The Impact of Different Weed Management Systems on Weed Flora and Dry Biomass Production of Barley Grown under Various Barley-Based Cropping Systems
Abstract
:1. Introduction
2. Results
2.1. Weed Flora
2.2. Weeds Diversity (Number of Weed Species)
2.3. Density of Broadleaved Weed Species
2.4. Density of Grassy Weed Species
2.5. Density of Individual Weed Species
3. Discussion
4. Materials and Methods
4.1. Experimental Site and Soil
4.2. Experiment Description
4.3. Crop Husbandry
4.4. Weeds Data Collection
4.5. Biomass Yield
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meints, B.; Hayes, P.M. Breeding Naked Barley for Food, Feed, and Malt. In Plant Breeding Reviews; Wiley: Hoboken, NJ, USA, 2019; pp. 95–119. ISBN 9781119616801. [Google Scholar]
- Visioni, A.; Al-Abdallat, A.; Elenien, J.A.; Verma, R.P.S.; Gyawali, S.; Baum, M. Genomics and molecular breeding for improving tolerance to abiotic stress in barley (Hordeum vulgare L.). In Genomics Assisted Breeding of Crops for Abiotic Stress Tolerance; Springer: Berlin/Heidelberg, Germany, 2019; Volume II, pp. 49–68. [Google Scholar]
- Mwando, E.; Angessa, T.T.; Han, Y.; Li, C. Salinity tolerance in barley during germination—Homologs and potential genes. J. Zhejiang Univ. B 2020, 21, 93–121. [Google Scholar] [CrossRef] [PubMed]
- Cammarano, D.; Ceccarelli, S.; Grando, S.; Romagosa, I.; Benbelkacem, A.; Akar, T.; Al-Yassin, A.; Pecchioni, N.; Francia, E.; Ronga, D. The impact of climate change on barley yield in the Mediterranean basin. Eur. J. Agron. 2019, 106, 1–11. [Google Scholar] [CrossRef]
- Ikram ul Haq, M.; Maqbool, M.M.; Ali, A.; Farooq, S.; Khan, S.; Saddiq, M.S.; Khan, K.A.; Ali, S.; Ifnan Khan, M.; Hussain, A.; et al. Optimizing planting geometry for barley-Egyptian clover intercropping system in semi-arid sub-tropical climate. PLoS ONE 2020, 15, e0233171. [Google Scholar] [CrossRef] [PubMed]
- Zeeshan, M.; Lu, M.; Sehar, S.; Holford, P.; Wu, F. Comparison of biochemical, anatomical, morphological, and physiological responses to salinity stress in wheat and barley genotypes deferring in salinity tolerance. Agronomy 2020, 10, 127. [Google Scholar] [CrossRef] [Green Version]
- Naeem, M.; Mehboob, N.; Farooq, M.; Farooq, S.; Hussain, S.; Ali, H.M.; Hussain, M. Impact of Different Barley-Based Cropping Systems on Soil Physicochemical Properties and Barley Growth under Conventional and Conservation Tillage Systems. Agronomy 2021, 11, 8. [Google Scholar] [CrossRef]
- Naeem, M.; Hussain, M.; Farooq, M.; Farooq, S. Weed flora composition of different barley-based cropping systems under conventional and conservation tillage practices. Phytoparasitica 2021, 49, 751–769. [Google Scholar] [CrossRef]
- Diyanat, M.; Baziar, S. The effect of weed control on growth, yield and physicochemical properties of valerian (Valeriana officinalis L.). J. Res. Weed Sci. 2020, 3, 420–435. [Google Scholar] [CrossRef]
- Zimdahl, R.L. Fundamentals of Weed Science; Academic Press: Cambridge, MA, USA, 2018; ISBN 0128111445. [Google Scholar]
- Riaz Marral, M.W.; Khan, M.B.; Ahmad, F.; Farooq, S.; Hussain, M. The influence of transgenic (Bt) and non-transgenic (non-Bt) cotton mulches on weed dynamics, soil properties and productivity of different winter crops. PLoS ONE 2020, 15, e0238716. [Google Scholar] [CrossRef]
- Farooq, M.; Nawaz, A.; Saharawat, Y.S.; Reeves, T.; Siddique, K. Crop and cropping systems management practices and benefits in Conservation Agriculture systems. In Advances in Conservation Agriculture: Volume 2: Practice and Benefits; Burleigh Dodds Science Publishing Limited: Cambridge, UK, 2020. [Google Scholar]
- Farooq, N.; Abbas, T.; Tanveer, A.; Jabran, K. Allelopathy for weed management. In Co-Evolution of Secondary Metabolites; Springer: Cham, Switzerland, 2020; pp. 505–519. [Google Scholar] [CrossRef]
- Farooq, S.; Onen, H.; Tad, S.; Ozaslan, C.; Mahmoud, S.F.; Brestic, M.; Zivcak, M.; Skalicky, M.; El-Shehawi, A.M. The influence of environmental factors on seed germination of Polygonum perfoliatum L.: Implications for management. Agronomy 2021, 11, 1123. [Google Scholar] [CrossRef]
- Farooq, S.; Onen, H.; Ozaslan, C.; Baskin, C.C.; Gunal, H. Seed germination niche for common ragweed (Ambrosia artemisiifolia L.) populations naturalized in Turkey. S. Afr. J. Bot. 2019, 123, 361–371. [Google Scholar] [CrossRef]
- Önen, H.; Farooq, S.; Tad, S.; Özaslan, C.; Gunal, H.; Chauhan, B.S. The Influence of Environmental Factors on Germination of Burcucumber (Sicyos angulatus) Seeds: Implications for Range Expansion and Management. Weed Sci. 2018, 66, 494–501. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Matloob, A.; Mahajan, G.; Aslam, F.; Florentine, S.K.; Jha, P. Emerging challenges and opportunities for education and research in weed science. Front. Plant Sci. 2017, 8, 1537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Meulen, A.; Chauhan, B.S. A review of weed management in wheat using crop competition. Crop Prot. 2017, 95, 38–44. [Google Scholar] [CrossRef]
- Maqsood, Q.; Abbas, R.N.; Iqbal, M.A.; Serap, K.A.; Iqbal, A.; El Sabagh, A. Overviewing of weed management practices to reduce weed seed bank and to increase maize yield. Planta Daninha 2020, 38. [Google Scholar] [CrossRef]
- Shahzad, M.; Jabran, K.; Hussain, M.; Raza, M.A.S.; Wijaya, L.; El-Sheikh, M.A.; Alyemeni, M.N. The impact of different weed management strategies on weed flora of wheat-based cropping systems. PLoS ONE 2021, 16, e0247137. [Google Scholar] [CrossRef]
- Carballido, J.; Rodríguez-Lizana, A.; Agüera, J.; Pérez-Ruiz, M. Field sprayer for inter and intra-row weed control: Performance and labor savings. Span. J. Agric. Res. 2013, 11, 642. [Google Scholar] [CrossRef] [Green Version]
- Bond, W.; Grundy, A.C. Non-chemical weed management in organic farming systems. Weed Res. 2001, 41, 383–405. [Google Scholar] [CrossRef]
- Smith, R.G.; Ryan, M.R.; Menalled, F.D.; Hatfield, J.L.; Sauer, T.J. Direct and indirect impacts of weed management practices on soil quality. Soil Manag. Build. Stable Base Agric. 2011, 275–286. [Google Scholar] [CrossRef]
- Annett, R.; Habibi, H.R.; Hontela, A. Impact of glyphosate and glyphosate-based herbicides on the freshwater environment. J. Appl. Toxicol. 2014, 34, 458–479. [Google Scholar] [CrossRef]
- Kanatas, P.J.J.; Travlos, I.S.S.; Gazoulis, J.; Antonopoulos, N.; Tsekoura, A.; Tataridas, A.; Zannopoulos, S. The combined effects of false seedbed technique, post-emergence chemical control and cultivar on weed management and yield of barley in Greece. Phytoparasitica 2020, 48, 131–143. [Google Scholar] [CrossRef]
- Kanatas, P.; Travlos, I.; Papastylianou, P.; Gazoulis, I.; Kakabouki, I.; Tsekoura, A. Yield, quality and weed control in soybean crop as affected by several cultural and weed management practices. Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 329–341. [Google Scholar] [CrossRef] [Green Version]
- Merfield, C.N. False and Stale Seedbeds: The most effective non-chemical weed management tools for cropping and pasture establishment. FFC Bull. 2015, 2015, 25. [Google Scholar]
- Hussain, M.I.; Reigosa, M.J. Evaluation of photosynthetic performance and carbon isotope discrimination in perennial ryegrass (Lolium perenne L.) under allelochemicals stress. Ecotoxicology 2017, 26, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Abbas, T.; Ahmad, A.; Kamal, A.; Nawaz, M.Y.; Jamil, M.A.; Saeed, T.; Abid, M.A.; Ali, H.H.; Ateeq, M. Ways to Use Allelopathic Potential for Weed Management: A Review. Int. J. Food Sci. Agric. 2021, 5, 492–498. [Google Scholar] [CrossRef]
- Jabran, K. Sunflower allelopathy for weed control. In Manipulation of Allelopathic Crops for Weed Control; Springer: Berlin/Heidelberg, Germany, 2017; pp. 65–75. [Google Scholar]
- Jabran, K. Allelopathy: Introduction and concepts. In Manipulation of Allelopathic Crops for Weed Control; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–12. [Google Scholar]
- Weston, L.A.; Alsaadawi, I.S.; Baerson, S.R. Sorghum Allelopathy—From Ecosystem to Molecule. J. Chem. Ecol. 2013, 39, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Díaz Solares, M.; Cazaña Martínez, Y.; Pérez Hernández, Y.; Valdivia Ávila, A.; Prieto Abreu, M.; Lugo Morales, Y. Qualitative evaluation of secondary metabolites in extracts of Morus alba L. (Mulberry) varieties and hybrids. Rev. Cuba. Plantas Med. 2015, 20, 358–366. [Google Scholar]
- Hussain, M.I.; Danish, S.; Sánchez-Moreiras, A.M.; Vicente, Ó.; Jabran, K.; Chaudhry, U.K.; Branca, F.; Reigosa, M.J. Unraveling Sorghum Allelopathy in Agriculture: Concepts and Implications. Plants 2021, 10, 1795. [Google Scholar] [CrossRef]
- Graziani, F.; Onofri, A.; Pannacci, E.; Tei, F.; Guiducci, M. Size and composition of weed seedbank in long-term organic and conventional low-input cropping systems. Eur. J. Agron. 2012, 39, 52–61. [Google Scholar] [CrossRef]
- Hosseini, P.; Karimi, H.; Babaei, S.; Mashhadi, H.R.; Oveisi, M. Weed seed bank as affected by crop rotation and disturbance. Crop Prot. 2014, 64, 1–6. [Google Scholar] [CrossRef]
- Shahzad, M.; Farooq, M.; Jabran, K.; Hussain, M. Impact of different crop rotations and tillage systems on weed infestation and productivity of bread wheat. Crop Prot. 2016, 89, 161–169. [Google Scholar] [CrossRef]
- Mahmood, A.; Cheema, Z.A.; Mushtaq, M.N.; Farooq, M. Maize–Sorghum intercropping systems for purple nutsedge management. Arch. Agron. Soil Sci. 2013, 59, 1279–1288. [Google Scholar] [CrossRef]
- Cheema, Z.A.; Khaliq, A. Use of sorghum allelopathic properties to control weeds in irrigated wheat in a semi arid region of Punjab. Agric. Ecosyst. Environ. 2000, 79, 105–112. [Google Scholar] [CrossRef]
- Heap, I. The International Herbicide-Resistant Weed Database. Available online: http://www.weedscience.org/Home.aspx (accessed on 21 December 2021).
- Mehdizadeh, M.; Mushtaq, W.; Anusha Siddiqui, S.; Ayadi, S.; Kaur, P.; Yeboah, S.; Mazraedoost, S.; AL-Taey, D.K.A.; Tampubolon, K. Herbicide Residues in Agroecosystems: Fate, Detection, and Effect on Non-Target Plants. Rev. Agric. Sci. 2021, 9, 157–167. [Google Scholar] [CrossRef]
- Perotti, V.E.; Larran, A.S.; Palmieri, V.E.; Martinatto, A.K.; Permingeat, H.R. Herbicide resistant weeds: A call to integrate conventional agricultural practices, molecular biology knowledge and new technologies. Plant Sci. 2020, 290, 110255. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Johnson, D.E. The role of seed ecology in improving weed management strategies in the tropics. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2010; Volume 105, pp. 221–262. ISBN 0065-2113. [Google Scholar]
- Jafariehyazdi, E.; Javidfar, F. Comparison of allelopathic effects of some brassica species in two growth stages on germination and growth of sunflower. Plant Soil Environ. 2011, 57, 52–56. [Google Scholar] [CrossRef] [Green Version]
- Weston, L.A.; Duke, S.O. Weed and crop allelopathy. CRC. Crit. Rev. Plant Sci. 2003, 22, 367–389. [Google Scholar] [CrossRef]
- Bangarwa, S.K.; Norsworthy, J.K. Brassicaceae Cover-Crop Effects on Weed Management in Plasticulture Tomato. J. Crop Improv. 2014, 28, 145–158. [Google Scholar] [CrossRef]
- Chhokar, R.S.; Sharma, R.K.; Singh, R.K.; Gill, S.C. Herbicide resistance in littleseed canarygrass (Phalaris minor) and its management. In Proceedings of the 14th Australian Agronomy Conference, Adelaide, Australia, 21–25 September 2008; Australian Society of Agronomy: Adelaide, Australia, 2008; p. 106. [Google Scholar]
- Garrison, A.J.; Miller, A.D.; Ryan, M.R.; Roxburgh, S.H.; Shea, K. Stacked Crop Rotations Exploit Weed-Weed Competition for Sustainable Weed Management. Weed Sci. 2014, 62, 166–176. [Google Scholar] [CrossRef]
- Farooq, M.; Nawaz, A.; Ahmad, E.; Nadeem, F.; Hussain, M.; Siddique, K.H.M. Using Sorghum to suppress weeds in dry seeded aerobic and puddled transplanted rice. Field Crops Res. 2017, 214, 211–218. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, L.F. Impact of tillage and crop residue management on the weed community and wheat yield in a wheat–maize double cropping system. Agriculture 2021, 11, 265. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, Y.; Zhang, K.; Jeong, J.; Zeng, Z.; Zang, H. Does crop rotation yield more in China? A meta-analysis. Field Crops Res. 2020, 245, 107659. [Google Scholar] [CrossRef]
- Sauvadet, M.; Trap, J.; Damour, G.; Plassard, C.; Van den Meersche, K.; Achard, R.; Allinne, C.; Autfray, P.; Bertrand, I.; Blanchart, E.; et al. Agroecosystem diversification with legumes or non-legumes improves differently soil fertility according to soil type. Sci. Total Environ. 2021, 795, 148934. [Google Scholar] [CrossRef] [PubMed]
- Steel, R.; Torrei, J.; Dickey, D. Principles and Procedures of Statistics A Biometrical Approach; McGraw-Hill: New York, NY, USA, 1997. [Google Scholar]
Species | Common Name | Family | Life Cycle |
---|---|---|---|
Broadleaved weed species | |||
Chenopodium murale L. | Fat hen | Amaranthaceae | Annual |
Melilotus indicus (L.) All. | Yellow sweet clover | Leguminosae | Annual |
Rumex obtusifolius L. | Bitter dock | Polygonaceae | Perennial |
Anagallis arvensis L. | Blue pimpernel | Primulaceae | Annual |
Chenopodium album L. | Common goosefoot | Amaranthaceae | Annual |
Sonchus arvensis L. | Perennial sow thistle | Asteraceae | Perennial |
Conyza stricta Willd. | Horseweed | Asteraceae | Annual |
Convolvulus arvensis L. | Field bindweed | Convolvulaceae | Perennial |
Medicago polymorpha L. | Yellow trefoil | Leguminosae | Annual |
Coronopus didymus L. Sm. | Swine-cress | Brassicaceae | Annual |
Grassy weed species | |||
Polypogon monspeliensis L. Desf. | Winter grass | Poaceae | Annual |
Spergula arvensis L. | Corn spurry | Caryophyllaceae | Annual |
Bolboschoenus maritimus (L.) Palla | Salt marsh | Cyperaceae | Perennial |
Cropping Systems | 2017–2018 | 2018–2019 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
WC | FS | CC | AWE | Means (CS) | WC | FS | CC | AWE | Means (CS) | |
Broadleaved weeds (m−2) | ||||||||||
FB | 67.00 b | 30.00 f | 0.33 j | 39.00 d | 27.27 B | 84.00 b | 41.33 de | 0.00 k | 37.67 ef | 32.60 B |
MB | 35.67 de | 18.00 h | 0.00 j | 16.33 h | 14.00 D | 33.00 gh | 14.67 j | 0.00 k | 12.67 j | 12.06 D |
CB | 73.00 a | 34.67 e | 1.33 j | 47.33 c | 31.27 A | 67.33 c | 30.00 hi | 0.00 k | 26.00 i | 24.67 C |
M*B | 70.00 ab | 24.00 g | 0.33 j | 32.33 ef | 25.33 C | 98.67 a | 44.00 d | 3.67 k | 36.00 fg | 36.47 A |
SB | 32.67 ef | 9.67 i | 0.00 j | 11.33 i | 10.73 E | 29.33 hi | 10.33 j | 0.00 k | 10.33 j | 10.00 E |
Means (WCS) | 55.67 A | 23.27 C (58.20) | 0.40 D (99.28) | 29.27 B (47.42) | 62.47 A | 28.07 B (55.06) | 0.73 D (98.83) | 24.53 C (60.72) | ||
LSD value (p < 0.05) | WCS = 1.51, CS = 1.51, WCS × CS = 3.38 | WCS = 1.98, CS = 1.98, WCS × CS = 4.44 | ||||||||
Grassy weeds (m−2) | ||||||||||
FB | 43.00 a | 27.00 c | 4.33 h–k | 12.33 e | 17.33 A | 38.67 a | 14.33 e–g | 7.67 h | 19.67 c | 16.06 A |
MB | 9.33 f | 2.67 j–m | 0.67 m | 4.00 i–l | 3.33 D | 16.67 de | 6.67 h | 3.00 ij | 8.00 h | 6.87 C |
CB | 39.00 b | 18.00 d | 5.67 hi | 8.67 fg | 14.27 B | 37.67 a | 12.00 g | 5.67 hi | 18.33 cd | 14.73 B |
M*B | 29.00 c | 8.33 fg | 2.00 k–m | 5.00 h–j | 8.86 C | 40.00 a | 15.00 ef | 3.33 ij | 22.67 b | 16.20 A |
SB | 6.67 gh | 2.33 k–n | 0.67 m | 1.67 k–m | 2.27 D | 12.67 fg | 3.00 ij | 0.67 j | 5.67 hi | 4.40 D |
Means (WCS) | 25.40 A | 11.67 B (54.05) | 2.67 D (89.48) | 6.33 C (75.07) | 29.13 A | 10.20 C (64.98) | 4.07 D (86.02) | 14.87 B (48.95) | ||
LSD value (p < 0.05) | WCS = 1.13, CS = 1.13, WCS × CS = 2.52 | WCS = 1.31, CS = 1.31, WCS × CS = 2.92 |
Cropping Systems | 2017–2018 | 2018–2019 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
WC | FS | CC | AWE | Means | WC | FS | CC | AWE | Means | |
Salt marsh | ||||||||||
FB | 16.00 a | 10.33 c | 1.33 hi | 6.00 de | 6.73 A | 14.00 b | 4.00 g–i | 2.67 ij | 6.33 d–f | 5.40 A |
MB | 4.67 ef | 1.00 hi | 0.00 i | 1.33 hi | 1.40 D | 7.00 de | 2.33 ij | 1.33 jk | 3.33 hi | 2.80 C |
CB | 12.33 b | 6.67 d | 2.00 gh | 3.00 g | 4.80 B | 11.67 c | 3.33 hi | 1.33 jk | 5.33 e–g | 4.33 B |
M*B | 9.33 c | 3.33 fg | 1.00 hi | 1.00 hi | 2.93 C | 16.33 a | 5.00 f–h | 1.00 jk | 8.00 d | 6.07 A |
SB | 3.00 g | 1.00 hi | 0.00 i | 0.67 hi | 0.93 D | 6.33 d–f | 1.33 jk | 0.00 k | 2.67 ij | 2.07 C |
Means (WCS) | 9.07 A | 4.47 B (50.71) | 0.87 D (90.40) | 2.40 C (73.53) | 11.07 A | 3.20 C (71.09) | 1.27 D (88.52) | 5.13 B (53.65) | ||
LSD value (p < 0.05) | WCS = 0.68, CS = 0.68, WCS × CS = 1.53 | WCS = 0.83, CS = 0.83, WCS × CS = 1.85 | ||||||||
Corn spurry | ||||||||||
FB | 3.33 b | 1.33 c | 0.00 d | 1.00 c | 1.13 B | 7.67 a | 3.33 c | 1.67 d | 4.00 c | 3.33 A |
MB | 0.67 cd | 0.00 d | 0.00 d | 0.67 cd | 0.27 C | 1.00 d–f | 1.67 d | 0.33 ef | 0.00 f | 0.60 C |
CB | 6.00 a | 1.33 c | 0.67 cd | 0.67 cd | 1.73 A | 6.00 b | 1.33 de | 1.33 de | 3.33 c | 2.40 B |
M*B | 3.00 b | 0.67 cd | 0.00 d | 0.00 d | 0.73 B | 0.00 f | 1.00 d–f | 0.00 f | 2.00 d | 0.60 C |
SB | 0.67 cd | 0.00 d | 0.00 d | 0.00 d | 0.13 C | 0.00 f | 0.00 f | 0.00 f | 0.00 f | 0.00 D |
Means (WCS) | 2.73 A | 0.67 B (75.45) | 0.13 CD (95.23) | 0.47 BC (82.78) | 2.93 A | 1.47 B (49.82) | 0.67 C (77.13) | 1.87 B (36.17) | ||
LSD value (p < 0.05) | WCS = 0.44, CS = 0.44, WCS × CS = 0.99 | WCS = 0.45, CS = 0.45, WCS × CS = 1.01 | ||||||||
Winter grass | ||||||||||
FB | 10.67 b | 5.00 d | 1.00 ef | 0.00 f | 3.33 B | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
MB | 0.00 f | 0.00 f | 0.00 f | 0.00 f | 0.00 D | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
CB | 12.00 a | 5.00 d | 1.33 e | 1.00 ef | 3.87 A | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
M*B | 9.00 c | 0.00 f | 0.00 f | 1.33 e | 2.07 C | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
SB | 0.00 f | 0.00 f | 0.00 f | 0.00 f | 0.00 D | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Means (WCS) | 6.33 A | 2.00 B (68.4) | 0.47 C (92.57) | 0.47 C (92.57) | 0.00 | 0.00 | 0.00 | 0.00 | ||
LSD value (p < 0.05) | WCS = 0.52, CS = 0.52, WCS × CS = 1.16 | WCS = NS, CS = NS, WCS × CS = NS |
Cropping Systems | 2017–2018 | 2018–2019 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
WC | FS | CC | AWE | MEANS | WC | FS | CC | AWE | MEANS | |
Common goosefoot | ||||||||||
FB | 7.33 b | 4.67 cd | 0.33 h | 3.00 ef | 3.06 A | 9.00 b | 2.67 e–g | 0.00 i | 4.33 cd | 3.20 B |
MB | 3.33 d–f | 1.33 gh | 0.00 h | 0.33 h | 1.00 B | 4.33 cd | 1.00 hi | 0.00 i | 2.00 f–h | 1.47 D |
CB | 8.00 b | 5.67 c | 0.67 h | 4.00 de | 3.67 A | 7.67 b | 1.33 g–i | 0.00 i | 3.00 d–f | 2.40 C |
M*B | 10.33 a | 2.33 fg | 0.00 h | 3.33 d–f | 3.20 A | 12.67 a | 3.67 de | 0.00 i | 5.67 c | 4.40 A |
SB | 3.00 ef | 1.00 gh | 0.00 h | 1.00 gh | 1.00 B | 4.00 de | 1.00 hi | 0.00 i | 1.33 g–i | 1.27 D |
Means (WCS) | 6.40 A | 3.00 B (53.12) | 0.20 D (96.87) | 2.33 C (63.59) | 7.53 A | 1.93 C (74.36) | 0.00 D (100) | 3.27 B (56.57) | ||
LSD value (p < 0.05) | WCS = 0.66, CS = 0.66, WCS × CS = 1.48 | WCS = 0.68, CS = 0.68, WCS × CS = 1.53 | ||||||||
Perennial sow thistle | ||||||||||
FB | 4.33 a | 2.33 b | 0.00 e | 1.33 b–d | 1.60 | 7.67 b | 2.67 e–h | 0.00 j | 3.67 c–e | 2.80 |
MB | 1.33 b–d | 0.67 de | 0.00 e | 0.67 de | 0.53 | 3.33 d–f | 1.00 ij | 0.00 j | 1.67 g–i | 1.20 |
CB | 2.33 b | 1.00 c–e | 0.67 de | 1.00 c–e | 1.00 | 8.33 ab | 2.33 e–i | 0.00 j | 5.00 c | 3.13 |
M*B | 5.00 a | 2.00 bc | 0.00 e | 1.67 b–d | 1.73 | 9.33 a | 2.33 e–i | 1.00 ij | 4.67 cd | 3.47 |
SB | 1.67 b–d | 1.00 c–e | 0.00 e | 0.67 de | 0.67 | 3.00 e–g | 1.33 h–j | 0.00 j | 2.00 f–i | 1.27 |
Means (WCS) | 2.93 A | 1.40 B (52.21) | 0.13 C (95.56) | 1.07 B (63.48) | 6.33 A | 1.93 C (69.51) | 0.20 D (96.84) | 3.40 B (46.28) | ||
LSD value (p < 0.05) | WCS = 0.48, CS = NS, WCS × CS = 1.08 | WCS = 0.68, CS = NS, WCS × CS = 1.51 | ||||||||
Bitter dock | ||||||||||
FB | 17.67 b | 9.00 ef | 0.00 j | 14.33 c | 8.20 B | 24.33 b | 15.00 e | 0.00 m | 8.33 hi | 9.53 A |
MB | 9.00 ef | 3.67 hi | 0.00 j | 4.67 h | 3.47 D | 10.33 g | 7.00 ij | 0.00 m | 3.00 kl | 4.07 C |
CB | 20.33 a | 10.67 de | 0.00 j | 16.33 b | 9.47 A | 20.00 c | 12.67 f | 0.00 m | 6.33 j | 7.80 B |
M*B | 13.33 c | 6.67 g | 0.00 j | 11.00 d | 6.20 C | 26.33 a | 17.67 d | 0.00 m | 7.00 ij | 10.20 A |
SB | 6.00 fg | 2.00 i | 0.00 j | 2.67 i | 2.53 E | 9.00 gh | 4.33 k | 0.00 m | 1.67 lm | 3.00 D |
Means (WCS) | 13.67 A | 6.40 C (53.18) | 0.00 D (100) | 9.80 B (28.31) | 18.00 A | 11.33 B (37.05) | 0.00 D (100) | 5.27 C (70.72) | ||
LSD value (p < 0.05) | WCS = 0.84, CS = 0.84, WCS × CS = 1.88 | WCS = 83, CS = 0.83, WCS × CS = 1.86 | ||||||||
Fat hen | ||||||||||
FB | 6.33 a | 4.00 bc | 0.00 h | 4.00 bc | 2.87 A | 6.67 a | 3.00 bc | 0.00 g | 2.67 cd | 2.47 A |
MB | 2.00 d–f | 2.00 d–f | 0.00 h | 1.67 e–g | 1.13 C | 1.67 d–f | 1.00 e–g | 0.00 g | 1.33 ef | 0.80 CD |
CB | 4.00 bc | 2.33 b–f | 0.00 h | 2.67 de | 1.80 B | 4.00 b | 2.00 c–e | 0.00 g | 1.67 d–f | 1.53 B |
M*B | 5.00 b | 1.67 e–g | 0.00 h | 3.00 cd | 1.93 B | 3.00 bc | 1.33 ef | 0.00 g | 1.00 e–g | 1.07 BC |
SB | 2.00 d–f | 1.33 fg | 0.00 h | 0.67 gh | 0.80 C | 1.33 ef | 0.67 fg | 0.00 g | 0.67 fg | 0.53 D |
Means (WCS) | 3.87 A | 2.27 B (41.34) | 0.00 C (100) | 2.40 B (37.98) | 3.33 A | 1.60 B (51.95) | 0.00 C (100) | 1.47 B (55.85) | ||
LSD value (p < 0.05) | WCS = 0.56, CS = 0.56, WCS × CS = 1.24 | WCS = 0.49, CS = 0.49, WCS × CS = 1.10 |
Cropping Systems | 2017–2018 | 2018–2019 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
WC | FS | CC | AWE | MEANS | WC | FS | CC | AWE | MEANS | |
Field bindweed | ||||||||||
FB | 0.00 f | 0.00 f | 0.00 f | 0.00 f | 0.00 NS | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 0.00 NS |
MB | 1.67 bc | 0.67 d–f | 0.00 f | 1.00 c–e | 0.67 | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 0 |
CB | 2.00 b | 0.67 d–f | 0.00 f | 0.33 ef | 0.6 | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 0 |
M*B | 4.00 a | 1.67 bc | 0.33 ef | 1.33 b–d | 1.46 | 0.00 b | 1.33 a | 0.00 b | 0.00 b | 0.27 |
SB | 1.33 b–d | 0.00 f | 0.00 f | 0.67 d–f | 0.4 | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 0 |
Means (WCS) | 1.80 A | 0.60 B (66.67) | 0.07 C (96.11) | 0.67 B (62.77) | 0.00 B | 0.27 A (100) | 0.00 B (100) | 0.00 B (100) | ||
LSD value (p < 0.05) | WCS = 0.38, CS = NS, WCS × CS = 0.85 | WCS = 0.08, CS = NS, WCS × CS = 0.19 | ||||||||
Yellow trefoil | ||||||||||
FB | 13.00 b | 7.33 de | 0.00 i | 7.67 d | 5.60 A | 13.67 a | 6.67 cd | 0.00 i | 8.67 b | 5.80 A |
MB | 10.33 c | 5.00 ef | 0.00 i | 2.33 gh | 3.53 B | 5.00 de | 1.00 hi | 0.00 i | 2.00 f–h | 1.60 C |
CB | 12.67 b | 7.00 d | 0.00 i | 5.00 ef | 4.93 A | 9.33 b | 3.33 ef | 0.00 i | 5.33 d | 3.60 B |
M*B | 18.33 a | 6.33 de | 0.00 i | 4.00 fg | 5.73 A | 15.33 a | 6.00 d | 1.33 g–i | 8.33 bc | 6.20 A |
SB | 8.00 d | 3.00 gh | 0.00 i | 1.33 hi | 2.47 C | 5.67 d | 1.33 g–i | 0.00 i | 3.00 fg | 2.00 C |
Means (WCS) | 12.47 A | 5.73 B (54.05) | 0.00 D (100) | 4.07 C (67.36) | 9.80 A | 3.67 C (62.55) | 0.27 D (97.24) | 5.47 B (44.18) | ||
LSD value (p < 0.05) | WCS = 0.89, CS = 0.89, WCS × CS = 2.00 | WCS = 0.78, CS = 0.78, WCS × CS = 1.75 | ||||||||
Yellow sweet clover | ||||||||||
FB | 14.33 c | 2.67 ij | 0.00 k | 7.33 ef | 4.87 B | 16.00 b | 9.00 d | 0.00 l | 6.67 ef | 6.33 A |
MB | 8.00 e | 4.67 g–i | 0.00 k | 5.33 f–h | 3.60 C | 6.33 e–g | 3.00 i–k | 0.00 l | 1.67 j–l | 2.20 C |
CB | 20.33 a | 7.33 ef | 0.00 k | 16.67 b | 8.87 A | 12.33 c | 5.67 fg | 0.00 l | 3.33 h–j | 4.27 B |
M*B | 12.00 d | 3.33 h–j | 0.00 k | 8.00 e | 4.67 B | 18.33 a | 7.67 de | 1.33 kl | 4.67 g–i | 6.40 A |
SB | 6.67 e–g | 1.33 jk | 0.00 k | 4.00 hi | 2.40 D | 5.00 f–h | 1.67 j–l | 0.00 l | 1.67 j–l | 1.67 C |
Means (WCS) | 12.27 A | 3.87 C (68.45) | 0.00 D (100) | 8.27 B (32.59) | 11.60 A | 5.40 B (53.44) | 0.27 D (97.67) | 3.60 C (68.96) | ||
LSD value (p < 0.05) | WCS = 0.90, CS = 0.90, WCS × CS = 2.01 | WCS = 0.82, CS = 0.82, WCS × CS = 1.83 | ||||||||
Swine cress | ||||||||||
FB | 4.00 a | 0.00 d | 0.00 d | 1.33 c | 1.06 NS | 2.33 c | 1.00 ef | 0.00 g | 1.33 de | 0.93 B |
MB | 0.00 d | 0.00 d | 0.00 d | 0.33 d | 0.06 | 1.00 ef | 0.67 e–g | 0.00 g | 0.33 fg | 0.40 C |
CB | 2.00 b | 0.00 d | 0.00 d | 1.33 c | 0.67 | 3.67 b | 2.00 cd | 0.00 g | 1.33 de | 1.40 A |
M*B | 2.00 b | 0.00 d | 0.00 d | 0.00 d | 0.4 | 5.33 a | 2.33 c | 0.00 g | 1.00 ef | 1.73 A |
SB | 0.00 d | 0.00 d | 0.00 d | 0.00 d | 0 | 0.67 e–g | 0.00 g | 0.00 g | 0.00 g | 0.13 C |
Means (WCS) | 1.60 A | 0.00 C (100) | 0.00 C (100) | 0.60 B (62.5) | 2.60 A | 1.20 B (53.84) | 0.00 D (100) | 0.80 C (69.23) | ||
LSD value (p < 0.05) | WCS = 0.29, CS = 0.29, WCS × CS = 0.65 | WCS = 0.39, CS = 0.39, WCS × CS = 0.88 |
Cropping Systems | 2017–2018 | 2018–2019 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
WC | FS | CC | AWE | MEANS | WC | FS | CC | AWE | MEAN | |
Blue pimpernel | ||||||||||
FB | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3.00 b | 1.33 de | 0.00 f | 2.00 cd | 1.27 |
MB | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 e | 0.00 f | 0.00 f | 0.67 ef | 0.33 |
CB | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 f | 0.00 f | 0.00 f | 0.00 f | 0.00 |
M*B | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 4.33 a | 1.33 de | 0.00 f | 2.33 bc | 1.60 |
SB | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.67 ef | 0.00 f | 0.00 f | 0.00 f | 0.13 |
Means (WCS) | 0.00 | 0.00 | 0.00 | 0.00 | 1.80 A | 0.53 C (70.55) | 0.00 D (100) | 1.00 B (44.44) | ||
LSD value (p < 0.05) | WCS = NS, CS = NS, WCS × CS = NS | WCS = 0.39, CS = NS, WCS × CS = 0.88 | ||||||||
Horseweed | ||||||||||
FB | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.33 c | 0.00 d | 0.00 d | 0.00 d | 0.27 |
MB | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 d | 0.00 d | 0.00 d | 0.00 d | 0.00 |
CB | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2.00 b | 0.00 d | 0.00 d | 0.00 d | 0.40 |
M*B | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2.67 a | 0.00 d | 0.00 d | 1.33 c | 0.80 |
SB | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 d | 0.00 d | 0.00 d | 0.00 d | 0.00 |
Means (WCS) | 0.00 | 0.00 | 0.00 | 0.00 | 1.20 A | 0.00 C | 0.00 C | 0.27 B | ||
LSD value (p < 0.05) | WCS = NS, CS = NS, WCS × CS = NS | WCS = 0.25, CS = NS, WCS × CS = 0.56 |
Cropping Systems | 2017–2018 | |||||
---|---|---|---|---|---|---|
WF | WC | FS | CC | AWE | Means (CS) | |
FB | 332.99 | 248.14 | 316.97 | 330.07 | 324.63 | 310.56 C |
MB | 349.35 | 273.39 | 329.00 | 343.35 | 336.53 | 326.32 AB |
CB | 345.79 | 265.06 | 328.92 | 341.49 | 332.83 | 322.82 B |
M*B | 369.85 | 259.24 | 342.94 | 346.29 | 341.36 | 331.94 A |
SB | 338.56 | 258.07 | 328.65 | 337.08 | 327.66 | 318.00 BC |
Means (WCS) | 347.31 A | 260.78 D | 329.30 C | 339.65 AB | 332.60 BC | |
LSD at p ≤ 0.05 | WCS = 9.03, CS = 9.03, WCS × CS = NS | |||||
2018–2019 | ||||||
FB | 334.33 | 256.28 | 316.50 | 330.40 | 322.85 | 312.07 C |
MB | 346.86 | 277.38 | 325.03 | 343.37 | 331.20 | 324.77 B |
CB | 351.25 | 270.65 | 326.08 | 339.24 | 328.52 | 323.15 B |
M*B | 372.25 | 267.95 | 343.48 | 346.43 | 340.27 | 334.07 A |
SB | 340.15 | 266.45 | 326.05 | 336.65 | 326.11 | 319.08 BC |
Means (WCS) | 348.97 A | 267.74 D | 327.43 C | 339.22 B | 329.79 C | |
LSD at p ≤ 0.05 | WCS = 8.90, CS = 8.90, WCS × CS = NS |
Months | 2017–2018 | 2018–2019 | ||||||
---|---|---|---|---|---|---|---|---|
Mean Temperature (°C) | Mean Relative Humidity (%) | Mean Daily Sunshine (h) | Total Monthly Rainfall (mm) | Mean Temperature (°C) | Mean Relative Humidity (%) | Mean Daily Sunshine (h) | Total Monthly Rainfall (mm) | |
May | 34.00 | 63.05 | 4.80 | 0.10 | 32.90 | 52.60 | 10.30 | 0.00 |
June | 33.10 | 74.90 | 4.50 | 45.60 | 34.60 | 64.70 | 3.50 | 0.00 |
July | 33.65 | 73.00 | 7.20 | 4.90 | 33.20 | 71.20 | 5.50 | 0.00 |
August | 31.80 | 85.20 | 7.70 | 30.00 | 32.40 | 75.10 | 4.30 | 0.00 |
September | 30.60 | 77.10 | 8.00 | 10.00 | 29.80 | 77.10 | 6.80 | 0.00 |
October | 27.00 | 77.60 | 7.40 | 4.20 | 23.00 | 75.10 | 5.50 | 0.00 |
November | 18.00 | 81.40 | 3.70 | 16.00 | 18.90 | 82.25 | 4.40 | 0.00 |
December | 14.65 | 75.00 | 5.20 | 16.00 | 14.25 | 85.00 | 5.90 | 0.00 |
January | 13.65 | 83.10 | 4.40 | 0.00 | 12.20 | 86.35 | 4.30 | 11.00 |
February | 17.50 | 75.40 | 4.90 | 6.80 | 14.45 | 80.60 | 6.70 | 25.10 |
March | 23.50 | 70.90 | 7.20 | 0.00 | 19.55 | 75.95 | 7.30 | 21.00 |
April | 29.45 | 56.70 | 5.40 | 3.00 | 28.60 | 73.15 | 7.70 | 12.70 |
Crops | Sowing Time | Cultivars | Seed Rate (kg ha−1) | Fertilizer NPK (kg ha−1) | P–P (cm) | R–R (cm) | Harvest Date |
---|---|---|---|---|---|---|---|
Year 2017 and 2018 (Summer Season) | |||||||
Cotton | 15 May | IUB-2013 | 25 | 250–200–0 | 20 | 75 | 28 October |
Sorghum | 10 June | YS-16 | 10 | 100–60–0 | 15 | 60 | 29 October |
Mungbean | 15 June | NIAB-Mung 2011 | 20 | 20–60–0 | 10 | 30 | 27 September |
Maize | 25 July | YH-1898 | 25 | 200–150–0 | 22 | 75 | 30 October |
Year 2017–2018 and 2018–2019 (Winter Season) | |||||||
Barley | 10 November | Haider-93 | 80 | 50–25–0 | 25 | 7 and 10 April |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naeem, M.; Farooq, S.; Hussain, M. The Impact of Different Weed Management Systems on Weed Flora and Dry Biomass Production of Barley Grown under Various Barley-Based Cropping Systems. Plants 2022, 11, 718. https://doi.org/10.3390/plants11060718
Naeem M, Farooq S, Hussain M. The Impact of Different Weed Management Systems on Weed Flora and Dry Biomass Production of Barley Grown under Various Barley-Based Cropping Systems. Plants. 2022; 11(6):718. https://doi.org/10.3390/plants11060718
Chicago/Turabian StyleNaeem, Muhammad, Shahid Farooq, and Mubshar Hussain. 2022. "The Impact of Different Weed Management Systems on Weed Flora and Dry Biomass Production of Barley Grown under Various Barley-Based Cropping Systems" Plants 11, no. 6: 718. https://doi.org/10.3390/plants11060718
APA StyleNaeem, M., Farooq, S., & Hussain, M. (2022). The Impact of Different Weed Management Systems on Weed Flora and Dry Biomass Production of Barley Grown under Various Barley-Based Cropping Systems. Plants, 11(6), 718. https://doi.org/10.3390/plants11060718