Tissue Culture Response of Ornamental and Medicinal Aesculus Species—A Review
Abstract
:1. Introduction
2. Medicinal Uses of Aesculus sp.
3. Morphogenesis In Vitro
3.1. Somatic Embryogenesis
3.1.1. Initiation of Embryogenic Cultures
3.1.2. Proliferation of Embryogenic Cultures and Embryo Differentiation
3.2. Androgenesis
3.2.1. Anther Culture
3.2.2. Microspore Suspension Culture
3.2.3. Ploidy Level Determination
3.3. Secondary Somatic Embryogenesis
3.4. Maturation and Germination of Embryos and Their Conversion to Plants
3.5. Cryopreservation of Somatic Embryos
3.6. De Novo Shoot Organogenesis
3.6.1. Induction of Shoot Regeneration
3.6.2. Shoot Elongation and Rooting, and Physiological Disorders in Regenerated Plants
4. Hairy Root Cultures of Aesculus sp.
5. Aescin Production from In Vitro Cultures
6. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chanon, A.M. Studies on the Reproductive Capacity of Aesculus parviflora and Aesculus pavia: Opportunities for Their Improvement Through Interspecific Hybridization. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA, 2005. [Google Scholar]
- Harris, A.J.; Xiang, Q.Y.; Thomas, D.T. Phylogeny, origin, and biogeographic history of Aesculus L. (Sapindales)—An update from combined analysis of DNA sequences, morphology, and fossils. Taxon 2009, 58, 108–126. [Google Scholar] [CrossRef]
- Upcott, M. The parents and progeny of Aesculus carnea. J. Genet. 1936, 33, 135–149. [Google Scholar] [CrossRef]
- Bergmann, B.A.; Pellett, H.M.; Hackett, W.P. Aesculus “Autumn Splendor”. Hortscience 1989, 24, 180–181. [Google Scholar]
- Thomas, P.A.; Alhamd, O.; Iszkuło, G.; Dering, M.; Mukassabi, T.A. Biological flora of the British isles: Aesculus hippocastanum. J. Ecol. 2019, 107, 992–1030. [Google Scholar] [CrossRef] [Green Version]
- Aničić, M.; Spasić, T.; Tomašević., M.; Rajšić, S.; Tasić, M. Trace elements accumulation and temporal trends in leaves of urban deciduous trees (Aesculus hippocastanum and Tilia spp.). Ecol. Indic. 2011, 11, 824–830. [Google Scholar] [CrossRef]
- Pavlović, M.; Rakić, T.; Pavlović, D.; Kostić, O.; Jarić, S.; Mataruga, Z.; Pavlović, P.; Mitrović, M. Seasonal variations of trace element contents in leaves and bark of horse chestnut (Aesculus hippocastanum L.) in urban and industrial regions in Serbia. Arch. Biol. Sci. 2017, 69, 201–214. [Google Scholar] [CrossRef]
- Deschka, G.; Dimić, N. Cameraria ohridella sp. n. (Lep., Lithocolletidae) from Macedonia, Yugoslavia. Acta Entomol. Jugosl. 1986, 22, 11–23. [Google Scholar]
- D’Costa, L.; Koricheva, J.; Straw, N.; Simmonds, M.S.J. Oviposition patterns and larval damage by the invasive horse-chestnut leaf miner Cameraria ohridella on different species of Aesculus. Ecol. Entomol. 2013, 38, 456–462. [Google Scholar] [CrossRef]
- Tomiczek, C.; Krehan, H. The horse-chestnut leafmining moth (Cameraria ohridella): A new pest in Central Europe. J. Arboric. 1998, 24, 144–148. [Google Scholar]
- Augustin, S.; Guichard, S.; Heitland, W.; Freise, J.; Svatoš, A.; Gilbert, M. Monitoring and dispersal of the invading Gracillariidae Cameraria ohridella. J. Appl. Entomol. 2009, 133, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Anikin, V. Present day bio-invasions in the Volga-Ural Region: From the south to the north or from the east to the west? Cameraria ohridella (Lepidoptera: Gracillariidae) in the lower and middle Volga. Zootaxa 2019, 4624, 583–588. [Google Scholar]
- Thalmann, C.; Freise, J.; Heitland, W.; Bacher, S. Effects of defoliation by horse chestnut leafminer (Cameraria ohridella) on reproduction in Aesculus hippocastanum. Trees 2003, 17, 383–388. [Google Scholar] [CrossRef] [Green Version]
- Takos, I.; Varsamis, G.; Avtzis, D.; Galatsidas, S.; Merou, T.; Avtzis, N. The effect of defoliation by Cameraria ohridella Deschka and Dimic (Lepidoptera: Gracillariidae) on seed germination and seedling vitality in Aesculus hippocastanum L. Forest Ecol. Manag. 2008, 255, 830–835. [Google Scholar] [CrossRef]
- Bačovský, V.; Vyhnánek, T.; Hanáček, P.; Mertelík, J.; Šafránkov, I. Genetic diversity of chestnut tree in relation to susceptibility to leaf miner (Cameraria ohridella Deschka & Dimić). Trees 2017, 31, 753–757. [Google Scholar]
- Ferracini, C.; Curir, P.; Dolci, M.; Lanzotti, V.; Alma, A. Aesculus pavia foliar saponins: Defensive role against the leafminer Cameraria ohridella. Pest Manag. Sci. 2010, 66, 767–772. [Google Scholar] [CrossRef]
- Oszmiański, J.; Kalisz, S.; Aneta, W. The content of phenolic compounds in leaf tissues of white (Aesculus hippocastanum L.) and red horse chestnut (Aesculus carea H.) colonized by the horse chestnut leaf miner (Cameraria ohridella Deschka & Dimić). Molecules 2014, 19, 14625–14636. [Google Scholar] [PubMed] [Green Version]
- Oszmiański, J.; Kolniak-Ostek, J.; Biernat, A. The content of phenolic compounds in leaf tissues of Aesculus glabra and Aesculus parviflora Walt. Molecules 2015, 20, 2176–2189. [Google Scholar] [CrossRef] [Green Version]
- Konarska, A.; Grochowska, M.; Haratym, W.; Tietze, M.; Weryszko-Chmielewska, E.; Lechowski, L. Changes in Aesculus hippocastanum leaves during development of Cameraria ohridella. Urban For. Urban Green. 2020, 56, 126793. [Google Scholar] [CrossRef]
- Bombardelli, E.; Morazzoni, P.; Griffini, A. Aesculus hippocastanum L. Fitoterapia 1996, 67, 483–511. [Google Scholar]
- Sirtori, C.R. Aescin: Pharmacology, pharmacokinetics and therapeutic profile. Pharmacol. Res. 2001, 44, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Castaño, J.; Ropdríguez-Llamazares, S.; Contreras, K.; Carrasco, C.; Pozo, C.; Bouza, R.; Franco, C.M.L.; Giraldo, D. Horse chestnut (Aesculus hippocastanum L) starch: Basic physico-chemical characteristics and use as thermoplastic material. Carbohydr. Polym. 2014, 112, 677–685. [Google Scholar] [CrossRef]
- Radojević, L. Horse chestnut (Aesculus spp.). In Biotechnology in Agriculture and Forestry; Bajaj, Y.P.S., Ed.; Springer: Berlin/Heidelberg, Germany, 1991; pp. 111–141. [Google Scholar]
- Debnath, M.; Malik, C.P.; Bisen, P.S. Micropropagation: A tool for the production of high quality plant-based medicines. Curr. Pharm. Biotechnol. 2006, 7, 33–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández, I.; Cuenca, B.; Carneros, E.; Alonso-Blázquez, N.; Ruiz, M.; Celestino, C.; Ocaña, L.; Alegre, J.; Toribio, M. Application of plant regeneration of selected cork oak trees by somatic embryogenesis to implement multivarietal forestry for cork production. Tree For. Sci. Biotechnol. 2011, 5, 19–26. [Google Scholar]
- Bonga, J.M. Can explant choice help resolve recalcitrance problems in in vitro propagation, a problem still acute especially for adult conifers? Trees 2017, 31, 781–789. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, S.; Lian, X.Y. An overview of genus Aesculus L.: Ethnobotany, phytochemistry, and pharmacological activities. Pharm. Crops 2010, 1, 24–51. [Google Scholar] [CrossRef] [Green Version]
- Idris, S.; Mishra, A.; Khushtar, M. Phytochemical, ethanomedicinal and pharmacological applications of escin from Aesculus hippocastanum L. towards future medicine. J. Basic Clin. Physiol. Pharmacol. 2020, 31, 20190115. [Google Scholar] [CrossRef]
- Radojević, L. Somatic embryogenesis in horse chestnut (Aesculus hippocastanum L.). In Somatic Embryogenesis in Woody Plants; Jain, S., Gupta, P., Newton, R., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995; pp. 409–444. [Google Scholar]
- Gastaldo, P.; Caviglia, A.M.; Profumo, P. Aesculus hippocastanum (horse chestnut): In vitro culture and production of aescin. In Biotechnology of Medicinal and Aromatic Plants; Bajaj, Y.P.S., Ed.; Springer: Berlin/Heidelberg, Germany, 1994; pp. 1–12. [Google Scholar]
- Lichota, A.; Gwozdzinski, L.; Gwozdzinski, K. Therapeutic potential of natural compounds in inflammation and chronic venous insufficiency. Eur. J. Med. Chem. 2019, 176, 68–91. [Google Scholar] [CrossRef]
- Gallelli, L. Escin: A review of its anti-edematous, antiinflammatory, and venotonic properties. Drug Des. Dev. Ther. 2019, 13, 3425–3437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkinson, J.A.; Brown, A.M.G. Horse chestnut—Aesculus hippocastanum: Potential applications in cosmetic skin-care products. Int. J. Cosmet. Sci. 1999, 21, 437–447. [Google Scholar] [CrossRef] [Green Version]
- Sakurai, T.; Nishimura, T.; Otake, N.; Xinsheng, Y.; Abe, K.; Zeida, M.; Nagasawa, H.; Sakuda, S. Assamicin I and II, novel tryterpenoid saponins with insulin-like activity from Aesculus assamica Griff. Bioorg. Med. Chem. Lett. 2002, 12, 807–810. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, X.; Gao, H.; Wang, N.; Jin, S.; Cai, B.; Yao, X.; Cai, G. Two new triterpenoid glycosides isolated from Aesculus assamica Griff. Chem. Pharm. Bull. 2005, 53, 1310–1313. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.W.; Wang, M.Y.; Song, X.Y.; Xia, Y.; Zhao, Y.S.; Song, X.H.; Jiang, M.M.; Zhang, X.; Gao, H.; Wang, N.L.; et al. Three escin-like triterpene saponins: Assamicins VI, VII, and VIII from the seeds of Aesculus assamica Griff. Helv. Chim. Acta 2008, 91, 1704–1711. [Google Scholar] [CrossRef]
- Yuan, W.; Wang, P.; Su, Z.; Wang, V.S.; Li, S. Cytotoxic triterpenoid saponins from husks of Aesculus californica (Spach) Nutt. Phytochemistry 2013, 90, 95–105. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, X.W.; Hattori, M. Three new triterpene saponins from the seeds of Aesculus chinensis. Chem. Pharm. Bull. 2001, 49, 626–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Jiang, X.; Pan, R.; Zhou, X.; Qin, D.; Xiong, R.; Wang, Y.; Qiu, W.; Wu, A.; Wu, J. Escins isolated from Aesculus chinensis Bge. promote the autophagic degradation of mutant Huntingtin and inhibit its induced apoptosis in HT22 cells. Front. Pharmacol. 2020, 11, 116. [Google Scholar] [CrossRef]
- Yuan, W.; Wang, P.; Deng, G.; Li, S. Cytotoxic triterpenoid saponins from Aesculus glabra Willd. Phytochemistry 2012, 75, 67–77. [Google Scholar] [CrossRef]
- Srijayanta, S.; Raman, A.; Goodwin, B.L. A comparative study of the constituents of Aesculus hippocastanum and Aesculus indica. J. Med. Food 1999, 2, 45–50. [Google Scholar] [CrossRef]
- Kędzierski, B.; Kukula-Koch, W.; Widelski, J.; Głowniak, K. Impact of harvest time of Aesculus hippocastanum seeds on the composition, antioxidant capacity and total phenolic content. Ind. Crops Prod. 2016, 86, 68–72. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, S.; Zhang, S.; Gorenstein, D. Terpenoid saponins from the fruits of Aesculus pavia. Phytochemistry 2006, 67, 784–794. [Google Scholar] [CrossRef] [PubMed]
- Lanzotti, V.; Termolino, P.; Dolci, M.; Curir, P. Paviosides A–H, eight new oleane type saponins from Aesculus pavia with cytotoxic activity. Bioorg. Med. Chem. 2012, 20, 3280–3286. [Google Scholar] [CrossRef] [PubMed]
- Kimura, H.; Ogawa, S.; Jisaka, M.; Kimura, Y.; Katsube, T.; Yokota, K. Identification of novel saponins from edible seeds of Japanise horse chestnut (Aesculus turbinata Blume) after treatment with wooden ashes and their nutraceutical activity. J. Pharm. Biomed. Anal. 2006, 4, 1657–1665. [Google Scholar] [CrossRef]
- Kim, J.W.; Ha, T.K.Q.; Cho, H.; Kim, E.; Shim, S.H.; Yang, J.L.; Oh, W.K. Antiviral escin derivatives from the seeds of Aesculus turbinata Blume (Japanese horse chestnut). Bioorg. Med. Chem. Lett. 2017, 27, 3019–3025. [Google Scholar] [CrossRef]
- Wei, F.; Ma, L.Y.; Jin, W.T.; Ma, S.C.; Han, G.Z.; Khan, I.A.; Lin, R.C. Antiinflammatory triterpenoid saponins from the seeds of Aesculus chinensis. Chem. Pharm. Bull. 2004, 52, 1246–1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharipov, A.; Tursunov, K.; Fazliev, S.; Azimova, B.; Razzokov, J. Hypoglycemic and anti-inflammatory effects of triterpene glycoside fractions from Aeculus hippocastanum seeds. Molecules 2021, 26, 3784. [Google Scholar] [CrossRef] [PubMed]
- Khawaja, H.; Fazal, N.; Yaqub, F.; Ahmad, M.R.; Hanif, M.; Yousaf, M.A.; Latief, N. Protective and proliferative effect of Aesculus indica extract on stressed human adipose stem cells via downregulation of NF-κB pathway. PLoS ONE 2021, 16, e0258762. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, B.; Kanwar, S.S.; Kumar, A. Lead phytochemicals for anticancer drug development. Front. Plant Sci. 2016, 7, 1667. [Google Scholar] [CrossRef] [Green Version]
- Cheong, D.H.J.; Arfuso, F.; Sethi, G.; Wang, L.; Hui, K.M.; Kumar, A.P.; Tran, T. Molecular targets and anti-cancer potential of escin. Cancer Lett. 2018, 422, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.L.; Chao, W.T.; Li, Y.H.; Ou, Y.C.; Wang, S.S.; Chiu, H.Y.; Yuan, S.Y. Escin induces apoptosis in human bladder cancer cells: An in vitro and in vivo study. Eur. J. Pharmacol. 2018, 840, 79–88. [Google Scholar] [CrossRef]
- Michelini, F.M.; Alché, L.E.; Bueno, C.A. Virucidal, antiviral and immunomodulatory activities of β-escin and Aesculus hippocastanum extract. J. Pharm. Pharmacol. 2018, 70, 1561–1571. [Google Scholar] [CrossRef]
- Salinas, F.M.; Vázquez, L.; Gentilini, M.V.; O’Donohoe, A.; Regueira, E.; Nabaes Jodar, M.S.; Viegas, M.; Michelini, F.M.; Hermida, G.; Alché, L.E.; et al. Aesculus hippocastanum L. seed extract shows virucidal and antiviral activities against respiratory syncytial virus (RSV) and reduces lung inflammation in vivo. Antivir. Res. 2019, 164, 1–11. [Google Scholar] [CrossRef]
- Hisham Shady, N.; Youssif, K.A.; Sayed, A.M.; Belbahri, L.; Oszako, T.; Hassan, H.M.; Abdelmohsen, U.R. Sterols and triterpenes: Antiviral potential supported by in-silico analysis. Plants 2021, 10, 41. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Jiang, Y.; Wang, W.; Ma, J.; Chen, M. Escin activates AKT-Nrf2 signaling to protect retinal pigment epithelium cells from oxidative stress. Biochem. Biophys. Res. Commun. 2015, 468, 541–547. [Google Scholar] [CrossRef]
- Vašková, J.; Fejerčáková, A.; Mojžišová, G.; Vaško, L.; Patlevič, P. Antioxidant potential of Aesculus hippocastanum extract and escin against reactive oxygen and nitrogen species. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 879–886. [Google Scholar] [PubMed]
- Suryavanshi, S.V.; Kulkarni, Y.A. Escin alleviates peripheral neuropathy in streptozotocin induced diabetes in rats. Life Sci. 2020, 254, 117777. [Google Scholar] [CrossRef]
- Elmas, O.; Erbas, O.; Yigitturk, G. The efficacy of Aesculus hippocastanum seeds on diabetic nephropathy in a streptozotocin-induced diabetic rat model. Biomed. Pharmacother. 2016, 83, 392–396. [Google Scholar] [CrossRef] [PubMed]
- Gallelli, L.; Zhang, L.; Wang, T.; Fu, F. Severe acute lung injury related to COVID-19 infection: A review and the possible role for escin. J. Clin. Pharmacol. 2020, 60, 815–825. [Google Scholar] [CrossRef]
- Fuchs, H.; Niesler, N.; Trautner, A.; Sama, S.; Jerz, G.; Panjideh, H.; Weng, A. Glycosylated triterpenoids as endosomal escape enhancers in targeted tumor therapies. Biomedicines 2017, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Golemanov, K.; Tcholakova, S.; Denkov, N.; Pelana, E.; Stoyanov, S.D. Remarkably high surface visco-elasticity of adsorption layers of triterpenoid saponins. Soft Matter 2013, 9, 5738–5752. [Google Scholar] [CrossRef]
- Čukanović, J.; Tešević, V.; Jadranin, M.; Ljubojević, M.; Mladenović, E.; Kostić, S. Horse chestnut (Aesculus hippocastanum L.) seed fatty acids, flavonoids and heavy metals plasticity to different urban environments. Biochem. Syst. Ecol. 2020, 89, 103980. [Google Scholar] [CrossRef]
- Profumo, P.; Gastaldo, P.; Martinucci, R. Variations in aescin content in Aesculus hippocastanum seeds during the year. Fitoterapia 1987, 58, 184–186. [Google Scholar]
- Bellini, E.; Nin, S. Horse chestnut: Cultivation for ornamental purposes and non-food crop production. J. Herbs Spices Med. Plants 2004, 11, 93–120. [Google Scholar] [CrossRef]
- Merkle, S.A.; Dean, J.F.D. Forest tree biotechnology. Curr. Opin. Biotechnol. 2000, 11, 298–302. [Google Scholar] [CrossRef]
- Guan, Y.; Li, S.G.; Fan, X.F.; Su, Z.H. Application of somatic embryogenesis in woody plants. Front. Plant Sci. 2016, 7, 938. [Google Scholar] [CrossRef] [Green Version]
- Corredoira, E.; Martínez, M.T.; Cernadas, M.J.; San José, M.C. Application of biotechnology in the conservation of the genus Castanea. Forests 2017, 8, 394. [Google Scholar] [CrossRef] [Green Version]
- Lambardi, M.; Ozudogru, A.; Benelli, C. Cryopreservation of embryogenic cultures. In Plant Cryopreservation: A Practical Guide; Reed, B.M., Ed.; Springer: New York, NY, USA, 2008; pp. 177–210. [Google Scholar]
- Merkle, S.A.; Montello, P.M.; Reece, H.M.; Kong, L. Somatic embryogenesis and cryostorage of eastern hemlock and Carolina hemlock for conservation and restoration. Trees 2014, 28, 1767–1776. [Google Scholar] [CrossRef]
- Barra-Jiménez, A.; Aronen, T.S.; Alegre, J.; Toribio, M. Cryopreservation of embryogenic tissues from mature holm oak trees. Cryobiology 2015, 70, 217–225. [Google Scholar] [CrossRef] [PubMed]
- San José, M.C.; Corredoira, E.; Oliveira, H.; Santos, C. Cryopreservation of somatic embryos of Alnus glutinosa (L.) Gaertn. and confirmation of ploidy stability by flow cytometry. Plant Cell Tissue Organ Cult. 2015, 123, 489–499. [Google Scholar] [CrossRef]
- Li, J.W.; Ozudogru, E.A.; Li, J.; Wang, M.R.; Bi, W.L.; Lambardi, M.; Wang, Q.C. Cryobiotechnology of forest trees: Recent advances and future prospects. Biodivers. Conserv. 2018, 27, 795–814. [Google Scholar] [CrossRef]
- Park, Y.S.; Lelu-Walter, M.A.; Harvengt, L.; Trontin, J.F.; MacEacheron, I.; Klimaszewska, K.; Bonga, J.M. Initiation of somatic embryogenesis in Pinus banksiana, P. strobus, P. pinaster, and P. sylvestris at three laboratories in Canada and France. Plant Cell Tissue Organ Cult. 2006, 86, 87–101. [Google Scholar] [CrossRef]
- Barra-Jiménez, A.; Blasco, M.; Ruiz-Galea, M.; Celestino, C.; Alegre, J.; Arrillaga, I.; Toribio, M. Cloning mature holm oak trees by somatic embryogenesis. Trees 2014, 28, 657–667. [Google Scholar] [CrossRef]
- Jörgensen, J. Somatic embryogenesis in Aesculus hippocastanum L. by culture of filament callus. J. Plant Physiol. 1989, 135, 240–241. [Google Scholar] [CrossRef]
- Kiss, J.; Heszky, L.E.; Kiss, E.; Gyulai, G. High efficiency adventive embryogenesis on somatic embryos of anther, filament and immature proembryo origin in horse-chestnut (Aesculus hippocastanum L.) tissue culture. Plant Cell Tissue Organ Cult. 1992, 30, 59–64. [Google Scholar] [CrossRef]
- Capuana, M. Somatic embryogenesis in horse chestnut (Aesculus hippocastanum L.). In In Vitro Embryogenesis in Higher Plants, Methods in Molecular Biology; Germaná, M.A., Lambardi, M., Eds.; Springer: New York, NY, USA, 2016; Volume 1359, pp. 431–438. [Google Scholar]
- Radojević, L. Plant regeneration of Aesculus hippocastanum L. (horse chestnut) through somatic embryogenesis. J. Plant Physiol. 1988, 132, 322–326. [Google Scholar] [CrossRef]
- Dameri, R.M.; Caffaro, I.; Gastaldo, P.; Profumo, P. Callus formation and embryogenesis with leaf explants of Aesculus hippocastanum L. J. Plant Physiol. 1986, 126, 93–96. [Google Scholar] [CrossRef]
- Profumo, P.; Gastaldo, P.; Bevilacqua, L.; Carli, S. Plant regeneration from cotyledonary explants of Aesculus hippocastanum L. Plant Sci. 1991, 76, 139–142. [Google Scholar] [CrossRef]
- Gastaldo, P.; Carli, S.; Profumo, P. Somatic embryogenesis from stem explants of Aesculus hippocastanum. Plant Cell Tissue Organ Cult. 1994, 39, 97–99. [Google Scholar] [CrossRef]
- Gastaldo, P.; Caviglia, A.M.; Carli, S.; Profumo, P. Somatic embryogenesis and esculin formation in calli and embryoids from bark explants of Aesculus hippocastanum L. Plant Sci. 1996, 119, 157–162. [Google Scholar] [CrossRef]
- Trick, H.N.; Finer, J.J. Induction of somatic embryogenesis and genetic transformation of Ohio buckeye (Aesculus glabra Willd.). Vitr. Cell Dev. Biol. Plant 1999, 35, 57–60. [Google Scholar] [CrossRef]
- Bergmann, B.A.; Hackett, W.W.; Pellett, H. Somatic embryogenesis in Aesculus. Vitr. Cell Dev. Biol. Plant 1996, 32, 161–164. [Google Scholar] [CrossRef]
- Zdravković-Korać, S.; Tubić, L.; Devrnja, N.; Ćalić, D.; Milojević, J.; Milić, M.; Savić, J. Somatic embryogenesis from stamen filaments of Aesculus flava Sol. and peroxidase activity during the transition from friable to embryogenic callus. Sci. Hortic. 2019, 247, 362–372. [Google Scholar] [CrossRef]
- Zdravković-Korać, S.; Ćalić-Dragosavac, D.; Uzelac, B.; Janošević, D.; Budimir, S.; Vinterhalter, B.; Vinterhalter, D. Secondary somatic embryogenesis versus caulogenesis from somatic embryos of Aesculus carnea Hayne: Developmental stage impact. Plant Cell Tissue Organ Cult. 2008, 94, 225–231. [Google Scholar] [CrossRef]
- Capuana, M.; Debergh, P.C. Improvement of the maturation and germination of horse chestnut somatic embryos. Plant Cell Tissue Organ Cult. 1997, 48, 23–29. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Lloyd, G.; McCown, B. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Comb. Proc. Int. Plant. Prop. Soc. 1980, 30, 421–427. [Google Scholar]
- Profumo, P.; Gastaldo, P.; Dameri, R.M.; Caffaro, L. Histological study of calli and embryoids from leaf explants of Aesculus hippocastanum L. J. Plant Physiol. 1986, 126, 97–103. [Google Scholar] [CrossRef]
- Profumo, P.; Gastaldo, P.; Rascio, N. Ultrastructural study of different types of callus from leaf explants of Aesculus hippocastanum L. Protoplasma 1987, 138, 89–97. [Google Scholar] [CrossRef]
- Dunwell, J.M. Haploids in flowering plants: Origins and exploitation. Plant Biotechnol. J. 2010, 8, 377–424. [Google Scholar] [CrossRef]
- Niazian, M.; Shariatpanahi, M.E. In vitro-based doubled haploid production: Recent improvements. Euphytica 2020, 216, 69. [Google Scholar] [CrossRef]
- Germanà, M.A. Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep. 2011, 30, 839–857. [Google Scholar] [CrossRef]
- Srivastava, P.; Chaturvedi, R. In vitro androgenesis in tree species: An update and prospect for further research. Biotechnol. Adv. 2008, 26, 482–491. [Google Scholar] [CrossRef]
- Radojević, L. In vitro induction of androgenic plantlets in Aesculus hippocastanum. Protoplasma 1978, 96, 369–374. [Google Scholar] [CrossRef]
- Ćalić, D.; Zdravković-Korać, S.; Guć-Šćekić, M.; Radojević, L. Efficient haploid induction in microspore suspension culture of Aesculus hippocastanum L. and karyotype analysis. Biol. Plant. 2003, 47, 289–292. [Google Scholar] [CrossRef]
- Ćalić-Dragosavac, D.; Stevović, S.; Zdravković-Korać, S. Impact of genotype, age of tree and environmental temperature on androgenesis induction of Aesculus hippocastanum L. Afr. J. Biotechnol. 2010, 9, 4042–4049. [Google Scholar]
- Radojević, L.; Đorđević, N.; Tucić, B. In vitro induction of pollen embryos and plantlets in Aesculus carnea Hayne through anther culture. Plant Cell Tissue Organ Cult. 1989, 17, 21–26. [Google Scholar]
- Marinković, N.; Radojević, L. The influence of bud length, age of the tree and culture media on androgenesis induction in Aesculus carnea Hayne anther culture. Plant Cell Tissue Organ Cult. 1992, 31, 51–59. [Google Scholar] [CrossRef]
- Ćalić, D.; Zdravković-Korać, S.; Radojević, L. Plant Regeneration in Anther Culture of Yellow Buckeye (Aesculus flava Marshall). In Quality Enhancement of Plant Production Through Tissue Culture, Proceedings of the COST 843 Action, Stará Lesná, Slovakia, 28 June–3 July 2005; Libiaková, G., Gajdošová, A., Eds.; Institute of Plant Genetics and Biotechnology: Nitra, Slovakia, 2005; pp. 183–185. [Google Scholar]
- Zdravković-Korać, S.; Ćalić-Dragosavac, D.; Milojević, J.; Tubić, L.; Vinterhalter, B. A Comparison Between Anther Culture and Microspore Suspension Culture of Aesculus flava. In Proceedings of the International Scientific Conference: Forest Ecosystems and Climate Changes; Belgrade, Serbia, 9–10 March 2010; Rakonjac, L., Ed.; Institute of Forestry: Belgrade, Serbia, 2010; pp. 49–54. [Google Scholar]
- Radojević, L.; Zylberberg, L.; Kovoor, J. Etude ultrastructurale des embryons androgenetiques d’Aesculus hippocastanum L. Z. Pflanzenphysiol. 1980, 98, 255–261. [Google Scholar] [CrossRef]
- Ćalić, D.; Bohanec, B.; Devrnja, N.; Milojević, J.; Tubić, L.; Kostić, I.; Zdravković-Korać, S. Impact of abscisic acid in overcoming the problem of albinism in horse chestnut androgenic embryos. Trees 2013, 27, 755–762. [Google Scholar] [CrossRef]
- Ćalić-Dragosavac, D.; Zdravković-Korać, S.; Bohanec, B.; Radojević, L.; Vinterhalter, B.; Stevović, S.; Cingel, A.; Savić, J. Effect of activated charcoal, abscisic acid and polyethylene glycol on maturation, germination and conversion of Aesculus hippocastanum androgenic embryos. Afr. J. Biotechnol. 2010, 9, 3786–3793. [Google Scholar]
- Canonge, J.; Roby, C.; Hamon, C.; Potin, P.; Pfannschmidt, T.; Philippot, M. Occurrence of albinism during wheat androgenesis is correlated with repression of the key genes required for proper chloroplast biogenesis. Planta 2021, 254, 123. [Google Scholar] [CrossRef]
- von Arnold, S.; Sabala, I.; Bozhkov, P.; Dyachok, J.; Filonova, L. Developmental pathways of somatic embryogenesis. Plant Cell Tissue Organ Cult. 2002, 69, 233–249. [Google Scholar] [CrossRef]
- Ćalić, D.; Devrnja, N.; Milojević, J.; Kostić, I.; Janošević, D.; Budimir, S.; Zdravković-Korać, S. Abscisic acid effect on improving horse chestnut secondary somatic embryogenesis. Hortscience 2012, 47, 1741–1744. [Google Scholar] [CrossRef] [Green Version]
- Ćalić, D.; Zdravković-Korać, S.; Radojević, L. Secondary embryogenesis in androgenic embryo cultures of Aesculus hippocastanum. Biol. Plant. 2005, 49, 435–438. [Google Scholar] [CrossRef]
- Profumo, P.; Gastaldo, P.; Dameri, R.M. Studio preliminare sui rapport cotiledoni-asse embrionale in Aesculus hippocastanum L. Bull. Soc. Biol. Sperim. 1989, 65, 603–608. [Google Scholar]
- Troch, V.; Werbrouck, S.; Geelen, D.; Van Labeke, M.C. Optimization of horse chestnut (Aesculus hippocastanum L.) somatic embryo conversion. Plant Cell Tissue Organ Cult. 2009, 98, 115–123. [Google Scholar] [CrossRef]
- Ćalić, D.; Zdravković-Korać, S.; Pemac, D.; Radojević, L. Effect of low temperature on germination of androgenic embryos of Aesculus hippocastanum. Biol. Plant. 2005, 49, 431–433. [Google Scholar] [CrossRef]
- Corredoira, E.; Vieitez, A.M.; Ballester, A. Somatic embryogenesis in elm. Ann. Bot. 2002, 89, 637–644. [Google Scholar] [CrossRef] [Green Version]
- Blasco, M.; Barra, A.; Brisa, C.; Corredoira, E.; Segura, J.; Toribio, M.; Arrillaga, I. Somatic embryogenesis in holm oak male catkins. Plant Growth Regul. 2013, 71, 261–270. [Google Scholar] [CrossRef]
- Jörgensen, J. Conservation of valuable gene resources by cryopreservation in some forest tree species. J. Plant Physiol. 1990, 136, 373–376. [Google Scholar] [CrossRef]
- Jekkel, Z.; Gyulai, G.; Kiss, J.; Kiss, E.; Heszky, L.E. Cryopreservation of horse-chestnut (Aesculus hippocastanum L.) somatic embryos using three different freezing methods. Plant Cell Tissue Organ Cult. 1998, 52, 193–197. [Google Scholar] [CrossRef]
- Lambardi, M.; De Carlo, A.; Capuana, M. Cryopreservation of embryogenic callus of Aesculus hippocastanum L. by vitrification/one-step freezing. Cryoletters 2005, 26, 185–192. [Google Scholar] [PubMed]
- Šedivá, J.; Vlašínová, H.; Mertelík, J. Shoot regeneration from various explants of horse chestnut (Aesculus hippocastanum L.). Sci. Hortic. 2013, 161, 223–227. [Google Scholar] [CrossRef]
- Masubuchi, M. In vitro plantlet regeneration from multiple shoots of red horse chestnut (Aesculus x carnea Hayne) by shoot tip culture. J. Jpn. For. Soc. 1991, 73, 293–297. [Google Scholar]
- Evtushenko, Y.V.; Kovalevskyi, S.B.; Pinchuk, A.P.; Chornobrov, O.Y. Biotechnological aspects of mikropropagation of Aesculus carnea Hayne. Ann. Agrar. Sci. 2016, 14, 303–306. [Google Scholar] [CrossRef]
- Zdravković-Korać, S.; Tubić, L.; Milojević, J.; Devrnja, N.; Kostić, I.; Ćalić, D. Rooting and Preventing Shoot-Tip Necrosis of In Vitro Cultured Horse Chestnut Shoots. In Proceedings of the International Scientific Conference: Forest in Future—Sustainable Use, Risks and Challenges, Belgrade, Serbia, 4–5 October 2012; Rakonjac, L., Ed.; Institute of Forestry: Belgrade, Serbia, 2012; pp. 389–396. [Google Scholar]
- Bairu, M.W.; Stirk, W.A.; Doležal, K.; Van Staden, J. Optimizing the micropropagation protocol for the endangered Aloe polyphylla: Can meta-topolin and its derivatives serve as replacement for benzyladenine and zeatin? Plant Cell Tissue Organ Cult. 2007, 90, 15–23. [Google Scholar] [CrossRef]
- Bairu, M.W.; Stirk, W.A.; Van Staden, J. Factors contributing to in vitro shoot-tip necrosis and their physiological interactions. Plant Cell Tissue Organ Cult. 2009, 98, 239–248. [Google Scholar] [CrossRef]
- Bairu, M.W.; Jain, N.; Stirk, W.A.; Doležal, K.; van Staden, J. Solving the problem of shoot-tip necrosis in Harpagophytum procumbens by changing the cytokinin types, calcium and boron concentrations in the medium. S. Afr. J. Bot. 2009, 75, 122–127. [Google Scholar] [CrossRef] [Green Version]
- Bairu, M.W.; Novák, O.; Doležal, K.; Van Staden, J. Changes in endogenous cytokinin pofiles in micropropagated Harpagophytum procumbens in relation to shoot-tip necrosis and cytokinin treatments. Plant Growth Regul. 2011, 63, 105–114. [Google Scholar] [CrossRef]
- Aremu, A.O.; Bairu, M.W.; Szüčová, L.; Doležal, K.; Finnie, J.F.; Van Staden, J. Shoot and root proliferation in ‘Williams’ banana: Are the topolins better cytokinins? Plant Cell Tiss. Org. Cult. 2012, 111, 209–218. [Google Scholar] [CrossRef]
- Aremu, A.O.; Bairu, M.W.; Doležal, K.; Finnie, J.F.; Van Staden, J. Topolins: A panacea to plant tissue culture challenges? Plant Cell Tissue Organ Cult. 2012, 108, 1–16. [Google Scholar] [CrossRef]
- Valero-Aracama, C.; Kane, M.; Wilson, S.; Philman, N. Substitution of benzyladenine with meta-topolin during shoot multiplication increases acclimatization of difficult- and easy-to acclimatize sea oats (Uniola paniculata L.) genotypes. Plant Growth Regul. 2010, 60, 43–49. [Google Scholar] [CrossRef]
- Zdravković-Korać, S.; Ćalić, D.; Druart, P.; Radojević, L. The horse chestnut lines harboring the rol genes. Biol. Plant. 2003, 47, 487–491. [Google Scholar] [CrossRef]
- Zdravković-Korać, S.; Muhovski, Y.; Druart, P.; Ćalić, D.; Radojević, L. Agrobacterium rhizogenes-mediated DNA transfer to Aesculus hippocastanum L. and the regeneration of transformed plants. Plant Cell Rep. 2004, 22, 698–704. [Google Scholar] [CrossRef] [PubMed]
- Flores, H.E.; Curtis, W.R. Approaches to understanding and manipulating the biosynthetic potential of plant roots. Ann. N. Y. Acad. Sci. 1992, 655, 188–209. [Google Scholar] [CrossRef]
- Oksman-Caldentey, K.M.; Hiltunen, R. Transgenic crops for improved pharmaceutical products. Field Crops Res. 1996, 45, 57–69. [Google Scholar] [CrossRef]
- Flores, H.E.; Vivanco, J.M.; Loyola-Vargas, V.M. “Radicle” biochemistry: The biology of root-specific metabolism. Trends Plant Sci. 1999, 4, 220–226. [Google Scholar] [CrossRef]
- Tepfer, M.; Casse-Delbart, F. Agrobacterium rhizogenes as a vector for transforming higher plants. Microbiol. Sci. 1987, 4, 24–28. [Google Scholar]
- Profumo, P.; Caviglia, A.M.; Gastaldo, P. Formation of aescin glucosides by callus tissue from cotyledonary explants of Aesculus hippocastanum L. Plant Sci. 1992, 85, 161–164. [Google Scholar] [CrossRef]
- Profumo, P.; Caviglia, A.M.; Gastaldo, P.; Dameri, R.M. Aescin content in embryogenic callus and in embryoids from leaf explants of Aesculus hippocastanum. Planta Med. 1991, 57, 50–52. [Google Scholar] [CrossRef] [PubMed]
- Profumo, P.; Caviglia, A.M.; Gastaldo, P. Aescin formation in calli and embryoids from cotyledon and stem explants of Aesculus hippocastanum L. J. Pharm. Pharmacol. 1994, 46, 924–925. [Google Scholar] [CrossRef] [PubMed]
- Ćalić-Dragosavac, D.; Zdravković-Korać, S.; Šavikin-Fodulović, K.; Radojević, L.; Vinterhalter, B. Determination of aescin content in androgenic embryos and hairy root culture of Aesculus hippocastanum (Hippocastanaceae). Pharm. Biol. 2010, 48, 563–567. [Google Scholar] [CrossRef] [Green Version]
- Ćalić-Dragosavac, D.; Stevović, S.; Zdravković-Korać, S.; Milojević, J.; Cingel, A.; Vinterhalter, B. Secondary metabolite of horse chestnut in vitro culture. Adv. Environ. Biol. 2011, 5, 267–270. [Google Scholar]
- Yoshikawa, M.; Murakami, T.; Otuki, K.; Yamahara, J.; Matsuda, H. Bioactive saponins and glycosides. XIII. Horse chestnut. (3): Quantitative analysis of aescins Ia, Ib, IIa, and IIb by means of high performance liquid chromatography. Yakugaku Zasshi 1999, 11, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Karting, T.; Graune, F.J.; Herbst, R. Distribution of saponins during the different stages of germination and development of Aesculus hippocastanum. Planta Med. 1966, 14, 121–125. [Google Scholar]
- Tripathy, V.; Basak, B.B.; Varghese, T.S.; Saha, A. Residues and contaminants in medicinal herbs—A review. Phytochem. Lett. 2015, 14, 67–78. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, H.; Wang, H.; Li, Q.; Li, Y. Heavy metal pollution and potential health risks of commercially available Chinese herbal medicines. Sci. Total Environ. 2019, 653, 748–757. [Google Scholar] [CrossRef] [PubMed]
Species/ Hybrid | Explant Source | Explant Type | Callus Induction | Culture Conditions * (Light/Dark, Temperature) | SE Regeneration | Reference |
---|---|---|---|---|---|---|
A x arnoldiana | 4-week-old in vitro seedlings | shoot | WPM + 25 μM BA | Dark, 25 °C | WPM + PGR-free | [85] |
4-week-old in vitro seedlings | root | WPM + 5 μM BA | Dark, 25 °C | WPM + PGR-free | [85] | |
30-year-old tree | shoot | WPM + 25 μM BA | Light, 25 °C | WPM + PGR-free | [85] | |
A. glabra | 3-year-old trees | shoot | WPM + 5 μM BA | Dark, 5 °C | WPM + PGR-free | [85] |
3-week-old in vitro seedlings | stem, petiole, leaf blade | MS + 4.5 μM 2,4-D + 4.7 μM Kin | Light, n.s. | MS + PGR-free | [84] | |
A. flava | flower buds | filaments | MS + 1 μM 2,4-D + 10 μM Kin | Dark, 25 °C | MS + PGR-free | [86] |
A. hippocastanum | seedlings | primary leaves | MS + 9.3 μM Kin + 10.7 μM NAA + 9 μM 2,4-D | Light, 25 °C | MS + PGR-free | [80] |
young seeds | immature zygotic embryos | MS + 13.6 μM 2,4-D + 4.6 μM Kin | n.s. | MS + 4.5 μM 2,4-D + 4.6 μM Kin | [79] | |
flower buds | filaments | WPM + 2.5 μM BA + 5 μM 2,4-D | Light, 25 °C | WPM + PGR-free | [76] | |
zygotic embryos of ripe seeds | cotyledons | MS + 0.45 μM 2,4-D | Light, 25 °C | MS + PGR-free | [81] | |
immature zygotic embryos, filaments | somatic embryos | MS + 8.8 μM 2,4-D + 5.4 μM NAA | Dark, 28 °C | B5 + 4.4 μM BA | [77] | |
terminal branches of an adult tree | stem segments | MS + 9.3 μM Kin + 10.7 μM NAA + 9 μM 2,4-D | Light, 25 °C | MS + PGR-free | [82] | |
terminal branches of an adult tree | bark fragments | MS + 9.3 μM Kin + 10.7 μM NAA + 9 μM 2,4-D | Light, 25 °C | MS + PGR-free | [83] | |
flower buds | filaments | MS + 9 μM 2,4-D | Dark, 23 °C | MS + PGR-free | [78,88] |
Species/ Hybrid | Flower Bud Size (mm) | Regeneration Method | Callus Induction | Culture Conditions * | Embryo Regeneration | Ploidy Level Determination | Reference |
---|---|---|---|---|---|---|---|
A. carnea | 4–6 | ANC | MS + 4.5 μM 2,4-D + 4.6 μM Kin | Light, 25 °C | MS + 0.045 μM 2,4-D + 4.6 μM Kin | Chr.count. | [100] |
4–7 | ANC | MS + 0, 0.45, 6.8 or 9.1 μM 2,4-D + 4.6 μM Kin | Light, 25 °C | MS + 0.045 μM 2,4-D + 0.46 μM Kin | Chr.count. | [101] | |
A. flava | 4–12 | ANC | MS + 4.5 μM 2,4-D + 4.6 μM Kin | Dark, 25 °C | MS + 0.045 μM 2,4-D + 4.6 μM Kin | n.t. | [102] |
4–5 | ANC and MSC | MS + 4.5 μM 2,4-D + 4.6 μM Kin | Dark, 25 °C | MS + 0.045 μM 2,4-D + 4.6 μM Kin | n.t. | [103] | |
A. hippocastanum | 4–7 | AC | MS + 4.5 μM 2,4-D + 4.6 μM Kin | Light, 28 °C | MS + PGR-free | Chr.count. | [97] |
4 | ANC and MSC | MS + 4.5 μM 2,4-D + 4.6 μM Kin | Dark, 25 °C | MS + 0.045 μM 2,4-D + 4.6 μM Kin | Chr.count. | [98] | |
4 | ANC and MSC | MS + 4.5 μM 2,4-D + 4.6 μM Kin | Dark, 23 °C | MS + 0.045 μM 2,4-D + 4.6 μM Kin | Flow cyt. | [99] |
Species/ Hybrid | Explant Source | Explant Type | Shoot Induction | Shoot Elongation | Rooting | Reference |
---|---|---|---|---|---|---|
A. carnea | 15-year-old tree | shoot tips | MS + 5 μM BA + 0.1μM IBA | MS + 1 μM BA + 10 μM GA3 | 1/4 WPM + 0.1 μM IBA + 10 g L−1 AC | [120] |
40-year-old tree | shoot tips | MS + 2.2 μM BA + 2.3 μM Kin | n.t. | n.t. | [121] | |
3 cm-long somatic seedlings | whole seedlings | MS + 10 μM BA | n.t. | n.t. | [87] | |
A. hippocastanum | in vitro plants | stem segments, young leaves, petioles | WPM + 8.9 μM BA + 0.5 μM NAA | WPM + 1.04 μM mT | WPM + 2.7 μM NAA | [119] |
3 cm-long somatic seedlings | whole seedlings | MS +10 μM BA | MS + 1 μM BA + 500 mg L−1 PVP | 10 mM IBA for 1 min, followed by 1/2 MS + 0.02% AC | [122] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zdravković-Korać, S.; Milojević, J.; Belić, M.; Ćalić, D. Tissue Culture Response of Ornamental and Medicinal Aesculus Species—A Review. Plants 2022, 11, 277. https://doi.org/10.3390/plants11030277
Zdravković-Korać S, Milojević J, Belić M, Ćalić D. Tissue Culture Response of Ornamental and Medicinal Aesculus Species—A Review. Plants. 2022; 11(3):277. https://doi.org/10.3390/plants11030277
Chicago/Turabian StyleZdravković-Korać, Snežana, Jelena Milojević, Maja Belić, and Dušica Ćalić. 2022. "Tissue Culture Response of Ornamental and Medicinal Aesculus Species—A Review" Plants 11, no. 3: 277. https://doi.org/10.3390/plants11030277
APA StyleZdravković-Korać, S., Milojević, J., Belić, M., & Ćalić, D. (2022). Tissue Culture Response of Ornamental and Medicinal Aesculus Species—A Review. Plants, 11(3), 277. https://doi.org/10.3390/plants11030277