High-Performance Liquid Chromatography–Mass Spectrometry Analysis of Glycoalkaloids from Underexploited Solanum Species and Their Acetylcholinesterase Inhibition Activity
Abstract
:1. Introduction
2. Results and Discussions
2.1. Glycoalkaloids Assignment
2.2. Glycoalkaloids Clustering in Solanum Plants
2.3. Glycoalkaloids Acetylcholinesterase Inhibition Activity
3. Materials and Methods
3.1. Solanum spp.
3.2. Extraction of Glycoalkaloids
3.3. HPLC TOF MS Analysis of Glycoalkaloids
3.4. Acetylcholinesterase Assay
3.5. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ginzberg, I.; Tokuhisa, J.G.; Veilleux, R.E. Potato steroidal glycoalkaloids: Biosynthesis and genetic manipulation. Potato Res. 2009, 52, 1–15. [Google Scholar] [CrossRef]
- Itkin, M.; Heinig, U.; Tzfadia, O.; Bhide, A.J.; Shinde, B.; Cardenas, P.D.; Bocobza, S.E.; Unger, T.; Malitsky, S.; Finkers, R.; et al. Biosynthesis of antinutritional alkaloids in solanaceous crops is mediated by clustered genes. Science 2013, 341, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M. Potato Glycoalkaloids and metabolites: Roles in the plant and in the diet. J. Agric. Food Chem. 2006, 54, 8655–8681. [Google Scholar] [CrossRef] [PubMed]
- Milner, S.E.; Brunton, N.P.; Jones, P.W.; O’Brien, N.M.; Collins, S.G.; Maguire, A.R. Bioactivities of glycoalkaloids and their aglycones from Solanum species. J. Agric. Food Chem. 2011, 59, 3454–3484. [Google Scholar] [CrossRef]
- Tingley, G.A. Physical conditions and their effects upon infection by some insect parasitic nematodes. In Parasitology; Cambridge Univ Press: New York, NY, USA, 1984; Volume 89, p. R79. [Google Scholar]
- Flanders, K.L.; Hawkes, J.G.; Radcliffe, E.B.; Lauer, F.I. Insect resistance in potatoes: Sources, evolutionary relationships, morphological and chemical defenses, and ecogeographical associations. Euphytica 1992, 61, 83–111. [Google Scholar] [CrossRef]
- Wierenga, J.M.; Hollingworth, R.M. Inhibition of insect acetylcholinesterase by the potato glycoalkaloid α-chaconine. Nat. Toxins 1992, 1, 96–99. [Google Scholar] [CrossRef]
- Weissenberg, M.; Levy, A.; Svoboda, J.A.; Ishaaya, I. The effect of some Solanum steroidal alkaloids and glycoalkaloids on larvae of the red flour beetle, Tribolium castaneum, and the tobacco hornworm, Manduca sexta. Phytochemistry 1998, 47, 203–209. [Google Scholar] [CrossRef]
- Sivasankara Pillai, S.; Dandurand, L.-M. Effect of steroidal glycoalkaloids on hatch and reproduction of the potato cyst nematode Globodera pallida. Plant Dis. 2021, 105, 2975–2980. [Google Scholar] [CrossRef] [PubMed]
- Dandurand, L.M.; Zasada, I.A.; LaMondia, J.A. Effect of the trap crop, Solanum sisymbriifolium, on Globodera pallida, Globodera tabacum, and Globodera ellingtonae. J. Nematol. 2019, 51, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Lima, G.P.P.; Borges, C.V.; Vianello, F.; Cisneros-Zevallos, L.; Minatel, I.O. Phytochemicals in organic and conventional fruits and vegetables. Fruit Veg. Phytochemistry 2017, 3, 1305–1322. [Google Scholar]
- Friedman, M.; Dao, L. Distribution of glycoalkaloids in potato plants and commercial potato products. J. Agric. Food Chem. 1992, 40, 419–423. [Google Scholar] [CrossRef]
- Bejarano, L.; Mignolet, E.; Devaux, A.; Espinola, N.; Carrasco, E.; Larondelle, Y. Glycoalkaloids in potato tubers: The effect of variety and drought stress on the α-solanine and α-chaconine contents of potatoes. J. Sci. Food Agric. 2000, 80, 2096–2100. [Google Scholar] [CrossRef]
- Roddick, J.G.; Melchers, G. Steroidal glycoalkaloid content of potato, tomato and their somatic hybrids. Theor. Appl. Genet. 1985, 70, 655–660. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-B.; Meyer, R.S.; Whitaker, B.D.; Litt, A.; Kennelly, E.J. A new liquid chromatography–mass spectrometry-based strategy to integrate chemistry, morphology, and evolution of eggplant (Solanum) species. J. Chromatogr. A 2013, 1314, 154–172. [Google Scholar] [CrossRef] [PubMed]
- Popova, I.E.; Morra, M.J. Optimization of hidden target screening for Solanum sisymbriifolium glycoalkaloids. Chromatographia 2021, 84, 135–145. [Google Scholar] [CrossRef]
- Cárdenas, P.D.; Sonawane, P.D.; Heinig, U.; Jozwiak, A.; Panda, S.; Abebie, B.; Kazachkova, Y.; Pliner, M.; Unger, T.; Wolf, D.; et al. Pathways to defense metabolites and evading fruit bitterness in genus Solanum evolved through 2-oxoglutarate-dependent dioxygenases. Nat. Commun. 2019, 10, 5169. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.-Y.; Shen, X.-F.; Wang, L.; Wu, Z.-W.; Li, F.; Chen, B.; Zhang, G.-L.; Wang, M.-K. Bioactive steroidal alkaloids from the fruits of Solanum nigrum. Phytochemistry 2018, 147, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.-K.; Zhao, Y.; Chen, S.-Y.; Kennelly, E.J. Solanum steroidal glycoalkaloids: Structural diversity, biological activities, and biosynthesis. Nat. Prod. Rep. 2021, 8, 1413–1548. [Google Scholar] [CrossRef]
- Lelario, F.; De Maria, S.; Rivelli, A.R.; Russo, D.; Milella, L.; Bufo, S.A.; Scrano, L. A Complete survey of glycoalkaloids using LC-FTICR-MS and IRMPD in a commercial variety and a local landrace of eggplant (Solanum melongena L.) and their anticholinesterase and antioxidant activities. Toxins 2019, 11, 230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usubillaga, A.; Aziz, I.; Tettamanzi, M.C.; Waibel, R.; Achenbach, H. Steroidal alkaloids from Solanum sycophanta. Phytochemistry 1997, 44, 537–543. [Google Scholar] [CrossRef]
- Fukuhara, K.; Shimizu, K.; Kubo, I. Arudonine, an allelopathic steroidal glycoalkaloid from the root bark of Solanum arundo Mattei. Phytochemistry 2004, 65, 1283–1286. [Google Scholar] [CrossRef] [PubMed]
- Ono, M.; Kakiuchi, T.; Ebisawa, H.; Shiono, Y.; Nakamura, T.; Kai, T.; Ikeda, T.; Miyashita, H.; Yoshimitsu, H.; Nohara, T. Steroidal glycosides from the fruits of Solanum viarum. Chem. Pharm. Bull. 2009, 57, 632–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Xiang, L.; Yi, X.; He, X. Potential Anti-inflammatory steroidal saponins from the berries of Solanum nigrum L. (European black nightshade). J. Agric. Food Chem. 2017, 65, 4262–4272. [Google Scholar] [CrossRef] [PubMed]
- Yahara, S.; Nakamura, T.; Someya, Y.; Matsumoto, T.; Yamashita, T.; Nohara, T. Steroidal glycosides, indiosides A-E, from Solanum indicum. Phytochemistry 1996, 43, 1319–1323. [Google Scholar] [CrossRef]
- Maurya, A.; Manika, N.; Verma, R.K.; Singh, S.C.; Srivastava, S.K. Simple and reliable methods for the determination of three steroidal glycosides in the eight species of Solanum by reversed-phase HPLC coupled with diode array detection. Phytochem. Anal. 2013, 24, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; He, X.; Wang, G.; Gao, H.; Zhou, G.; Ye, W.; Yao, X. Steroidal saponins from Solanum nigrum. J. Nat. Prod. 2006, 69, 1158–1163. [Google Scholar] [CrossRef]
- Sharma, S.C.; Chand, R.; Sati, O.P.; Sharma, A.K. Oligofurostanosides from Solanum nigrum. Phytochemistry 1983, 22, 1241–1244. [Google Scholar] [CrossRef]
- Xiang, L.; Wang, Y.; Yi, X.; He, X. Anti-inflammatory steroidal glycosides from the berries of Solanum nigrum L. (European black nightshade). Phytochemistry 2018, 148, 87–96. [Google Scholar] [CrossRef]
- Ono, M.; Shimode, M.; Tsutsumi, S.; Yasuda, S.; Okawa, M.; Kinjo, J.; Miyashita, H.; Ikeda, T.; Yoshimitsu, H.; Nohara, T. A new steroidal glycoside from the fruits of Solanum myriacanthum. Nat. Prod. Res. 2020, 26, 326–333. [Google Scholar] [CrossRef]
- Honbu, T.; Ikeda, T.; Zhu, X.-H.; Yoshihara, O.; Okawa, M.; Nafady, A.M.; Nohara, T. New steroidal glycosides from the fruits of Solanum anguivi. J. Nat. Prod. 2002, 65, 1918–1920. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Hongo, M.; Yoshikawa, M.; Nakamura, S.; Hongo, M.; Sugimoto, S.; Matsuda, H.; Yoshikawa, M. Steroidal saponins and pseudoalkaloid oligoglycoside from Brazilian natural medicine, “fruta do lobo” (fruit of Solanum lycocarpum). Phytochemistry 2008, 69, 1565–1572. [Google Scholar] [CrossRef] [PubMed]
- Shakya, R.; Navarre, D.A. LC-MS analysis of solanidane glycoalkaloid diversity among tubers of four wild potato species and three cultivars (Solanum tuberosum). J. Agric. Food Chem. 2008, 56, 6949–6958. [Google Scholar] [CrossRef]
- Ghisalberti, E. Steroidal glycoalkaloids: Isolation, structure, analysis, and biosynthesis. Nat. Prod. Commun. 2006, 1, 859–884. [Google Scholar] [CrossRef]
- Larcher, R.; Nardin, T. Suspect screening of glycoalkaloids in plant extracts using neutral loss—High resolution mass spectrometry. J. Chromatogr. A 2019, 1596, 59–68. [Google Scholar] [CrossRef]
- Little, J.L.; Cleven, C.D.; Brown, S.D. Identification of “Known unknowns” utilizing accurate mass data and Chemical Abstracts Service databases. J. Am. Soc. Mass Spectrom. 2011, 22, 348–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morais, M.G.; Saldanha, A.A.; Costa Rodrigues, J.P.; Cotta Mendes, I.; Ferreira, L.M.; Amado, P.A.; de Souza Farias, K.; Santos Zanuncio, V.S.; da Silva, D.B.; Pinto, F.C.H.; et al. Chemical composition, antioxidant, anti-inflammatory and antinociceptive activities of the ethanol extract of ripe fruits of Solanum lycocarpum St. Hil. (Solanaceae). J. Ethnopharmacol. 2020, 262, 113125. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, T.; Ando, J.; Miyazono, A.; Zhu, X.-H.; Tsumagari, H.; Nohara, T.; Yokomizo, K.; Uyeda, M. Anti-herpes virus activity of solanum steroidal glycosides. Biol. Pharm. Bull. 2000, 23, 363–364. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Mata, M.-C.; Yokoyama, W.E.; Hong, Y.-J.; Prohens, J. α-Solasonine and α-solamargine contents of Gboma (Solanum macrocarpon L.) and scarlet (Solanum aethiopicum L.) eggplants. J. Agric. Food Chem. 2010, 58, 5502–5508. [Google Scholar] [CrossRef]
- Manoko, M.L.K.; van den Berg, R.G.; Feron, R.M.C.; van der Weerden, G.M.; Mariani, C. Genetic diversity of the African hexaploid species Solanum scabrum Mill. and Solanum nigrum L. (Solanaceae). Genet. Resour. Crop Evol. 2008, 55, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Särkinen, T.; Poczai, P.; Barboza, G.E.; van der Weerden, G.M.; Baden, M.; Knapp, S. A revision of the Old World black nightshades (Morelloid clade of Solanum L., Solanaceae). PhytoKeys 2018, 106, 1–223. [Google Scholar] [CrossRef] [Green Version]
- Herraiz, F.J.; Villaño, D.; Plazas, M.; Vilanova, S.; Ferreres, F.; Prohens, J.; Moreno, D.A. Phenolic profile and biological activities of the Pepino (Solanum muricatum) fruit and its wild relative S. caripense. Int. J. Mol. Sci. 2016, 17, 394. [Google Scholar] [CrossRef] [Green Version]
- Levin, R.A.; Myers, N.R.; Bohs, L. Phylogenetic relationships among the “Spiny solanum” (Solanum subgenus Leptostemonum, Solanaceae). Am. J. Bot. 2006, 93, 157–169. [Google Scholar] [CrossRef]
- Bohs, L. A Chloroplast DNA Phylogeny of Solanum section Lasiocarpa. Syst. Bot. 2004, 29, 177–187. [Google Scholar] [CrossRef]
- El-Shaboury, G.A.; Haroun, S.A.; Shaker, K.; Badr, A. Systematics implications of GC-MS analysis of secondary metabolites in the ethanol extract of Solanum species from South West Saudi Arabia. Egypt. J. Bot. 2017, 57, 429–444. [Google Scholar] [CrossRef] [Green Version]
- Nasr, H. Toxicity and Biochemical Effect of organophosphates and bio-pesticides against Root-knot nematode, Meloidogyne incognita. J. Pollut. Eff. Control 2015, 4, 1–9. [Google Scholar] [CrossRef]
- Niño, J.; Hernández, J.A.; Correa, Y.M.; Mosquera, O.M. In vitro inhibition of acetylcholinesterase by crude plant extracts from Colombian flora. Mem. Inst. Oswaldo Cruz 2006, 101, 783–785. [Google Scholar] [CrossRef] [Green Version]
- Roddick, J.G. The acetylcholinesterase-inhibitory activity of steroidal glycoalkaloids and their aglycones. Phytochemistry 1989, 28, 2631–2634. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Sebaugh, J.L. Guidelines for accurate EC50/IC50 estimation. Pharm. Stat. 2011, 10, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Metsalu, T.; Vilo, J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015, 43, W566–W570. [Google Scholar] [CrossRef]
- Spitzer, M.; Wildenhain, J.; Rappsilber, J.; Tyers, M. BoxPlotR: A web tool for generation of box plots. Nat. Methods 2014, 11, 121–122. [Google Scholar] [CrossRef]
- Schubert, A.; Telcs, A. A note on the Jaccardized Czekanowski similarity index. Scientometrics 2014, 98, 1397–1399. [Google Scholar] [CrossRef]
- Love, J.; Selker, R.; Marsman, M.; Jamil, T.; Dropmann, D.; Verhagen, J.; Ly, A.; Gronau, Q.F.; Šmíra, M.; Epskamp, S.; et al. JASP: Graphical statistical software for common statistical designs. J. Stat. Softw. 2019, 88, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Haliński, Ł.P.; Samuels, J.; Stepnowski, P. Multivariate analysis as a key tool in chemotaxonomy of brinjal eggplant, African eggplants and wild related species. Phytochemistry 2017, 144, 87–97. [Google Scholar] [CrossRef]
- Zidorn, C. Plant chemophenetics—A new term for plant chemosystematics/plant chemotaxonomy in the macro-molecular era. Phytochemistry 2019, 163, 147–148. [Google Scholar] [CrossRef]
Compound * r.t | [M + H]+ | Major Fragments | Sugars Neutral Loss | Detected in Plant Extract (>5% of TIC) | Glycoalkaloid Assignment | |
---|---|---|---|---|---|---|
1 | 17.05 | 884.50 | 738.43, 592.38, 453.74, 430.32 | -DeoxyH, -DeoxyH, -Hex | SS S, SS L | hydroxy-solamargine [17,18,19] |
2 | 18.64 | 970.49 | 824.44, 738.44, 592.38, 496.74, 430.33 | -DeoxyH, -DeoxyH, -Hex | SS L | malonyl-solanandaine [20] |
3 | 19.50 | 1000.54 | 722.45, 576.38, 511.76, 414.33 | -Pen + DeoxyH, -DeoxyH, -Hex | SMu R, SMu S | arudonine [20,21,22] |
4 | 20.88 | 1045.52 | 899.46, 753.40, 591.35 | -DeoxyH, -DeoxyH, -Hex | SQ R | |
5 | 22.02 | 888.55 | 742.48, 596.41, 434.35 | -DeoxyH, -DeoxyH, -Hex | SC L | |
6 | 22.19 | 868.50 | 722.44, 576.39, 414.33 | -DeoxyH, -DeoxyH, -Hex | SS S | solamargine isomer |
7 | 22.53 | 1063.53 | 901.74, 755.42, 593.37 | -Hex, -Hex | SMu R | solaviaside B [23,24] |
8 | 22.65 | 1046.55 | 722.45, 576.40, 534.78, 414.34 | -2Hex, -DeoxyH, -Hex | SMu R | |
9 | 22.80 | 1065.54 | 903.49, 757.43, 595.38, 357.11 | -DeoxyH, -Hex, -Hex | SMe S, SMe L | indioside D [25,26] |
10 | 22.96 | 903.56 | 357.11, 275.10 | SMe L, SC R | ||
11 | 23.02 | 1046.57 | 722.45, 576.40, 534.79, 414.35 | -2Hex, -DeoxyH, -Hex | SC S, SMu R | |
12 | 23.32 | 1048.57 | 724.46, 578.41, 535.78, 416.35 | -2Hex, -DeoxyH, -Hex | SC R, SMu R | solanigroside H [27] |
13 | 23.74 | 1048.57 | 724.46, 578.41, 535.78, 416.35 | -2Hex, -DeoxyH, -Hex | SC R | solanigroside H isomer [27] |
14 | 23.80 | 1030.54 | 884.47, 738.42, 576.37, 526.76, 414.32 | -DeoxyH, -DeoxyH, -Hex, -Hex | SQ R, SQ S, SQ L | |
15 | 23.96 | 884.50 | 722.45, 576.39, 414.34 | -DeoxyH, -Hex, -Hex | SN(OB) R, SN(OB) S, SN(B) R, SR R, SQ S, SQ L, SC S, SC L, SMu R, Smu L | solamarine |
16 | 24.22 | 1000.54 | 722.44, 576.38, 511.76, 414.32 | -Pen, -DeoxyH, -DeoxyH, -Hex | SS R, SS S, SS L, SC R, SC S, SMu R, Smu S, Smu L | sycophantine [21] |
17 | 24.67 | 868.5067 | 722.4465, 576.3889, 414.3360 | -DeoxyH, -DeoxyH, -Hex | solamargine | |
18 | 24.90 | 1002.57 | 886.52, 724.46, 578.41, 416.35 | SS S, SC R, SC S, SMu R | ||
19 | 25.34 | 1373.63 | 1211.57, 741.45, 579.39, 413.14 | -Hex, -2Hex + Rha, -Hex | SN(B) S, SN(B) L | |
20 | 25.51 | 1227.60 | 1065.55, 741.45, 579.39 | -Hex, -Hex, -Hex | SN(OB) R, SN(OB) S, SN(OB) L, SN(B) R, SN(B) S, SN(B) L, SMe R, SMe S, Sme L, SR R, SR S, SR L | solanigroside Y5 [24] |
21 | 25.52 | 1016.54 | 738.4398, 592.3824, 525.3006, 430.3296 | -Pen + DeoxyH, -DeoxyH | SS R, SS S, SQ R, SQ S, SC R | hydroxy-sycophantine [21] |
22 | 25.67 | 1105.54 | 1065.54, 741.44, 579.39 | -2Hex, -Hex | SN(B) L, SR S | |
23 | 25.67 | 1046.54 | 900.47, 754.42, 592.37, 534.76, 430.32 | -2DeoxyH, -Hex, -Hex | SQ R, SQ S | |
24 | 25.68 | 1195.54 | 915.43, 739.41, 577.36 | SN(B) L, Sme L, SR L | ||
25 | 25.73 | 915.44 | 753.38 | SMe R, SMe S, Sme L | ||
26 | 25.72 | 954.5014 | 808.4436, 722.4440, 576.3874, 488.4536, 414.3350 | -DeoxyH, -DeoxyH, -Hex | SN(OB) R, SN(OB) S, SR R, SS S, SS L, SQ R, SQ S, SQ L, SC R, SC S, SC L, SMu R, Smu S, Smu L | malonyl-solamargine [20,28] |
27 | 25.77 | 1065.54 | 915.46 | SN(B) L, SMe L, SR R | ||
28 | 26.11 | 1197.59 | 1035.54, 741.45, 579.39 | -Hex, -Pen + Hex, -Hex | SN(OB) R, SN(OB) S, SN(OB) L, SN(B) R, SN(B) S, SN(B) L, SMe S, Sme L, SR R, SR S, SR L | solanigroside E [20,28] |
29 | 26.35 | 884.50 | 738.44, 592.38, 453.74, 430.33 | -DeoxyH, -DeoxyH, -Hex | SS S, SQ S | hydroxy-solamargine [17,18,19] |
30 | 26.37 | 1313.63 | 1181.59, 887.49, 741.44, 579.39 | -Pen, -Pen + Hex, -DeoxyH, -Hex | SN(OB) R, SN(B) R, SR R | |
31 | 26.44 | 1047.53 | 901.47, 739.42, 577.37 | -DeoxyH, -Hex, -Hex | SQ R | |
32 | 26.64 | 1031.54 | 885.48, 739.42, 577.37, 544.25 | -DeoxyH, -DeoxyH, -Hex | SS R, SS S, SS L, SQ R | |
33 | 26.56 | 1089.54 | 1049.55, 903.49, 741.44, 579.39 | -DeoxyH + Hex, -Hex | SMe R, SMe S | |
34 | 26.60 | 1104.46 | 883.77, 736.64 | SN(B) R, SR R, SMu R | ||
35 | 26.62 | 1049.55 | 741.44, 579.39 | -DeoxyH, -Hex, -Hex | SMe R, SMe S | anguivioside XI [29,30,31] |
36 | 26.91 | 1033.55 | 887.50, 741.44, 579.39, 472.23 | -DeoxyH, -DeoxyH, -Hex | SS R, SS S | |
37 | 26.90 | 1090.58 | 766.48, 620.42, 556.79, 458.36 | -DeoxyH, -Hex | SMu R | |
38 | 27.49 | 1489.67 | 1211.57, 887.50, 741.44, 579.39 | -Pen + DeoxyH, -Hex + Hex,-DeoxyH, -Hex | SN(B) R, SMe R, SR R | |
39 | 27.14 | 954.51 | 808.45, 662.39, 488.75, 414.34 | -DeoxyH, DeoxyH | SN(OB) R, SN(OB) S, SR R, SS S, SQ R, SQ S, SQ L, SC S, Smu S | |
40 | 27.30 | 885.49 | 739.42, 577.37 | -DeoxyH, -Hex | SS R, SQ S | lyconoside II [32] |
41 | 27.41 | 910.49 | 764.43, 722.43, 576.37, 466.74, 414.32 | -DeoxyH, -DeoxyH, -Hex | SS L, SQ R | |
42 | 27.73 | 1117.54 | 1045.52, 739.42 | SS L | ||
43 | 27.83 | 1181.59 | 887.50, 741.39, 579.39 | -Pen + Hex, -DeoxyH, -Hex | SN(B) R | solanigroside D [27] |
44 | 27.99 | 1563.75 | 793.37, 753.38, 607.33, 445.28 | SN(B) S | ||
45 | 28.09 | 1073.53 | 910.49 | SQ R | ||
46 | 28.50 | 1313.64 | 887.50, 741.44, 579.39 | -Hex + 2Pen, -DeoxyH, -Hex | SN(OB) R, SN(OB) S, SN(OB) L, SN(B) R, SMe R, SMe S, SR R | |
47 | 28.65 | 1313.64 | 1181.60, 887.50, 741.45, 579.39 | -Pen, -Pen + Hex, -DeoxyH, -Hex | SN(OB) R, SN(OB) S, SN(OB) L, SN(B) R, SMe R, SMe S, SR R | |
48 | 29.32 | 926.49 | 738.42, 474.74 | SQ R | ||
49 | 29.40 | 1085.5160 | 901.4786, 755.4214, 593.3703, 431.3170 | -Hex | SS R | |
50 | 29.87 | 1069.5218 | 885.4863, 739.4280, 593.3703, 431.3170 | -DeoxyH, -DeoxyH, -Hex | SS R | |
51 | 37.12 | 1149.57 | 1017.53, 871.47, 723.43, 577.38, 415.32 | -Pen, -DeoxyH, -Pen + 2Hex, -Hex | SN(OB) S, SN(OB) L |
S. nigrum (OB) Roots | Stems | Leaves | S. nigrum (B) Roots | Stems | Leaves | S. melanocerasum Roots | Stems | Leaves | S. retroflexum Roots | Stems | Leaves | S. sisymbriifolium Roots | Stems | Leaves | S. quitoense Roots | Stems | Leaves | S. caripense Roots | Stems | Leaves | S. muricatum Roots | Stems | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S. nigrum(OB) Stems | 0.526 *** | ||||||||||||||||||||||
Leaves | 0.311 * | 0.951 *** | |||||||||||||||||||||
S. nigrum (B) Roots | 0.524 *** | 0.508 *** | 0.528 *** | ||||||||||||||||||||
Stems | 0.243 | 0.825 *** | 0.920 *** | 0.460 *** | |||||||||||||||||||
Leaves | 0.188 | 0.816 *** | 0.898 *** | 0.276 | 0.969 *** | ||||||||||||||||||
S. melanocerasum Roots | 0.124 | 0.166 | 0.192 | 0.332 * | 0.141 | 0.072 | |||||||||||||||||
Stems | 0.093 | 0.416 ** | 0.471 *** | 0.224 | 0.494 *** | 0.482 *** | 0.878 *** | ||||||||||||||||
Leaves | 0.159 | 0.782 *** | 0.853 *** | 0.196 | 0.933 *** | 0.979 *** | 0.158 | 0.574 *** | |||||||||||||||
S. retroflexum Roots | 0.618 *** | 0.770 *** | 0.705 *** | 0.679 *** | 0.495 *** | 0.445 ** | 0.287 * | 0.283 * | 0.396 ** | ||||||||||||||
Stems | 0.282 * | 0.830 *** | 0.917 *** | 0.497 *** | 0.997 *** | 0.957 *** | 0.149 | 0.491 *** | 0.922 *** | 0.503 *** | |||||||||||||
Leaves | 0.214 | 0.834 *** | 0.903 *** | 0.294 * | 0.971 *** | 0.994 *** | 0.080 | 0.486 *** | 0.984 *** | 0.466 *** | 0.962 *** | ||||||||||||
S. sisymbriifolium Roots | −0.054 | −0.098 | −0.107 | −0.080 | −0.048 | −0.071 | −0.086 | −0.081 | −0.069 | −0.106 | −0.079 | −0.068 | |||||||||||
Stems | −0.001 | −0.093 | −0.121 | −0.103 | −0.058 | −0.082 | −0.098 | −0.096 | −0.079 | −0.100 | −0.086 | −0.076 | 0.658 *** | ||||||||||
Leaves | 0.454 *** | 0.069 | −0.071 | −0.049 | −0.041 | −0.057 | −0.053 | −0.069 | −0.056 | 0.087 | −0.041 | −0.046 | 0.159 | 0.319 * | |||||||||
S. quitoense Roots | 0.032 | −0.103 | −0.135 | −0.108 | −0.100 | −0.095 | −0.110 | −0.107 | −0.09 | −0.103 | −0.098 | −0.086 | 0.075 | 0.090 | 0.063 | ||||||||
Stems | 0.787 *** | 0.157 | −0.080 | 0.031 | −0.066 | −0.071 | −0.058 | −0.098 | −0.069 | 0.184 | −0.038 | −0.052 | 0.051 | 0.205 | 0.609 *** | 0.256 | |||||||
Leaves | 0.872 *** | 0.197 | −0.062 | 0.148 | −0.057 | −0.061 | −0.045 | −0.082 | −0.058 | 0.219 | −0.022 | −0.039 | 0.027 | 0.115 | 0.534 *** | 0.244 | 0.922 *** | ||||||
S. caripense Roots | −0.001 | −0.063 | −0.085 | −0.047 | −0.022 | −0.056 | −0.069 | −0.078 | −0.056 | −0.073 | −0.063 | −0.054 | 0.727 *** | 0.718 *** | 0.225 | 0.089 | 0.132 | 0.095 | |||||
Stems | 0.661 *** | 0.126 | −0.077 | −0.001 | −0.043 | −0.065 | −0.056 | −0.093 | −0.065 | 0.147 | −0.041 | −0.051 | 0.369 ** | 0.441 ** | 0.625 *** | 0.109 | 0.834 *** | 0.772 *** | 0.551 *** | ||||
Leaves | 0.597 *** | 0.137 | −0.037 | 0.038 | −0.024 | −0.037 | −0.025 | −0.053 | −0.037 | 0.158 | −0.013 | −0.025 | 0.029 | 0.100 | 0.907 *** | 0.074 | 0.683 *** | 0.654 *** | 0.100 | 0.629 *** | |||
S. muricatum Roots | 0.065 | −0.050 | −0.091 | −0.044 | −0.026 | −0.061 | −0.073 | −0.082 | −0.060 | −0.056 | −0.065 | −0.058 | 0.702 *** | 0.688 *** | 0.334 * | 0.037 | 0.168 | 0.150 | 0.966 *** | 0.614 *** | 0.225 | ||
Stems | 0.161 | 0.001 | −0.062 | −0.022 | −0.007 | −0.043 | −0.046 | −0.061 | −0.044 | −0.001 | −0.042 | −0.040 | 0.715 *** | 0.697 *** | 0.394 ** | 0.059 | 0.285 * | 0.245 | 0.953 *** | 0.694 *** | 0.284 * | 0.960 *** | |
Leaves | 0.635 *** | 0.150 | −0.034 | 0.071 | −0.023 | −0.037 | −0.023 | −0.052 | −0.036 | 0.171 | −0.01 | −0.023 | 0.039 | 0.099 | 0.894 *** | 0.079 | 0.694 *** | 0.695 *** | 0.116 | 0.634 *** | 0.992 *** | 0.241 | 0.297 * |
S. nigrum (OB) Roots | Stems | Leaves | S. nigrum (B) Roots | Stems | Leaves | S. melanocerasum Roots | Stems | Leaves | S. retroflexum Roots | Stems | Leaves | S. sisymbriifolium Roots | Stems | Leaves | S. quitoense Roots | Stems | Leaves | S. caripense Roots | Stems | Leaves | S. muricatum Roots | Stems | Leaves | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S. nigrum (OB) Roots | 1.00 | |||||||||||||||||||||||
Stems | 0.32 | 1.00 | ||||||||||||||||||||||
Leaves | 0.42 | 0.48 | 1.00 | |||||||||||||||||||||
S. nigrum (B) Roots | 0.09 | 0.36 | 0.15 | 1.00 | ||||||||||||||||||||
Stems | 0.06 | 0.24 | 0.10 | 0.39 | 1.00 | |||||||||||||||||||
Leaves | 0.10 | 0.37 | 0.18 | 0.28 | 0.65 | 1.00 | ||||||||||||||||||
S. melanocerasum Roots | 0.08 | 0.26 | 0.13 | 0.54 | 0.25 | 0.20 | 1.00 | |||||||||||||||||
Stems | 0.09 | 0.29 | 0.14 | 0.34 | 0.48 | 0.47 | 0.73 | 1.00 | ||||||||||||||||
Leaves | 0.09 | 0.33 | 0.16 | 0.18 | 0.53 | 0.83 | 0.19 | 0.46 | 1.00 | |||||||||||||||
S. retroflexum Roots | 0.31 | 0.70 | 0.42 | 0.39 | 0.27 | 0.36 | 0.30 | 0.33 | 0.31 | 1.00 | ||||||||||||||
Stems | 0.28 | 0.56 | 0.55 | 0.32 | 0.24 | 0.41 | 0.23 | 0.30 | 0.35 | 0.39 | 1.00 | |||||||||||||
Leaves | 0.23 | 0.46 | 0.68 | 0.24 | 0.18 | 0.31 | 0.19 | 0.23 | 0.28 | 0.31 | 0.74 | 1.00 | ||||||||||||
S. sisymbriifolium Roots | 0.01 | 0.02 | 0.01 | 0.05 | 0.08 | 0.02 | 0.03 | 0.05 | 0.01 | 0.03 | 0.02 | 0.01 | 1.00 | |||||||||||
Stems | 0.02 | 0.06 | 0.03 | 0.05 | 0.04 | 0.01 | 0.04 | 0.06 | 0.01 | 0.07 | 0.07 | 0.03 | 0.17 | 1.00 | ||||||||||
Leaves | 0.15 | 0.09 | 0.02 | 0.02 | 0.02 | 0.01 | 0.02 | 0.05 | 0.00 | 0.10 | 0.04 | 0.02 | 0.09 | 0.42 | 1.00 | |||||||||
S. quitoense Roots | 0.04 | 0.11 | 0.05 | 0.07 | 0.03 | 0.01 | 0.03 | 0.04 | 0.01 | 0.12 | 0.08 | 0.04 | 0.09 | 0.27 | 0.17 | 1.00 | ||||||||
Stems | 0.06 | 0.21 | 0.05 | 0.15 | 0.05 | 0.02 | 0.05 | 0.02 | 0.01 | 0.23 | 0.10 | 0.05 | 0.15 | 0.26 | 0.18 | 0.28 | 1.00 | |||||||
Leaves | 0.01 | 0.04 | 0.02 | 0.13 | 0.05 | 0.02 | 0.07 | 0.01 | 0.01 | 0.05 | 0.04 | 0.03 | 0.16 | 0.09 | 0.03 | 0.06 | 0.23 | 1.00 | ||||||
S. caripense Roots | 0.04 | 0.09 | 0.04 | 0.08 | 0.02 | 0.01 | 0.04 | 0.03 | 0.01 | 0.10 | 0.06 | 0.04 | 0.08 | 0.32 | 0.20 | 0.25 | 0.22 | 0.05 | 1.00 | |||||
Stems | 0.23 | 0.19 | 0.04 | 0.07 | 0.02 | 0.01 | 0.02 | 0.02 | 0.00 | 0.19 | 0.06 | 0.03 | 0.06 | 0.22 | 0.43 | 0.15 | 0.22 | 0.04 | 0.49 | 1.00 | ||||
Leaves | 0.38 | 0.10 | 0.03 | 0.04 | 0.01 | 0.00 | 0.01 | 0.01 | 0.00 | 0.09 | 0.03 | 0.02 | 0.03 | 0.13 | 0.34 | 0.08 | 0.08 | 0.02 | 0.13 | 0.31 | 1.00 | |||
S. muricatum Roots | 0.01 | 0.05 | 0.02 | 0.10 | 0.09 | 0.03 | 0.05 | 0.05 | 0.02 | 0.06 | 0.05 | 0.03 | 0.29 | 0.40 | 0.22 | 0.13 | 0.21 | 0.19 | 0.28 | 0.22 | 0.10 | 1.00 | ||
Stems | 0.02 | 0.10 | 0.03 | 0.09 | 0.06 | 0.02 | 0.05 | 0.01 | 0.01 | 0.10 | 0.06 | 0.04 | 0.18 | 0.46 | 0.24 | 0.17 | 0.33 | 0.19 | 0.36 | 0.29 | 0.12 | 0.63 | 1.00 | |
Leaves | 0.27 | 0.16 | 0.03 | 0.09 | 0.02 | 0.01 | 0.02 | 0.00 | 0.00 | 0.15 | 0.05 | 0.03 | 0.06 | 0.12 | 0.52 | 0.11 | 0.17 | 0.04 | 0.15 | 0.44 | 0.54 | 0.15 | 0.18 | 1.00 |
Solanum Plant | Inhibition, % | IC50, µg Glycoalkaloid mL−1 | IC50, mg Plant mL−1 | |
---|---|---|---|---|
S. caripense | Roots | 57 | 94.8 | 283.4 |
Stems | 60 | 120.6 | 261.7 | |
Leaves | 80 | 10.5 | 13.8 | |
S. melanocerasum | Roots | 48 | 62.0 | 438.2 |
Stems | 49 | 1.4 | 10.8 | |
Leaves | 92 | 0.5 | 6.9 | |
S. muricatum | Roots | 70 | 1.2 | 20.9 |
Stems | 46 | 2.2 | 32.6 | |
Leaves | 87 | 6.3 | 25.4 | |
S. nigrum (B) | Roots | 58 | 48.8 | 577.3 |
Stems | 39 | 1.0 | 19.3 | |
Leaves | 82 | 0.8 | 8.8 | |
S. nigrum (OB) | Roots | 67 | 344.9 | 238.1 |
Stems | 56 | 28.4 | 102.3 | |
Leaves | 82 | 141.0 | 149.5 | |
S. quitoense | Roots | 69 | 0.5 | 1.8 |
Stems | 68 | 0.6 | 8.8 | |
Leaves | 73 | 0.4 | 44.9 | |
S. retroflexum | Roots | 53 | 61.8 | 187.1 |
Stems | 65 | 32.2 | 103.3 | |
Leaves | 84 | 1.5 | 3.6 | |
S. sisymbriifolium | Roots | 77 | 5.6 | 302.7 |
Stems | 83 | 0.8 | 6.8 | |
Leaves | 93 | 0.7 | 2.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popova, I.; Sell, B.; Pillai, S.S.; Kuhl, J.; Dandurand, L.-M. High-Performance Liquid Chromatography–Mass Spectrometry Analysis of Glycoalkaloids from Underexploited Solanum Species and Their Acetylcholinesterase Inhibition Activity. Plants 2022, 11, 269. https://doi.org/10.3390/plants11030269
Popova I, Sell B, Pillai SS, Kuhl J, Dandurand L-M. High-Performance Liquid Chromatography–Mass Spectrometry Analysis of Glycoalkaloids from Underexploited Solanum Species and Their Acetylcholinesterase Inhibition Activity. Plants. 2022; 11(3):269. https://doi.org/10.3390/plants11030269
Chicago/Turabian StylePopova, Inna, Belinda Sell, Syamkumar Sivasankara Pillai, Joseph Kuhl, and Louise-Marie Dandurand. 2022. "High-Performance Liquid Chromatography–Mass Spectrometry Analysis of Glycoalkaloids from Underexploited Solanum Species and Their Acetylcholinesterase Inhibition Activity" Plants 11, no. 3: 269. https://doi.org/10.3390/plants11030269
APA StylePopova, I., Sell, B., Pillai, S. S., Kuhl, J., & Dandurand, L. -M. (2022). High-Performance Liquid Chromatography–Mass Spectrometry Analysis of Glycoalkaloids from Underexploited Solanum Species and Their Acetylcholinesterase Inhibition Activity. Plants, 11(3), 269. https://doi.org/10.3390/plants11030269