarov, V.V.; Taliansky, M.E.; Kalinina, N.O. Resistance to viruses of potato: Current status and prospects. Vavilov, J. Genet. Breed. 2017, 21, 62–73. [Google Scholar] [CrossRef]
- Glais, L.; Bellstedt, D.U.; Lacomme, C. Diversity, Characterization and Classification of PVY. In Potato VirusY: Biodiversity, Pathogenicity, Epidemiology and Management; Lacomme, C., Glais, L., Bellstedt, D., Dupuis, B., Karasev, A., Jacquot, E., Eds.; Springer: Cham, Switzerland, 2017; pp. 43–76. [Google Scholar]
- Duan, C.G.; Wang, C.H.; Guo, H.S. Application of RNA silencing to plant disease resistance. Science 2012, 31, 3–5. [Google Scholar] [CrossRef] [Green Version]
- Kulikov, S.N.; Chirkov, S.N.; Il’ina, A.V.; Lopatin, S.A.; Varlamov, V.P. Effect of the molecular weight of chitosan on its antiviral activity in plants. Appl. Biochem. Microbiol. 2006, 42, 200–203. [Google Scholar] [CrossRef]
- Lugtenberg, B.; Kamilova, F. Plant-growth promoting rhizobacteria. Annu. Rev. Microbiol. 2009, 63, 541–556. [Google Scholar] [CrossRef] [Green Version]
- El Hadrami, A.; Adam, L.R.; El-Hadrami, I.; Daayf, F. Chitosan in plant protection. Mar. Drugs 2010, 8, 968–987. [Google Scholar] [CrossRef]
- Van Loon, L.C.; Pierpoint, W.S.; Boller, T.; Conejero, V. Recommendations for naming plant pathogenesis-related proteins. Plant Mol. Biol. Rep. 1994, 12, 245–264. [Google Scholar] [CrossRef]
- Conejero, V.; Picazo, I.; Segado, P. Citrus exocortis viroid (CEV): Protein alterations in different hosts following viroid infection. Virology 1979, 97, 454–456. [Google Scholar] [CrossRef]
- Gianinazzi, S.; Ahl, P.; Cornu, A.; Scalla, R.; Cassini, R. First report of host b-protein appearance in response to a fungal infection in tobacco. Physiol. Plant Pathol. 1980, 16, 337–342. [Google Scholar] [CrossRef]
- Metraux, J.P.; Boller, T.H. Local and systemic induction of chitinase in cucumber plants in response to viral, bacterial and fungal infections. Physiol. Mol. Plant Pathol. 1986, 28, 161–169. [Google Scholar] [CrossRef]
- Dempsey, D.M.A.; Vlot, A.C.; Wildermuth, M.C.; Klessig, D.F. Salicylic acid biosynthesis and metabolism. Arab. Book Am. Soc. Plant Biol. 2011, 9, e0156. [Google Scholar] [CrossRef] [Green Version]
- Kong, H.G.; Shin, T.S.; Kim, T.H.; Ryu, C.M. Stereoisomers of the bacterial volatile compound 2, 3-butanediol differently elicit systemic defense responses of pepper against multiple viruses in the field. Front. Plant Sci. 2018, 9, 90. [Google Scholar] [CrossRef]
- Kandan, A.; Radja Commare, R.; Nandakumar, R.; Ramiah, M.; Raguchander, T.; Samiyappan, R. Induction of phenylpropanoid metabolism by Pseudomonas fluorescens against Tomato spotted wilt virus in tomato. Folia Microbiol. 2002, 47, 121–129. [Google Scholar] [CrossRef]
- Montebianco, C.D.B.; Mattos, B.B.; Silva, T.D.F.; Barreto-Bergter, E.; Vaslin, M.F.S. Cladosporium herbarum peptidogalactomannan triggers significant defense responses in whole tobacco plants. bioRxiv 2020. [Google Scholar] [CrossRef]
- Sindelarova, M.; Sindelar, L. Isolation of pathogenesis-related proteins from TMV-infected tobacco and their influence on infectivity of TMV. Plant Prot. Sci. 2005, 41, 52–57. [Google Scholar] [CrossRef] [Green Version]
- Hyodo, K.; Suzuki, N.; Mise, K.; Okuno, T. Roles of superoxide anion and hydrogen peroxide during replication of two unrelated plant RNA viruses in Nicotiana benthamiana. Plant Signal Behav. 2017, 12, 6. [Google Scholar] [CrossRef] [Green Version]
- Harish, S. Molecular biology and diagnosis of Banana bunchy top virus and its management through induced systemic resistance. PhD Thesis, Tamil Nadu Agricultural University Coimbatore, Tamil Nadu, India, 2005. [Google Scholar]
- Pyung-II, A.; Kyungseok, P.; Choong-Hoe, K. Rhizobacteria-induced resistance perturbs viral disease progress and triggers defense-related gene expression. Mol. Cells 2002, 13, 302–308. [Google Scholar]
- Chirkov, S.N.; Iiina, A.V.; Surgucheva, N.A.; Letunova, E.V.; Varitsev, Y.A.; Tatarinova, N.Y.; Varlamov, V.P. Effect of chitosan on systemic viral infection and some defense responses in potato plants. Rus. J. Plant Physiol. 2001, 48, 774–779. [Google Scholar] [CrossRef]
- Pospieszny, H.; Chirkov, S.; Atabekov, J. Induction of antiviral resistance in plants by chitosan. Plant Sci. 1991, 79, 63–68. [Google Scholar] [CrossRef]
- Chirkov, S.N. The antiviral activity of chitosan. Appl. Biochem. Microbiol. 2002, 3, 81–89. [Google Scholar]
- Abo-Zaid, G.A.; Matar, S.M.; Abdelkhalek, A. Induction of Plant Resistance against Tobacco Mosaic Virus Using the Biocontrol Agent Streptomyces cellulosae Isolate Actino 48. Agronomy 2020, 10, 1620. [Google Scholar] [CrossRef]
- Siddique, Z.; Akhtar, K.P.; Hameed, A.; Sarwar, N.; Imran-Ul-Haq; Khan, S.A. Biochemical alterations in leaves of resistant and susceptible cotton genotypes infected systemically by Cotton leaf curl Burewala virus. J. Plant Interact. 2014, 9, 702–711. [Google Scholar] [CrossRef] [Green Version]
- Shahzad, G.I.R.; Passera, A.; Maldera, G.; Casati, P.; Marcello, I.; Bianco, P.A. Biocontrol Potential of Endophytic Plant-Growth-Promoting Bacteria against Phytopathogenic Viruses: Molecular Interaction with the Host Plant and Comparison with Chitosan. Int. J. Mol. Sci. 2022, 23, 6990. [Google Scholar] [CrossRef]
- Rajashekhar, M.; Rajashekar, B.; Sathyanarayana, E.; Keerthi, M.C.; Kumar, P.V.; Ramakrishna, K.; Vanisree, K.; Neelima, G.; Madhuri, G.; Shaila, O. Microbial Pesticides for Insect Pest Management: Success and Risk Analysis. Int. J. Environ. Clim. Chang. 2021, 11, 18–32. [Google Scholar] [CrossRef]
- Rani, A.T.; Kammar, V.; Keerthi, M.C.; Rani, V.; Majumder, S.; Pandey, K.K.; Singh, J. Biopesticides: An Alternative to Synthetic Insecticides. In Microbial Technology for Sustainable Environment; Springer: Singapore, 2021; pp. 439–466. [Google Scholar]
- Shivakumara, K.T.; Keerthi, M.C.; Polaiah, A.C. Efficacy of different biorational insecticides against Aphis nerii Boyer de Fonscolombe (Hemiptera. Aphididae) on Gymnema sylvestre (R. Br) under laboratory and field conditions. J. Appl. Res. Med. Aromat. Plants 2022, 28, 100358. [Google Scholar]
- Manjunatha, L. Studies on Bud Blight Disease of Tomato Caused by Groundnut Bud Necrosis Virus. Master’s Thesis, University of Agricultural Sciences, Dharwad, India, 2008; p. 129. [Google Scholar]
Bioagents | Plant Virus Control | Host Plants | Treatment Method | References |
---|---|---|---|---|
Xanthomonas oryzae | Rice yellow mottle virus (RYMV) | Oryza sativa L. | Foliar spray | [63] |
Erwinia tracheiphila | Zucchini yellow mosaic virus (ZYMV) | Cucurbits crops | Foliar spray | [64] |
Bacillus spp combinations | CMV | Arabidopsis thaliana L., S. lycopersicum L. | Foliar spray | [31,52,65] |
P. fluorescens, P. aeruginosa | TNV | N. tabacum L. | Foliar spray | [33] |
Multiple rhizobacteria | TMV | Capsicum frutescens L. | Soil drench | [66] |
Name of Fungal Bioagent | Virus Inhibition | Host Plants | References |
---|---|---|---|
Hypocrea lixii | IYSV | Allium cepa L. | [70] |
T. harzianum, T. Polysporum and T. atroviridae | PepLCV | Capsicum annum L. | [81] |
Paecilomyces variotii | PVX and TMV | Nicotiana benthamiana L. and N. tabacum L. | [82] |
Neotyphodium uncinatum | BYDV | Festuca pratensis L. | [76] |
Beauveria bassiana (Balsamo Criv.) | ZYMV | Cucurbita pepo L. | [83] |
Penicillium simplicium (GP17-2) (Trichocomaceae: Penicillium) | CMV | Arabidopsis thaliana L. and N. tabacum L. | [84] |
T. harzianum and M. anisopliae | Sugarcane mosaic virus (SCMV) | Zea mays L. | [85] |
T. harzianum | CMV | S. lycopersicum L. | [86] |
Coriolus versicolor | TMV | N. tabacum L. | [87] |
Lentinus edodes | TMV | N. tabacum L. | [88] |
Agrocybe eaegerita | TMV | N. tabacum L. | [89] |
Alternaria tenuissima | TMV | N. tabacum L. | [90] |
Pleurotus eryngii | TMV | N. tabacum L. | [91,92] |
Pleurotus ostreatus | TMV | N. tabacum L. | [93] |
Pleurotus citrinopileatus | TMV | N. tabacum L. | [91,92] |
Trichoderma pseudokoningii SMF2 | TMV | N. tabacum L. | [94] |
Penicillium oxalicum | TMV | N. tabacum L. | [95] |
Coprinus comatus | TMV | N. tabacum L. | [96,97] |
Flammulina velutipes | TMV | N. tabacum L. | [91,92] |
Flammulina velutiper (Fr.) Sing | TMV | N. tabacum L. | [93] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manjunatha, L.; Rajashekara, H.; Uppala, L.S.; Ambika, D.S.; Patil, B.; Shankarappa, K.S.; Nath, V.S.; Kavitha, T.R.; Mishra, A.K. Mechanisms of Microbial Plant Protection and Control of Plant Viruses. Plants 2022, 11, 3449. https://doi.org/10.3390/plants11243449
Manjunatha L, Rajashekara H, Uppala LS, Ambika DS, Patil B, Shankarappa KS, Nath VS, Kavitha TR, Mishra AK. Mechanisms of Microbial Plant Protection and Control of Plant Viruses. Plants. 2022; 11(24):3449. https://doi.org/10.3390/plants11243449
Chicago/Turabian StyleManjunatha, Lakshmaiah, Hosahatti Rajashekara, Leela Saisree Uppala, Dasannanamalige Siddesh Ambika, Balanagouda Patil, Kodegandlu Subbanna Shankarappa, Vishnu Sukumari Nath, Tiptur Rooplanaik Kavitha, and Ajay Kumar Mishra. 2022. "Mechanisms of Microbial Plant Protection and Control of Plant Viruses" Plants 11, no. 24: 3449. https://doi.org/10.3390/plants11243449
APA StyleManjunatha, L., Rajashekara, H., Uppala, L. S., Ambika, D. S., Patil, B., Shankarappa, K. S., Nath, V. S., Kavitha, T. R., & Mishra, A. K. (2022). Mechanisms of Microbial Plant Protection and Control of Plant Viruses. Plants, 11(24), 3449. https://doi.org/10.3390/plants11243449