Procyanidins from Cranberry Press Residues—Extraction Optimization, Purification and Characterization
Abstract
:1. Introduction
2. Results
2.1. Screening of Extraction Solvent Variables
2.2. Optimisation of Extraction Solvent Using RSM
2.3. Purification and Fractionation of Procyanidins
2.4. Antioxidative Activity of Extract Fractions
2.5. Qualitative Characterization of Procyanidins by LC-ESI-FTICR-MS
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Extraction of Procyanidins
4.3. Determination of Group Parameters
4.3.1. Determination of Total Anthocyanins
4.3.2. Determination of Total Polyphenolics
4.3.3. Determination of Total Procyanidins
4.4. Determination of Antioxidative Potential
4.4.1. DPPH
4.4.2. FRAP
4.4.3. ABTS
4.5. Purification and Fractionation of Cranberry Press Residue Extract
4.6. LC-ESI-FTICR-MS Analysis of Procyanidins
4.7. Experimental Design and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Prior, R.L.; Lazarus, S.A.; Cao, G.; Muccitelli, H.; Hammerstone, J.F. Identification of procyanidins and anthocyanins in blueberries and cranberries (Vaccinium spp.) using high-performance liquid chromatography/mass spectrometry. J. Agric. Food Chem. 2001, 49, 1270–1276. [Google Scholar] [CrossRef] [PubMed]
- Furuuchi, R.; Yokoyama, T.; Watanabe, Y.; Hirayama, M. Identification and quantification of short oligomeric proanthocyanidins and other polyphenols in boysenberry seeds and juice. J. Agric. Food Chem. 2011, 59, 3738–3746. [Google Scholar] [CrossRef] [PubMed]
- Dasiman, R.; Md Nor, N.; Eshak, Z.; Mutalip SS, M.; Suwandi, N.R.; Bidin, H. A review of procyanidin: Updates on current bioactivities and potential health benefits. Biointerface Res. Appl. Chem. 2022, 12, 5918–5940. [Google Scholar]
- Hanlin, R.L.; Kelm, M.A.; Wilkinson, K.L.; Downey, M.O. Detailed characterization of proanthocyanidins in skin, seeds, and wine of Shiraz and Cabernet Sauvignon wine grapes (Vitis vinifera). J. Agric. Food Chem. 2011, 59, 13265–13276. [Google Scholar] [CrossRef]
- Chen, M.H.; McClung, A.M.; Bergman, C.J. Concentrations of oligomers and polymers of proanthocyanidins in red and purple rice bran and their relationships to total phenolics, flavonoids, antioxidant capacity and whole grain color. Food Chem. 2016, 208, 279–287. [Google Scholar] [CrossRef]
- Schweitzer, J.A.; Madritch, M.D.; Bailey, J.K.; LeRoy, C.J.; Fischer, D.G.; Rehill, B.J.; Whitham, T.G. From genes to ecosystems: The genetic basis of condensed tannins and their role in nutrient regulation in a Populus model system. Ecosystems 2008, 11, 1005–1020. [Google Scholar] [CrossRef]
- Foo, L.Y.; Lu, Y.; Howell, A.B.; Vorsa, N. The structure of cranberry proanthocyanidins which inhibit adherence of uropathogenic P-fimbriated Escherichia coli in vitro. Phytochemistry 2000, 54, 173–181. [Google Scholar] [CrossRef]
- Liu, S.X.; White, E. Extraction and characterization of proanthocyanidins from grape seeds. Open Food Sci. J. 2012, 6, 5–11. [Google Scholar] [CrossRef]
- Xu, X.; Xie, H.; Wang, Y.; Wei, X. A-type proanthocyanidins from lychee seeds and their antioxidant and antiviral activities. J. Agric. Food Chem. 2010, 58, 11667–11672. [Google Scholar] [CrossRef]
- Fan, W.; Zong, H.; Zhao, T.; Deng, J.; Yang, H. Bioactivities and mechanisms of dietary proanthocyanidins on blood pressure lowering: A critical review of in vivo and clinical studies. Crit. Rev. Food Sci. Nutr. 2022, 1–17. [Google Scholar] [CrossRef]
- Rodriguez-Mateos, A.; Weber, T.; Skene, S.S.; Ottaviani, J.I.; Crozier, A.; Kelm, M.; Heiss, C. Assessing the respective contributions of dietary flavanol monomers and procyanidins in mediating cardiovascular effects in humans: Randomized, controlled, double-masked intervention trial. Am. J. Clin. Nutr. 2018, 108, 1229–1237. [Google Scholar] [CrossRef]
- Hubner, A.; Sobreira, F.; Vetore Neto, A.; Pinto, C.A.S.D.O.P.; Dario, M.F.; Díaz, C.I.E.; Bacchi, E.M. The synergistic behavior of antioxidant phenolic compounds obtained from winemaking waste’s valorization, increased the efficacy of a sunscreen system. Antioxidants 2019, 8, 530. [Google Scholar] [CrossRef] [Green Version]
- González de Llano, D.; Moreno-Arribas, M.V.; Bartolomé, B. Cranberry polyphenols and prevention against urinary tract infections: Relevant considerations. Molecules 2020, 25, 3523. [Google Scholar] [CrossRef]
- Howell, A.B.; Reed, J.D.; Krueger, C.G.; Winterbottom, R.; Cunningham, D.G.; Leahy, M. A-type cranberry proanthocyanidins and uropathogenic bacterial anti-adhesion activity. Phytochemistry 2005, 66, 2281–2291. [Google Scholar] [CrossRef]
- Li, Q.; Liu, C.; Li, T.; McClements, D.J.; Fu, Y.; Liu, J. Comparison of phytochemical profiles and antiproliferative activities of different proanthocyanidins fractions from Choerospondias axillaris fruit peels. Food Res. Int. 2018, 113, 298–308. [Google Scholar] [CrossRef]
- Thiesen, L.C.; Block, L.C.; Zonta, S.L.; Bittencourt CM, D.S.; Ferreira, R.A.; Cechinel Filho, V.; Bresolin, T. Simultaneous determination of epicatechin and procyanidin A2 markers in Litchi chinensis leaves by high-performance liquid chromatography. Rev. Bras. Farmacogn. 2016, 26, 168–173. [Google Scholar] [CrossRef] [Green Version]
- Valencia-Hernandez, L.J.; Wong-Paz, J.E.; Ascacio-Valdés, J.A.; Chávez-González, M.L.; Contreras-Esquivel, J.C.; Aguilar, C.N. Procyanidins: From Agro-Industrial Waste to Food as Bioactive Molecules. Foods 2021, 10, 3152. [Google Scholar] [CrossRef]
- Alrugaibah, M.; Yagiz, Y.; Gu, L. Use natural deep eutectic solvents as efficient green reagents to extract procyanidins and anthocyanins from cranberry pomace and predictive modeling by RSM and artificial neural networking. Sep. Purif. Technol. 2021, 255, 117720. [Google Scholar] [CrossRef]
- Li, H.Z.; Tan, Y.L.; Zhang, Z.J.; Xia, Y.Y.; Li, X.J.; Cui, L.X.; Chen, T. Optimization of ultrasound-assisted extraction of procyanidins from perilla seed hull and their antioxidant activities in vitro. Food Sci. Technol. 2018, 39, 378–387. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Yang, Y.; Li, J.; Zhu, Z.; Lorenzo, J.M.; Barba, F.J. Increasing yield and antioxidative performance of Litchi pericarp procyanidins in baked food by ultrasound-assisted extraction coupled with enzymatic treatment. Molecules 2018, 23, 2089. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Su, D.; Hou, F.; Liu, L.; Huang, F.; Dong, L.; Zhang, M. Optimized ultra-high-pressure-assisted extraction of procyanidins from lychee pericarp improves the antioxidant activity of extracts. Biosci. Biotechnol. Biochem. 2017, 81, 1576–1585. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yang, R.; Ying, D.; Yu, J.; Sanguansri, L.; Augustin, M.A. Analysis of polyphenols in apple pomace: A comparative study of different extraction and hydrolysis procedures. Ind. Crops Prod. 2020, 147, 112250. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Gao, H.; Yuan, R.; Han, S.; Li, X.X.; Tang, M.; Yang, S. Procyanidin A2, a polyphenolic compound, exerts anti-inflammatory and anti-oxidative activity in lipopolysaccharide-stimulated RAW264. 7 cells. PLoS ONE 2020, 15, e0237017. [Google Scholar]
- Lin, L.-Z.; Sun, J.; Chen, P.; Monagas, M.J.; Harnly, J.M. UHPLC-PDA-ESI/HRMSn Profiling method to identify and quantify oligomeric proanthocyanidins in plant products. J. Agric. Food Chem. 2014, 62, 9387–9400. [Google Scholar] [CrossRef] [Green Version]
- Sieniawska, E.; Ortan, A.; Fierascu, I.; Fierascu, R.C. Procyanidins in food. In Handbook of Dietary Phytochemicals; Springer Nature Singapore Pte Ltd.: Singapore, 2019; pp. 1–40. [Google Scholar]
- Avorn, J.; Monane, M.; Gurwitz, J.H.; Glynn, R.J.; Choodnovskiy, I.; Lipsitz, L.A. Reduction of bacteriuria and pyuria after ingestion of cranberry juice. JAMA 1994, 271, 751–754. [Google Scholar] [CrossRef]
- Khanal, R.C.; Howard, L.R.; Prior, R.L. Procyanidin composition of selected fruits and fruit byproducts is affected by extraction method and variety. J. Agric. Food Chem. 2009, 57, 8839–8843. [Google Scholar] [CrossRef]
- Diaz-de-Cerio, E.; Pasini, F.; Verardo, V.; Fernandez-Gutierrez, A.; Segura-Carretero, A.; Caboni, M.F. Psidium guajava L. leaves as source of proanthocyanidins: Optimization of the extraction method by RSM and study of the degree of polymerization by NP-HPLC-FLD-ESI-MS. J. Pharm. Biomed. Anal. 2017, 133, 1–7. [Google Scholar] [CrossRef]
- Counet, C.; Ouwerx, C.; Rosoux, D.; Collin, S. Relationship between procyanidin and flavor contents of cocoa liquors from different origins. J. Agric. Food Chem. 2004, 52, 6243–6249. [Google Scholar] [CrossRef]
- Brillouet, J.M.; Fulcrand, H.; Carrillo, S.; Rouméas, L.; Romieu, C. Isolation of native proanthocyanidins from grapevine (Vitis vinifera) and other fruits in aqueous buffer. J. Agric. Food Chem. 2017, 65, 2895–2901. [Google Scholar] [CrossRef]
- Oszmiański, J.; Kolniak-Ostek, J.; Lachowicz, S.; Gorzelany, J.; Matłok, N. Phytochemical compounds and antioxidant activity in different cultivars of cranberry (Vaccinium macrocarpon L). J. Food Sci. 2017, 82, 2569–2575. [Google Scholar] [CrossRef]
- Engemann, A.; Hubner, F.; Rzeppa, S.; Humpf, H.U. Intestinal metabolism of two A-type procyanidins using the pig cecum model: Detailed structure elucidation of unknown catabolites with Fourier transform mass spectrometry (FTMS). J. Agric. Food Chem. 2012, 60, 749–757. [Google Scholar] [CrossRef]
- Klavins, L.; Kviesis, J.; Klavins, M. Comparison of methods of extraction of phenolic compounds from American cranberry (Vaccinium macrocarpon L.) press residues. Agron. Res. 2017, 15, 1316–1329. [Google Scholar]
- Klavins, L.; Kviesis, J.; Nakurte, I.; Klavins, M. Berry press residues as a valuable source of polyphenolics: Extraction optimisation and analysis. LWT 2018, 93, 583–591. [Google Scholar] [CrossRef]
- Qin, Z.; Liu, H.M.; Ma, Y.X.; Wang, X.D. Developments in extraction, purification, and structural elucidation of proanthocyanidins (2000–2019). Stud. Nat. Prod. Chem. 2021, 68, 347–391. [Google Scholar]
- Pérez-Jiménez, J.; Arranz, S.; Saura-Calixto, F. Proanthocyanidin content in foods is largely underestimated in the literature data: An approach to quantification of the missing proanthocyanidins. Food Res. Int. 2009, 42, 1381–1388. [Google Scholar] [CrossRef]
- Acosta-Estrada, B.A.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Bound phenolics in foods, a review. Food Chem. 2014, 152, 46–55. [Google Scholar] [CrossRef]
- Fernández, K.; Vega, M.; Aspé, E. An enzymatic extraction of proanthocyanidins from País grape seeds and skins. Food Chem. 2015, 168, 7–13. [Google Scholar] [CrossRef]
- Gullickson, E.R.; Krueger, C.G.; Birmingham, A.; Maranan, M.; Reed, J.D. Development of a cranberry standard for quantification of insoluble cranberry (Vaccinium macrocarpon Ait.) proanthocyanidins. J. Agric. Food Chem. 2019, 68, 2900–2905. [Google Scholar] [CrossRef]
- Neto, C.C.; Mortzfeld, B.M.; Turbitt, J.R.; Bhattarai, S.K.; Yeliseyev, V.; DiBenedetto, N.; Bucci, V. Proanthocyanidin-enriched cranberry extract induces resilient bacterial community dynamics in a gnotobiotic mouse model. Microb. Cell 2021, 8, 131. [Google Scholar] [CrossRef]
- Simonetti, P.; Ciappellano, S.; Gardana, C.; Bramati, L.; Pietta, P. Procyanidins from Vitis vinifera seeds: In vivo effects on oxidative stress. J. Agric. Food Chem. 2002, 50, 6217–6221. [Google Scholar] [CrossRef]
- Gardana, C.; Simonetti, P. Evaluation of the degree of polymerization of the proanthocyanidins in cranberry by molecular sieving and characterization of the low molecular weight fractions by UHPLC-Orbitrap mass spectrometry. Molecules 2019, 24, 1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denis, M.C.; Dubé, P.; Dudonné, S.; Desjardins, Y.; Matei, C.; Delvin, E.; Furtos, A. Characterization of bioactive cranberry fractions by mass spectrometry. Can. J. Chem. 2020, 98, 589–596. [Google Scholar] [CrossRef]
- Reeves, S.G.; Somogyi, A.; Zeller, W.E.; Ramelot, T.A.; Wrighton, K.C.; Hagerman, A.E. Proanthocyanidin structural details revealed by ultrahigh resolution FT-ICR MALDI-mass spectrometry, 1H–13C HSQC NMR, and Thiolysis-HPLC–DAD. J. Agric. Food Chem. 2020, 68, 14038–14048. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Durst, R.W.; Wrolstad, R.E.; Eisele, T.; Giusti, M.M.; Hach, J.; Hofsommer, H.; Koswig, S.; Krueger, D.A.; Kupina, S.; et al. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef]
- Attard, E. A rapid microtitre plate Folin-Ciocalteu method for the assessment of polyphenols. Open Life Sci. 2013, 8, 48–53. [Google Scholar] [CrossRef]
- Prior, R.L.; Fan, E.; Ji, H.; Howell, A.; Nio, C.; Payne, M.J.; Reed, J. Multi-laboratory validation of a standard method for quantifying proanthocyanidins in cranberry powders. J. Sci. Food Agric. 2010, 90, 1473–1478. [Google Scholar] [CrossRef]
- Fukumoto, L.R.; Mazza, G. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem. 2000, 48, 3597–3604. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
Variable | Acetone-Acetic Acid | Acetone-Formic Acid | Acetone-Hydrochloric Acid | ||||||
---|---|---|---|---|---|---|---|---|---|
Sum of Sq. | F Ratio | p-Value | Sum of Sq. | F Ratio | p-Value | Sum of Sq. | F Ratio | p-Value | |
X1 | 1.029 | 219.24 | <0.0001 * | 2.781 | 1042.7 | <0.0001 * | 2.126 | 334.34 | <0.0001 * |
X2 | <0.0001 | <0.0001 | 0.9764 | 0.003 | 1.22 | 0.274 | 0.051 | 8.03 | 0.0068 * |
X1X2 | <0.0001 | 0.0652 | 0.7995 | 0.004 | 1.58 | 0.214 | 0.002 | 0.39 | 0.5347 |
Variable | Acetone-Acetic Acid | Acetone-Formic Acid | Acetone-Hydrochloric Acid |
---|---|---|---|
Acetone, % (X1) | 53.3 | 52.8 | 53.7 |
Acid, % (X2) | 2.30 | 0 | 2.50 |
TPCA | TPC | ACN | ||||
---|---|---|---|---|---|---|
Purification Step | C, g/100 g | RSD, % | C, g/100 g | RSD, % | C, g/100 g | RSD, % |
0 | 2.9 | 3.0 | 31.9 | 3.7 | 0.30 | 4.1 |
1 | 1.8 | 3.8 | 23.0 | 2.9 | 0.30 | 4.2 |
2 | 7.0 | 2.7 | 41.5 | 2.1 | <LOD | |
3 | 7.3 | 3.3 | 18.9 | 2.2 | <LOD | |
4 | 9.1 | 3.6 | 50.4 | 1.2 | <LOD | |
5 | 8.3 | 1.8 | 51.8 | 1.2 | <LOD | |
6 | 9.0 | 3.1 | 38.4 | 3.4 | <LOD | |
7 | 10 | 1.4 | 52.3 | 1.6 | <LOD | |
8 | 5.7 | 2.6 | 57.5 | 0.30 | <LOD |
No. | RT, min | m/z | Mass Error, ppm | Molecular Formula | Most Intense Species | Monomer | DP | Type (Number of A-Type Linkages) |
---|---|---|---|---|---|---|---|---|
1 | 9.84 | 879.1770 | 0.9 | C45H36O19 | [M-H]− | (E)C, (E)GC | 3 | A (1) |
2 | 9.99 | 575.1195 | −0.1 | C60H48O24 | [M-2H]2− | (E)C | 4 | A (1) |
3 | 10.2 | 577.1349 | 0.5 | C30H26O12 | [M-H]− | (E)C | 2 | B |
4 | 11.49 | 719.1508 | 0.6 | C75H60O30 | [M-2H]2− | (E)C | 5 | A (1) |
5 | 11.55 | 576.1271 | 0.4 | C60H50O24 | [M-2H]2− | (E)C | 4 | B |
6 | 11.58 | 865.1982 | 0.3 | C45H38O18 | [M-H]− | (E)C | 3 | B |
7 | 11.89 | 879.1771 | 0.8 | C45H36O19 | [M-H]− | (E)C, (E)GC | 3 | A (1) |
8 | 11.9 | 719.1508 | 0.6 | C75H60O30 | [M-2H]2− | (E)C | 5 | A (1) |
9 | 12.25 | 719.1507 | 0.7 | C75H60O30 | [M-2H]2− | (E)C | 5 | A (1) |
10 | 12.76 | 865.1988 | −0.4 | C45H38O18 | [M-H]− | (E)C | 3 | B |
11 | 12.77 | 577.1352 | −0.1 | C30H26O12 | [M-H]− | (E)C | 2 | B |
12 | 12.85 | 719.1512 | 0.1 | C75H60O30 | [M-2H]2− | (E)C | 5 | A (1) |
13 | 13.32 | 719.1507 | 0.7 | C75H60O30 | [M-2H]2− | (E)C | 5 | A (1) |
14 | 13.6 | 576.1271 | 0.4 | C60H50O24 | [M-2H]2− | (E)C | 4 | B |
15 | 13.85 | 575.1193 | 0.3 | C60H48O24 | [M-2H]2− | (E)C | 4 | A (1) |
16 | 14.03 | 576.1272 | 0.2 | C60H50O24 | [M-2H]2− | (E)C | 4 | B |
17 | 14.33 | 863.1821 | 0.9 | C90H72O36 | [M-2H]2− | (E)C | 6 | A (1) |
18 | 14.66 | 863.1817 | 1.4 | C45H36O18 | [M-H]− | (E)C | 3 | A (1) |
19 | 14.78 | 862.1742 | 1.0 | C90H70O36 | [M-2H]2− | (E)C | 6 | A (2) |
20 | 15.57 | 862.1747 | 0.4 | C90H70O36 | [M-2H]2− | (E)C | 6 | A (2) |
21 | 15.95 | 575.1194 | 0.2 | C60H48O24 | [M-2H]2− | (E)C | 4 | A (1) |
22 | 16.28 | 862.1744 | 0.8 | C90H70O36 | [M-2H]2− | (E)C | 6 | A (2) |
23 | 16.54 | 863.1830 | −0.1 | C45H36O18 | [M-H]− | (E)C | 3 | A (1) |
24 | 17.3 | 865.1979 | 0.8 | C45H38O18 | [M-H]− | (E)C | 3 | B |
25 | 18.05 | 719.1508 | 0.5 | C75H60O30 | [M-2H]2− | (E)C | 5 | A (1) |
26 | 18.45 | 575.1194 | 0.2 | C60H48O24 | [M-2H]2− | (E)C | 4 | A (1) |
27 | 19.56 | 575.1193 | 0.4 | C60H48O24 | [M-2H]2− | (E)C | 4 | A (1) |
28 | 20.38 | 1006.206 | 0.5 | C105H82O42 | [M-2H]2− | (E)C | 7 | A (2) |
29 | 20.89 | 720.1588 | 0.4 | C75H62O30 | [M-2H]2− | (E)C | 5 | B |
30 | 21.2 | 865.1982 | 0.4 | C45H38O18 | [M-H]− | (E)C | 3 | B |
31 | 21.21 | 719.1509 | 0.4 | C75H60O30 | [M-2H]2− | (E)C | 5 | A (1) |
32 | 21.6 | 1006.206 | 0.5 | C105H82O42 | [M-2H]2− | (E)C | 7 | A (2) |
33 | 21.65 | 719.1509 | 0.5 | C75H60O30 | [M-2H]2− | (E)C | 5 | A (1) |
34 | 22.05 | 1295.278 | −0.3 | C135H108O54 | [M-2H]2− | (E)C | 9 | A (1) |
35 | 22.07 | 863.1834 | −0.6 | C45H36O18 | [M-H]− | (E)C | 3 | A (1) |
36 | 22.27 | 719.1514 | −0.2 | C75H60O30 | [M-2H]2− | (E)C | 5 | A (1) |
37 | 22.29 | 576.1277 | −0.7 | C60H50O24 | [M-2H]2− | (E)C | 4 | B |
38 | 22.47 | 1006.207 | −0.3 | C105H82O42 | [M-2H]2− | (E)C | 7 | A (2) |
39 | 22.54 | 862.1749 | 0.2 | C90H70O36 | [M-2H]2− | (E)C | 6 | A (2) |
40 | 22.66 | 575.1197 | −0.4 | C60H48O24 | [M-2H]2− | (E)C | 4 | A (1) |
41 | 22.89 | 573.1040 | −0.3 | C60H44O24 | [M-2H]2− | (E)C | 4 | A (3) |
42 | 23.02 | 863.1828 | 1.4 | C90H72O36 | [M-2H]2− | (E)C | 6 | A (1) |
43 | 23.17 | 575.1198 | −0.6 | C60H48O24 | [M-2H]2− | (E)C | 4 | A (1) |
44 | 23.4 | 718.1440 | −0.8 | C75H58O30 | [M-2H]2− | (E)C | 5 | A (2) |
45 | 23.6 | 574.1120 | −0.5 | C60H46O24 | [M-2H]2− | (E)C | 4 | A (2) |
46 | 23.71 | 719.1516 | −0.5 | C75H60O30 | [M-2H]2− | (E)C | 5 | A (1) |
47 | 23.8 | 575.1199 | −0.6 | C60H48O24 | [M-2H]2− | (E)C | 4 | A (1) |
48 | 23.93 | 719.1514 | −0.3 | C75H60O30 | [M-2H]2− | (E)C | 5 | A (1) |
49 | 24.07 | 718.1445 | −1.5 | C75H58O30 | [M-2H]2− | (E)C | 5 | A (2) |
50 | 24.15 | 577.1359 | −1.2 | C30H26O12 | [M-H]− | (E)C | 2 | B |
51 | 24.23 | 575.1200 | −0.9 | C30H24O12 | [M-H]− | (E)C | 2 | A (1) |
52 | 24.32 | 862.1756 | −0.7 | C90H70O36 | [M-2H]2− | (E)C | 6 | A (2) |
53 | 24.33 | 719.1519 | −1.0 | C75H60O30 | [M-2H]2− | (E)C | 5 | A (1) |
54 | 24.48 | 863.1847 | −2.1 | C45H36O18 | [M-H]− | (E)C | 3 | A (1) |
55 | 24.59 | 575.1202 | −1.1 | C60H48O24 | [M-2H]2− | (E)C | 4 | A (1) |
56 | 24.77 | 718.1438 | −0.6 | C75H58O30 | [M-2H]2− | (E)C | 5 | A (2) |
57 | 24.84 | 865.1994 | −1.0 | C45H38O18 | [M-H]− | (E)C | 3 | B |
58 | 24.93 | 719.1516 | −0.5 | C75H60O30 | [M-2H]2− | (E)C | 5 | A (1) |
59 | 25.08 | 575.1204 | −1.6 | C60H48O24 | [M-2H]2− | (E)C | 4 | A (1) |
60 | 25.15 | 863.1846 | −2.0 | C45H38O18 | [M-H]− | (E)C | 3 | B |
61 | 25.44 | 862.1764 | −1.6 | C90H70O36 | [M-2H]2− | (E)C | 6 | A (2) |
62 | 25.44 | 719.1521 | −1.2 | C75H60O30 | [M-2H]2− | (E)C | 5 | A (1) |
63 | 25.62 | 574.1128 | −1.9 | C60H46O24 | [M-2H]2− | (E)C | 4 | A (2) |
64 | 25.66 | 718.1449 | −2.1 | C75H58O30 | [M-2H]2− | (E)C | 5 | A (2) |
65 | 25.78 | 575.1205 | −1.8 | C60H48O24 | [M-2H]2− | (E)C | 4 | A (1) |
66 | 25.97 | 718.1444 | −1.5 | C75H58O30 | [M-2H]2− | (E)C | 5 | A (2) |
67 | 26.13 | 861.1685 | 1.3 | C45H34O18 | [M-H]− | (E)C | 3 | A (2) |
68 | 26.43 | 719.1514 | −0.3 | C75H60O30 | [M-2H]2− | (E)C | 5 | A (1) |
69 | 26.86 | 862.1751 | −0.1 | C90H70O36 | [M-2H]2− | (E)C | 6 | A (2) |
70 | 27.24 | 574.1126 | −1.7 | C60H46O24 | [M-2H]2− | (E)C | 4 | A (2) |
71 | 27.52 | 718.1436 | −0.3 | C75H58O30 | [M-2H]2− | (E)C | 5 | A (2) |
72 | 27.91 | 718.1439 | −0.7 | C75H58O30 | [M-2H]2− | (E)C | 5 | A (2) |
73 | 28.14 | 862.1750 | 0.1 | C90H70O36 | [M-2H]2− | (E)C | 6 | A (2) |
74 | 28.36 | 574.1118 | −0.2 | C60H46O24 | [M-2H]2− | (E)C | 4 | A (2) |
75 | 29.39 | 863.1826 | 0.3 | C45H36O18 | [M-H]− | (E)C | 3 | A (1) |
76 | 29.69 | 861.1670 | 0.3 | C45H34O18 | [M-H]− | (E)C | 3 | A (2) |
77 | 31.85 | 861.1669 | 0.4 | C90H68O36 | [M-2H]2− | (E)C | 6 | A (3) |
78 | 33.25 | 861.1666 | 0.8 | C45H34O18 | [M-H]− | (E)C | 3 | A (2) |
Independent Variables | Symbol | Coded Factor Levels | ||
---|---|---|---|---|
−1 | 0 | +1 | ||
Acetone, % | X1 | 0 | 30 | 100 |
Added acid, % * | X2 | 0 | 2.5 | 5 |
Sources | Degrees of Freedom | Sum of Squares | Mean Square | Coefficient | F-Value | p-Value |
Response: Total Procyanidins (Acetone-Acetic Acid) | ||||||
Model | 5 | 2.617 | 0.523 | 111.50 | <0.0001 | |
Lack of fit | 3 | 0.036 | 0.012 | 35.22 | 0.0469 | |
Pure error | 43 | 0.179 | 0.004 | |||
Error | 46 | 0.215 | 0.011 | |||
Cor. total | 51 | 2.832 | ||||
Cor. total R2 | 52 | 0.9237 | ||||
Adj—R2 | 0.9155 | |||||
Response: Total Procyanidins (Acetone-Formic Acid) | ||||||
Model | 5 | 3.70 | 0.74 | 277.75 | <0.0001 | |
Lack of fit | 3 | 0.0177 | 0.005 | 5.22 | <0.0001 | |
Pure error | 43 | 0.136 | 0.002 | |||
Error | 46 | 0.122 | 0.122 | |||
Cor. total | 51 | 3.82 | ||||
Cor. total R2 | 52 | 0.9679 | ||||
Adj—R2 | 0.9644 | |||||
Response: Total Procyanidins (Acetone-Hydrochloric Acid) | ||||||
Model | 5 | 6.15 | 1.23 | 192.573 | <0.0001 | |
Lack of fit | 3 | 0.086 | 0.028 | 5.988 | 0.0017 | |
Pure error | 43 | 0.207 | 0.004 | |||
Error | 46 | 0.293 | 0.006 | |||
Cor. total | 51 | 6.450 | ||||
Cor. total R2 | 52 | 0.9544 | ||||
Adj—R2 | 0.9495 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klavins, L.; Perkons, I.; Mezulis, M.; Viksna, A.; Klavins, M. Procyanidins from Cranberry Press Residues—Extraction Optimization, Purification and Characterization. Plants 2022, 11, 3517. https://doi.org/10.3390/plants11243517
Klavins L, Perkons I, Mezulis M, Viksna A, Klavins M. Procyanidins from Cranberry Press Residues—Extraction Optimization, Purification and Characterization. Plants. 2022; 11(24):3517. https://doi.org/10.3390/plants11243517
Chicago/Turabian StyleKlavins, Linards, Ingus Perkons, Marcis Mezulis, Arturs Viksna, and Maris Klavins. 2022. "Procyanidins from Cranberry Press Residues—Extraction Optimization, Purification and Characterization" Plants 11, no. 24: 3517. https://doi.org/10.3390/plants11243517
APA StyleKlavins, L., Perkons, I., Mezulis, M., Viksna, A., & Klavins, M. (2022). Procyanidins from Cranberry Press Residues—Extraction Optimization, Purification and Characterization. Plants, 11(24), 3517. https://doi.org/10.3390/plants11243517