High-Purity Preparation of Enzyme Transformed Trans-Crocetin Reclaimed from Gardenia Fruit Waste
Abstract
:1. Introduction
2. Results and Discussion
2.1. Comparison of the Composition between the Dried Gardenia Fruits and GFW
2.2. The Percent Extractability and Total Content of Crocins in the Dried Gardenia Fruit
2.3. The Optimum Ratio of Enzyme to Crocins Required for the Conversion to Crocetin
2.4. The Optimum Reaction Time Required for the Conversion of Crocins into Crocetin
2.5. Adsorption and Desorption of Hydrolyzed Products via Macroporous Resin HPD-100
2.6. Purity of TC Further Improved by Centrifugal Partition Chromatography (CPC)
2.7. The Yield and Purity of TC Post CPC Treatment
2.8. The Identification of trans-and cis-Crocetin in CPC Purified Products
3. Materials and Methods
3.1. Materials
3.2. Source of the Gardenia Fruit Waste (GFW)
3.3. Proximate Analysis of the Dried Gardenia Fruits and GFW
3.4. Determination of Geniposide and Crocins in the Dried G. Jasminoides Fruit Powders
3.5. Reclaim of Crocins from the Gardenia Fruit Waste (GFW)
3.6. HPLC Analysis and LC/MS Identification on the Compositions of Crude Crocins Extract
3.7. Optimum Reaction Time for Conversion of Crocins to Crocetin by Celluclast® 1.5 L
3.8. Optimum Ratio of Substrate to Enzyme for Conversion of Crocins to Crocetin by Celluclast® 1.5 L
3.9. Macroporous Resin Adsorption
3.10. Purification with Centrifugal Partition Chromatography
3.11. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuratsune, H.; Umigai, N.; Takeno, R.; Kajimoto, Y.; Nakano, T. Effect of crocetin from Gardenia Jasminoides Ellis on sleep: A pilot study. Phytomedicine 2010, 17, 840–843. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Li, S.; Wang, S.; Ho, C.T. Chemistry and bioactivity of Gardenia jasminoides. J. Food Drug Anal. 2017, 25, 43–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mashmoul, M.; Azlan, A.; Khaza’ai, H.; Yusof, B.N.M.; Noor, S.M. Saffron: A natural potent antioxidant as a promising anti-obesity drug. Antioxidants 2013, 2, 293–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mykhailenko, O.; Desenko, V.; Ivanauskas, L.; Georgiyants, V. Standard operating procedure of Ukrainian saffron cultivation according with good agricultural and collection practices to assure quality and traceability. Ind. Crops Prod. 2020, 151, 112376. [Google Scholar] [CrossRef]
- Debnath, T.; Park, P.J.; Nath, N.C.D.; Samad, N.B.; Park, H.W.; Lim, B.O. Antioxidant activity of Gardenia jasminoides Ellis fruit extracts. Food Chem. 2011, 128, 697–703. [Google Scholar] [CrossRef]
- Koo, H.J.; Song, Y.S.; Kim, H.J.; Lee, Y.H.; Hong, S.M.; Kim, S.J.; Kim, B.C.; Jin, C.; Lim, C.J.; Park, E.H. Antiinflammatory effects of genipin, an active principle of gardenia. Eur. J. Pharmacol. 2004, 495, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.; Park, K.R.; Lee, D.U.; Kim, Y.S.; Kim, H.P. Effects of the constituents of Gardenia Fructus on prostaglandin and NO reduction. Biomol. Ther. 2008, 16, 82–86. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Wang, G.; Liu, Z.; Rao, J.; Lv, L.; Xu, W.; Wu, S.; Zhang, J. Effect of geniposide, a hypoglycemic glucoside, on hepatic regulating enzymes in diabetic mice induced by a high-fat diet and streptozotocin. Acta. Pharmacol. Sin. 2009, 30, 202–208. [Google Scholar] [CrossRef] [Green Version]
- Tao, W.; Zhang, H.; Xue, W.; Ren, L.; Xia, B.; Zhou, X.; Wu, H.; Duan, J.; Chen, G. Optimization of supercritical fluid extraction of oil from the Gardenia jasminoides and its antidepressant activity. Molecules 2014, 19, 19350. [Google Scholar] [CrossRef] [Green Version]
- Jhansi, L.B.; Jaganmohan, R.K. Phytochemical studies of Gardenia jasminoides. Int. J. BioSci. Technol. 2012, 5, 54–58. [Google Scholar]
- Wu, G.; Wen, M.; Sun, L.; Li, H.; Liu, Y.; Li, R.; Wu, F.; Yang, R.; Lin, Y. Mechanistic insights into geniposide regulation of bile salt export pump (BSEP) expression. RSC Adv. 2018, 8, 37117–37129. [Google Scholar] [CrossRef] [Green Version]
- Tarantilis, P.A.; Tsoupras, G.; Polissiou, M. Determination of saffron (Crocus sativus L.) components in crude plant extract using high-performance liquid chromatography-UV-visible photodiode-array detection-mass spectrometry. J. Chromatogr. A 1995, 699, 107–118. [Google Scholar] [CrossRef]
- Zhou, T.; Fan, G.R.; Hong, Z.; Chai, Y.; Wu, Y. Large-scale isolation and purification of geniposide from the fruit of Gardenia jasminoides Ellis by high-speed counter-current chromatography. J. Chromatogr. A 2005, 1100, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, Y.; Deng, L.; Cai, S.; Liu, J.; Li, W.; Du, L.; Cui, G.; Xu, X.; Lu, T.; et al. Systematic separation and purification of iridoid glycosides and crocetin derivatives from Gardenia jasminoides Ellis by high-speed counter-current chromatography. Phytochem. Anal. 2015, 26, 202–208. [Google Scholar] [CrossRef]
- Karkoula, E.; Angelis, A.; Koulakiotis, N.S.; Gikas, E.; Halabalaki, M.; Tsarbopoulos, A.; Skaltsounis, A.L. Rapid isolation and characterization of crocins, picrocrocin, and crocetin from saffron using centrifugal partition chromatography and LC–MS. Sep. Sci. 2018, 41, 4105–4114. [Google Scholar] [CrossRef]
- Yue, H.; Zhao, X.; Wang, Q.; Tao, Y. Separation and purification of water-soluble iridoid glucosides by high speed counter-current chromatography combined with macroporous resin column separation. J. Chromatogr. B 2013, 93, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Lautenschläger, M.; Sendker, J.; Hüwel, S.; Galla, H.J.; Brandt, S.; Düfer, M.; Riehemann, K.; Hensel, A. Intestinal formation of trans-crocetin from saffron extract (Crocus sativus L.) and in vitro permeation through intestinal and blood brain barrier. Phytomedicine 2015, 22, 36–44. [Google Scholar] [CrossRef]
- Tiribuzi, R.; Crispoltoni, L.; Chiurchiù, V.; Casella, A.; Montecchiani, C.; Del Pino, A.M.; Maccarrone, M.; Palmerini, C.A.; Caltagirone, C.; Kawarai, T.; et al. Trans-crocetin improves amyloid-β degradation in monocytes from Alzheimer’s disease patients. J. Neurol. Sci. 2017, 372, 408–412. [Google Scholar] [CrossRef]
- Yamauchi, M.; Tsuruma, K.; Imai, S.; Nakanishi, T.; Umigai, N.; Shimazawa, M.; Hara, H. Crocetin prevents retinal degeneration induced by oxidative and endoplasmic reticulum stresses via inhibition of caspase activity. Eur. J. Pharmacol. 2011, 650, 110–119. [Google Scholar] [CrossRef]
- Reddy, C.N.; Bharate, S.B.; Vishwakarma, R.A.; Bharate, S.S. Chemical analysis of saffron by HPLC based crocetin estimation. J. Pharm. Biomed. Anal. 2020, 181, 113094. [Google Scholar] [CrossRef]
- Shakya, R.; Nepal, M.R.; Kang, M.J.; Jeong, T.C. Effects of intestinal microbiota on pharmacokinetics of crocin and crocetin in male Sprague-Dawley rats. Metabolites 2020, 10, 424. [Google Scholar] [CrossRef]
- Gao, L.; Zhu, B.Y. The accumulation of crocin and geniposide and transcripts of phytoene synthase during maturation of Gardenia jasminoides fruit. Evid. Based Complement. Alternat. Med. 2013, 2013, 686351. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.S.; Lee, C.M.; Cho, M.H.; Hahn, T.R. Hahn Physical stability of the blue pigments formed from geniposide of Gardenia fruits: Effects of pH, temperature, and light. J. Agric. Food Chem. 2001, 49, 430–432. [Google Scholar]
- Feng, J.; He, X.; Zhou, S.; Peng, F.; Liu, J.; Hao, L.; Li, H.; Ao, G.; Yang, S. Preparative separation of crocins and geniposide simultaneously from gardenia fruits using macroporous resin and reversed-phase chromatography. J. Sep. Sci. 2013, 37, 314–322. [Google Scholar] [CrossRef]
- Girme, A.; Pawar, S.; Ghule, C.; Shengule, S.; Saste, G.; Balasubramaniam, A.K.; Deshmukh, A.; Hingorani, L. Bioanalytical method development and validation study of neuroprotective extract of Kashmiri saffron using ultra-fast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS): In Vivo pharmacokinetics of apocarotenoids and carotenoids. Molecules 2021, 26, 1815. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Abert Vian, M.; Ravi, H.K.; Khadraoui, B.; Hilali, S.; Perino, S.; Fabiano Tixier, A.S. Review of alternative solvents for green extraction of food and natural products: Panorama, principles, applications and prospects. Molecules 2019, 24, 3007. [Google Scholar] [CrossRef] [Green Version]
- Sakai, H.; Ono, K.; Tokunaga, S.; Sharmin, T.; Aida, T.M.; Mishima, K. Extraction of natural pigments from Gardenia jasminoides J. Ellis fruit pulp using CO2-expanded liquids and direct sonication. Separations 2021, 8, 1. [Google Scholar] [CrossRef]
- Rosales-Calderon, O.; Trajano, H.L.; Duff, S.J. Stability of commercial glucanase and β-glucosidase preparations under hydrolysis conditions. Peer J. 2014, 2, e402. [Google Scholar] [CrossRef] [PubMed]
- de Andrades, D.; Graebin, N.G.; Ayub, M.A.Z.; Fernandez-Lafuente, R.; Rodrigues, R.C. Preparation of immobilized/stabilized biocatalysts of β-glucosidases from different sources: Importance of the support active groups and the immobilization protocol. Biotechnol. Prog. 2019, 35, e2890. [Google Scholar] [PubMed]
- Suchareau, M.; Bordes, A.; Lemée, L. Improved quantification method of crocins in saffron extract using HPLC-DAD after qualification by HPLC-DAD-MS. Food Chem. 2021, 362, 130199. [Google Scholar] [CrossRef]
- Bharate, S.S.; Kumar, V.; Singh, G.; Singh, A.; Gupta, M.; Singh, D.; Kumar, A.; Vishwakarma, R.A.; Bharate, S.B. Preclinical development of Crocus sativus-based botanical lead IIIM-141 for Alzheimer’s disease: Chemical standardization, efficacy, formulation development, pharmacokinetics, and safety pharmacology. ACS Omega 2018, 3, 9572–9585. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Liu, X.; Xia, Q.; Yin, T.; Bai, C.; Wang, Z.; Du, L.; Li, X.; Wang, W.; Sun, L.; et al. Comparative anti-arthritic investigation of iridoid glycosides and crocetin derivatives from Gardenia jasminoides Ellis in Freund’s complete adjuvant-induced arthritis in rats. Phytomedicine 2019, 53, 223–233. [Google Scholar] [CrossRef]
- Amarouche, N.; Giraud, M.; Forni, L.; Butte, A.; Edwards, F.; Borie, N.; Renault, J.H. Two novel solvent system compositions for protected synthetic peptide purification by centrifugal partition chromatography. J. Chromatogr. A 2014, 1337, 155–161. [Google Scholar] [CrossRef]
- Skalicka-Woźniak, K.; Garrard, I. Counter-current chromatography for the separation of terpenoids: A comprehensive review with respect to the solvent systems employed. Phytochem. Rev. 2014, 13, 547–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inoue, K.; Tanada, C.; Nishikawa, H.; Matsuda, S.; Tada, A.; Ito, Y.; Min, J.Z.; Todoroki, K.; Sugimoto, N.; Toyo’oka, T.; et al. Evaluation of gardenia yellow using crocetin from alkaline hydrolysis based on ultra high performance liquid chromatography and high-speed countercurrent chromatography. J. Sep. Sci. 2014, 37, 3619–3624. [Google Scholar] [CrossRef] [PubMed]
- Grace, M.H.; Qiang, Y.; Sang, S.; Lila, M.A. One-step isolation of carnosic acid and carnosol from rosemary by centrifugal partition chromatography. J. Sep. Sci. 2017, 40, 1057–1062. [Google Scholar] [CrossRef]
- Sánchez, A.M.; Carmona, M.; Zalacain, A.; Carot, J.M.; Jabaloyes, J.M.; Alonso, G.L. Rapid determination of crocetin esters and picrocrocin from saffron spice (Crocus sativus L.) using UV–visible spectrophotometry for quality control. J. Agric. Food Chem. 2008, 56, 3167–3175. [Google Scholar] [CrossRef] [PubMed]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Ni, Y.; Li, L.; Zhang, W.; Lu, D.; Zang, C.; Zhang, D.; Yu, Y.; Yao, X. Discovery and LC-MS characterization of new crocins in Gardeniae Fructus and their neuroprotective potential. J. Agric. Food Chem. 2017, 65, 2936–2946. [Google Scholar] [CrossRef]
- Marston, A.; Hostettmann, K. Developments in the application of counter-current chromatography to plant analysis. J. Chromatogr. A. 2006, 1112, 181–194. [Google Scholar] [CrossRef]
- Streinu-Cercel, A.; Săndulescu, O.; Miron, V.D.; Oană, A.-A.; Motoi, M.M.; Galloway, C.D.; Streinu-Cercel, A. Trans sodium crocetinate (TSC) to improve oxygenation in COVID-19. medRxiv, 2021, in press. [CrossRef]
Term | Content % (w/w) a | |
---|---|---|
Dried Gardenia Fruit | Gardenia Fruit Waste | |
Moisture | 10.12 ± 0.02 | 5.85 ± 0.02 |
Crude protein | 6.36 ± 0.22 | 8.89 ± 0.05 |
Crude fat | 19.15 ± 0.26 | 18.89 ± 1.25 |
Ash | 4.82 ± 0.13 | 5.24 ± 0.26 |
Carbohydrate | 59.55 ± 0.19 | 66.92 ± 1.20 |
Geniposide | 3.18 ± 0.47 | 0.54 ± 0.08 |
Crocins | 14.09 ± 1.02 | 0.86 ± 0.01 |
Ethanol (%) | Yield of Extract (w/w %) 1 GF GFW | Total Content of Crocins (mg/g DW) 1 | ||
---|---|---|---|---|
GF | GFW | |||
25 | 19.90 ± 1.83 b | 10.28 ± 0.99 b | 10.28 ± 0.99 b | 4.15 ± 0.52 b |
50 | 25.63 ± 2.73 a | 14.09 ± 1.02 a | 14.09 ± 1.02 a | 8.61 ± 0.63 a |
75 | 14.26 ± 0.41 c | 9.20 ± 0.34 b | 9.20 ± 0.34 b | 6.13 ± 0.41 a |
95 | 10.77 ± 0.98 c | 4.09 ± 0.30 c | 4.09 ± 0.30 c | 1.33 ± 0.20 c |
Peak No. 1 | Retention Time (min) | λmax (nm) | Molecular Weight | Molecular Ion (m/z) | Fragmentation (m/z) 2 | Identified Crocins |
---|---|---|---|---|---|---|
1 | 16.65 | 438, 466 | 976.96 | 999 [M + Na] + | 329, 311, 999 | trans-4-GG 3 |
2 | 17.13 | 440, 464 | 976.96 | 999 [M + Na] + | 635, 473, 999 | cis-4-GG 3 |
3 | 18.51 | 444, 464 | 814.82 | 837 [M + Na] + | 327, 837, 311 | trans-3-Gg 3 |
4 | 20.50 | 438, 460 | 652.26 | 675 [M + Na] + | 675, 323, 346 | trans-2-G 3 |
5 | 22.74 | 436, 460 | 976.96 | 999 [M + Na] + | 721, 311, 999 | cis-4-ng 3 |
6 | 22.91 | 442, 460 | 652.26 | 675 [M + Na] + | 675, 311, 329 | cis-2-G 3 |
7 | 23.87 | 430, 452 | 652.26 | 675 [M + Na] + | 675, 228, 329 | cis-2-gg 3 |
8 | 24.92 | 426, 450 | 328.40 | 329 [M + H] + | 329, 311, 293 | trans-Crocetin 4 |
9 | 25.70 | 424, 444 | 328.40 | 329 [M + H] + | 311, 329, 293 | cis-Crocetin 4 |
Two-Phase Solvent System | Ratio (v/v/v) | Kd1a (Trans-Crocetin) | Kd2a (Cis-Crocetin) |
---|---|---|---|
ethyl acetate-n-Butanol-water * | 1:4:5 | 4.4 | 13.8 |
ethyl acetate-n-Butanol-water * | 2:3:5 | 2.7 | 2.2 |
ethyl acetate-n-Butanol-water * | 2.5:2.5:5 | 1.4 | 0.7 |
ethyl acetate-n-Butanol-water * | 3:2:5 | 0.8 | 0.6 |
ethyl acetate-n-Butanol-water * | 4:1:5 | 0.1 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chyau, C.-C.; Chiu, C.-Y.; Hsieh, H.-L.; Hsieh, D.W.-C.; Hsieh, C.-R.; Chang, C.-H.; Peng, R.Y. High-Purity Preparation of Enzyme Transformed Trans-Crocetin Reclaimed from Gardenia Fruit Waste. Plants 2022, 11, 281. https://doi.org/10.3390/plants11030281
Chyau C-C, Chiu C-Y, Hsieh H-L, Hsieh DW-C, Hsieh C-R, Chang C-H, Peng RY. High-Purity Preparation of Enzyme Transformed Trans-Crocetin Reclaimed from Gardenia Fruit Waste. Plants. 2022; 11(3):281. https://doi.org/10.3390/plants11030281
Chicago/Turabian StyleChyau, Charng-Cherng, Chu-Ying Chiu, Hung-Lin Hsieh, David Wang-Chi Hsieh, Chong-Ru Hsieh, Chi-Huang Chang, and Robert Y. Peng. 2022. "High-Purity Preparation of Enzyme Transformed Trans-Crocetin Reclaimed from Gardenia Fruit Waste" Plants 11, no. 3: 281. https://doi.org/10.3390/plants11030281