Molecular Insights into Freezing Stress in Peach Based on Multi-Omics and Biotechnology: An Overview
Abstract
:1. Introduction
2. Abiotic Stress–Freezing Stress
3. Freezing Stress Tolerance in Peach: Cold Acclimation (CA), Deacclimation (DA), and Reacclimation (RA)
4. Omics as a Tool to Dissect the Role of Genes in Freezing Tolerance in Peach
5. Genomics
6. Transcriptomics
7. Proteomics
8. Metabolomics
9. Genetic Engineering Approaches in Freezing Tolerance
10. Regulation of Hormonal Pathways during Freezing Tolerance
11. ABA
12. Ethylene (ET)
13. Jasmonic Acid (JA)
14. SA
15. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raza, A.; Razzaq, A.; Mehmood, S.S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants 2019, 8, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miura, K.; Furumoto, T. Cold Signaling and Cold Response in Plants. Int. J. Mol. Sci. 2013, 14, 5312–5337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanghera, G.S.; Wani, S.H.; Hussain, W.; Singh, N.B. Engineering Cold Stress Tolerance in Crop Plants. Curr. Genom. 2011, 12, 30–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giri, J. Glycinebetaine and Abiotic Stress Tolerance in Plants. Plant Signal. Behav. 2011, 6, 1746–1751. [Google Scholar] [CrossRef]
- Avni, A.; Golan, Y.; Shirron, N.; Shamai, Y.; Golumbic, Y.; Danin-Poleg, Y.; Gepstein, S. From Survival to Productivity Mode: Cytokinins Allow Avoiding the Avoidance Strategy under Stress Conditions. Front. Plant Sci. 2020, 11, 879. [Google Scholar] [CrossRef]
- Wisniewski, M.; Gusta, L.; Neuner, G. Adaptive Mechanisms of Freeze Avoidance in Plants: A Brief Update. Environ. Exp. Bot. 2014, 99, 133–140. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Roychowdhury, R.; Fujita, M. Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [CrossRef]
- Ritonga, F.N.; Chen, S. Physiological and Molecular Mechanism Involved in Cold Stress Tolerance in Plants. Plants 2020, 9, 560. [Google Scholar] [CrossRef]
- Hoang, X.L.T.; Nhi, D.N.H.; Thu, N.B.A.; Thao, N.P.; Tran, L.-S.P. Transcription Factors and Their Roles in Signal Transduction in Plants under Abiotic Stresses. Curr. Genom. 2017, 18, 483–497. [Google Scholar] [CrossRef]
- Jin, Y.; Zhai, S.; Wang, W.; Ding, X.; Guo, Z.; Bai, L.; Wang, S. Identification of Genes from the ICE-CBF-COR Pathway under Cold Stress in Aegilops-Triticum Composite Group and the Evolution Analysis with Those from Triticeae. Physiol. Mol. Biol. Plants Int. J. Funct. Plant Biol. 2018, 24, 211–229. [Google Scholar] [CrossRef]
- Li, Y.; Wang, L. Genetic Resources, Breeding Programs in China, and Gene Mining of Peach: A Review. Hortic. Plant J. 2020, 6, 205–215. [Google Scholar] [CrossRef]
- Ahmad, R.; Parfitt, D.E.; Fass, J.; Ogundiwin, E.; Dhingra, A.; Gradziel, T.M.; Lin, D.; Joshi, N.A.; Martinez-Garcia, P.J.; Crisosto, C.H. Whole Genome Sequencing of Peach (Prunus persica L.) for SNP Identification and Selection. BMC Genom. 2011, 12, 569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padilla, M.N.; Hernández, M.L.; Sanz, C.; Martínez-Rivas, J.M. Molecular Cloning, Functional Characterization and Transcriptional Regulation of a 9-Lipoxygenase Gene from Olive. Phytochemistry 2012, 74, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Deng, L.; Meng, J.; Niu, L.; Pan, L.; Lu, Z.; Cui, G.; Wang, Z.; Zeng, W. Transcriptomic and Metabolic Analyses Reveal the Mechanism of Ethylene Production in Stony Hard Peach Fruit during Cold Storage. Int. J. Mol. Sci. 2021, 22, 11308. [Google Scholar] [CrossRef]
- Chinnusamy, V.; Zhu, J.; Zhu, J.K. Cold Stress Regulation of Gene Expression in Plants. Trends Plant Sci. 2007, 12, 444–451. [Google Scholar] [CrossRef]
- Wang, K.; Yin, X.R.; Zhang, B.; Grierson, D.; Xu, C.J.; Chen, K.S. Transcriptomic and Metabolic Analyses Provide New Insights into Chilling Injury in Peach Fruit. Plant Cell Environ. 2017, 40, 1531–1551. [Google Scholar] [CrossRef]
- Sangwan, V.; Foulds, I.; Singh, J.; Dhindsa, R.S. Cold-Activation of Brassica Napus BN115 Promoter Is Mediated by Structural Changes in Membranes and Cytoskeleton, and Requires Ca2+ Influx. Plant J. 2001, 27, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Örvar, B.L.; Sangwan, V.; Omann, F.; Dhindsa, R.S. Early Steps in Cold Sensing by Plant Cells: The Role of Actin Cytoskeleton and Membrane Fluidity. Plant J. 2000, 23, 785–794. [Google Scholar] [CrossRef]
- Yadav, S.K. Cold Stress Tolerance Mechanisms in Plants. A Review. Agron. Sustain. Dev. 2010, 30, 515–527. [Google Scholar] [CrossRef] [Green Version]
- Moellering, E.R.; Muthan, B.; Benning, C. Freezing Tolerance in Plants Requires Lipid Remodeling at the Outer Chloroplast Membrane. Science 2010, 330, 226–228. [Google Scholar] [CrossRef] [Green Version]
- Meijer, H.J.G.; Munnik, T. Phospholipid-Based Signaling in Plants. Annu. Rev. Plant Biol. 2003, 54, 265–306. [Google Scholar] [CrossRef] [PubMed]
- Barrero-Gil, J.; Salinas, J. Post-Translational Regulation of Cold Acclimation Response. Plant Sci. 2013, 205–206, 48–54. [Google Scholar] [CrossRef] [Green Version]
- Kalberer, S.R.; Wisniewski, M.; Arora, R. Deacclimation and Reacclimation of Cold-Hardy Plants: Current Understanding and Emerging Concepts. Plant Sci. 2006, 171, 3–16. [Google Scholar] [CrossRef]
- Mboup, M.; Fischer, I.; Lainer, H.; Stephan, W. Trans-Species Polymorphism and Allele-Specific Expression in the Cbf Gene Family of Wild Tomatoes. Mol. Biol. Evol. 2012, 29, 3641–3652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mickelbart, M.v.; Hasegawa, P.M.; Bailey-serres, J. Genetic Mechanisms of Abiotic Stress Tolerance That Translate to Crop Yield Stability. Nat. Publ. Group 2015, 16, 237–251. [Google Scholar] [CrossRef]
- Welling, A.; Palva, E.T. Molecular Control of Cold Acclimation in Trees. Physiol. Plant. 2006, 127, 167–181. [Google Scholar] [CrossRef]
- Arora, R.; Rowland, L.J. Physiological Research on Winter-Hardiness: Deacclimation Resistance, Reacclimation Ability, Photoprotection Strategies, and a Cold Acclimation Protocol Design. HortScience 2011, 46, 1070–1078. [Google Scholar] [CrossRef] [Green Version]
- Gusta, L.v.; Wisniewski, M. Understanding Plant Cold Hardiness: An Opinion. Physiol. Plant. 2013, 147, 4–14. [Google Scholar] [CrossRef]
- Strimbeck, G.R.; Schaberg, P.G.; Fossdal, C.G.; Schröder, W.P.; Kjellsen, T.D. Extreme Low Temperature Tolerance in Woody Plants. Front. Plant Sci. 2015, 6, 884. [Google Scholar] [CrossRef]
- Wisniewski, M.; Nassuth, A.; Teulières, C.; Marque, C.; Rowland, J.; Cao, P.B.; Brown, A. Genomics of Cold Hardiness in Woody Plants. Crit. Rev. Plant Sci. 2014, 33, 92–124. [Google Scholar] [CrossRef]
- Yu, D.J.; Hwang, J.Y.; Chung, S.W.; Oh, H.D.; Yun, S.K.; Lee, H.J. Changes in Cold Hardiness and Carbohydrate Content in Peach (Prunus persica) Trunk Bark and Wood Tissues during Cold Acclimation and Deacclimation. Sci. Hortic. 2017, 219, 45–52. [Google Scholar] [CrossRef]
- Nakashima, K.; Yamaguchi-Shinozaki, K. Regulons Involved in Osmotic Stress-Responsive and Cold Stress-Responsive Gene Expression in Plants. Physiol. Plant. 2006, 126, 62–71. [Google Scholar] [CrossRef]
- van Buskirk, H.A.; Thomashow, M.F. Arabidopsis Transcription Factors Regulating Cold Acclimation. Physiol. Plant. 2006, 126, 72–80. [Google Scholar] [CrossRef]
- Chen, H.-H.; Li, P.H. Characteristics of Cold Acclimation and Deacclimation in Tuber-Bearing Solanum Species. Plant Physiol. 1980, 65, 1146–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arora, R.; Wisniewski, M.E.; Scorza, R. Cold Acclimation in Genetically Related (Sibling) Deciduous and Evergreen Peach (Prunus persica [L.] Batsch): I. Seasonal Changes in Cold Hardiness and Polypeptides of Bark and Xylem Tissues. Plant Physiol. 1992, 99, 1562–1568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.H.; Yu, D.J.; Kim, S.J.; Choi, D.; Lee, H.J. Intraspecies Differences in Cold Hardiness, Carbohydrate Content and β-Amylase Gene Expression of Vaccinium Corymbosum during Cold Acclimation and Deacclimation. Tree Physiol. 2012, 32, 1533–1540. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.; Oh, Y.; Kim, D. Differences in Cold Hardiness, Carbohydrates, Dehydrins and Related Gene Expressions under an Experimental Deacclimation and Reacclimation in Prunus persica. Physiol. Plant. 2015, 154, 485–499. [Google Scholar] [CrossRef]
- Bita, C.E.; Gerats, T. Plant Tolerance to High Temperature in a Changing Environment: Scientific Fundamentals and Production of Heat Stress-Tolerant Crops. Front. Plant Sci. 2013, 4, 273. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Saand, M.A.; Huang, L.; Abdelaal, W.B.; Zhang, J.; Wu, Y.; Li, J.; Sirohi, M.H.; Wang, F. Applications of Multi-Omics Technologies for Crop Improvement. Front. Plant Sci. 2021, 12, 563953. [Google Scholar] [CrossRef]
- Albarano, L.; Esposito, R.; Ruocco, N.; Costantini, M. Genome Mining as New Challenge in Natural Products Discovery. Mar. Drugs 2020, 18, 199. [Google Scholar] [CrossRef] [Green Version]
- Kulski, J.K.K.E.-J.K. Next-Generation Sequencing—An Overview of the History, Tools, and “Omic” Applications. In Next Generation Sequencing; IntechOpen: Rijeka, Croatia, 2016; Chapter 1. [Google Scholar]
- Verde, I.; Jenkins, J.; Dondini, L.; Micali, S.; Pagliarani, G.; Vendramin, E.; Paris, R.; Aramini, V.; Gazza, L.; Rossini, L.; et al. The Peach v2.0 Release: High-Resolution Linkage Mapping and Deep Resequencing Improve Chromosome-Scale Assembly and Contiguity. BMC Genom. 2017, 18, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanhueza, D.; Vizoso, P.; Balic, I.; Campos-Vargas, R.; Meneses, C. Transcriptomic Analysis of Fruit Stored under Cold Conditions Using Controlled Atmosphere in Prunus persica cv. “Red Pearl”. Front. Plant Sci. 2015, 6, 788. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Cao, K.; Deng, C.; Li, Y.; Zhu, G.; Fang, W.; Chen, C.; Wang, X.; Wu, J.; Guan, L.; et al. An Integrated Peach Genome Structural Variation Map Uncovers Genes Associated with Fruit Traits. Genome Biol. 2020, 21, 258. [Google Scholar] [CrossRef] [PubMed]
- Tittarelli, A.; Santiago, M.; Morales, A.; Meisel, L.A.; Silva, H. Isolation and Functional Characterization of Cold-Regulated Promoters, by Digitally Identifying Peach Fruit Cold-Induced Genes from a Large EST Dataset. BMC Plant Biol. 2009, 9, 121. [Google Scholar] [CrossRef] [Green Version]
- Halder, T.; Upadhyaya, G.; Ray, S. YSK(2) Type Dehydrin (SbDhn1) from Sorghum Bicolor Showed Improved Protection under High Temperature and Osmotic Stress Condition. Front. Plant Sci. 2017, 8, 918. [Google Scholar] [CrossRef] [Green Version]
- Kashyap, P.; Kumar, S.; Singh, D. Performance of Antifreeze Protein HrCHI4 from Hippophae Rhamnoides in Improving the Structure and Freshness of Green Beans upon Cryopreservation. Food Chem. 2020, 320, 126599. [Google Scholar] [CrossRef]
- Hon, W.C.; Griffith, M.; Mlynarz, A.; Kwok, Y.C.; Yang, D.S.C. Antifreeze Proteins in Winter Rye Are Similar to Pathogenesis-Related Proteins. Plant Physiol. 1995, 109, 879–889. [Google Scholar] [CrossRef] [Green Version]
- Kalunke, R.M.; Tundo, S.; Benedetti, M.; Cervone, F.; de Lorenzo, G.; D’Ovidio, R. An Update on Polygalacturonase-Inhibiting Protein (PGIP), a Leucine-Rich Repeat Protein That Protects Crop Plants against Pathogens. Front. Plant Sci. 2015, 6, 146. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Kushwaha, H.R.; Soni, P.; Gupta, H.; Singla-Pareek, S.L.; Pareek, A. Tissue Specific and Abiotic Stress Regulated Transcription of Histidine Kinases in Plants Is Also Influenced by Diurnal Rhythm. Front. Plant Sci. 2015, 6, 711. [Google Scholar] [CrossRef] [Green Version]
- Wisniewski, M.; Norelli, J.; Artlip, T. Overexpression of a Peach CBF Gene in Apple: A Model for Understanding the Integration of Growth, Dormancy, and Cold Hardiness in Woody Plants. Front. Plant Sci. 2015, 6, 85. [Google Scholar] [CrossRef] [Green Version]
- Budak, H.; Hussain, B.; Khan, Z.; Ozturk, N.Z.; Ullah, N. From Genetics to Functional Genomics: Improvement in Drought Signaling and Tolerance in Wheat. Front. Plant Sci. 2015, 6, 1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, S.; Song, H.; Li, J.; Chen, D.; Tu, M.; Jiang, G.; Yu, G.; Zhou, Z. Comparative Transcriptome Analysis Reveals Gene Expression Differences between Two Peach Cultivars under Saline-Alkaline Stress. Hereditas 2020, 157, 9. [Google Scholar] [CrossRef] [PubMed]
- Anamika, K.; Jere, A.; Kulski, A.D.E.-J.K. Transcriptomic Profiling Using Next Generation Sequencing—Advances, Advantages, and Challenges. In Next Generation Sequencing; Verma, S., Ed.; IntechOpen: Rijeka, Croatia, 2016; Chapter 4. [Google Scholar]
- Yu, D.J.; Jun, S.H.; Park, J.; Kwon, J.H.; Lee, H.J. Transcriptome Analysis of Genes Involved in Cold Hardiness of Peach Tree (Prunus persica) Shoots during Cold Acclimation and Deacclimation. Genes 2020, 11, 611. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Shen, Z.; Yan, J. Transcriptome Analysis of Peach [Prunus Persica (L.) Batsch] Stigma in Response to Low-Temperature Stress with Digital Gene Expression Profiling. J. Plant Biochem. Biotechnol. 2017, 26, 141–148. [Google Scholar] [CrossRef]
- Lowe, R.; Shirley, N.; Bleackley, M.; Dolan, S.; Shafee, T. Transcriptomics Technologies. PLoS Comput. Biol. 2017, 13, e1005457. [Google Scholar] [CrossRef] [Green Version]
- Aranzana, M.J.; Eduardo, I.; Vilanova, S.; Romero, C.; Martín-Hernández, A.M. Genomics of Temperate Fruit Trees. In Genomics of Tree Crops; Schnell, R.J., Priyadarshan, P.M., Eds.; Springer: New York, NY, USA, 2012; pp. 155–208. ISBN 978-1-4614-0920-5. [Google Scholar]
- Chang, C.; Bowman, J.L.; Meyerowitz, E.M. Field Guide to Plant Model Systems. Cell 2016, 167, 325–339. [Google Scholar] [CrossRef] [Green Version]
- Pons, C.; Martí, C.; Forment, J.; Crisosto, C.H.; Dandekar, A.M.; Granell, A. A Bulk Segregant Gene Expression Analysis of a Peach Population Reveals Components of the Underlying Mechanism of the Fruit Cold Response. PLoS ONE 2014, 9, e90706. [Google Scholar] [CrossRef]
- Castelán-Muñoz, N.; Herrera, J.; Cajero-Sánchez, W.; Arrizubieta, M.; Trejo, C.; García-Ponce, B.; de la Sánchez, M.P.; Álvarez-Buylla, E.R.; Garay-Arroyo, A. MADS-Box Genes Are Key Components of Genetic Regulatory Networks Involved in Abiotic Stress and Plastic Developmental Responses in Plants. Front. Plant Sci. 2019, 10, 853. [Google Scholar] [CrossRef] [Green Version]
- Aslam, B.; Basit, M.; Nisar, M.A.; Khurshid, M.; Rasool, M.H. Proteomics: Technologies and Their Applications. J. Chromatogr. Sci. 2017, 55, 182–196. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, Z.; Tian, Q.; Zhou, Y.; Xu, J.; Chang, R.; Chen, H.; Liu, G. Quantitative Proteomic Analyses on the Mechanisms of Cold Tolerance in Two Peach Cultivars (Prunus Persica L. Batsch) Based on ITRAQ. Eur. J. Hortic. Sci. 2021, 86, 308–319. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Han, G.; Shang, C.; Li, J.; Zhang, H.; Liu, F.; Wang, J.; Liu, H.; Zhang, Y. Proteomic Analyses Reveal Differences in Cold Acclimation Mechanisms in Freezing-Tolerant and Freezing-Sensitive Cultivars of Alfalfa. Front. Plant Sci. 2015, 6, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, W.-D.; Gao, J.; Dou, T.-X.; Shao, X.-H.; Bi, F.-C.; Sheng, O.; Deng, G.-M.; Li, C.-Y.; Hu, C.-H.; Liu, J.-H.; et al. Early Cold-Induced Peroxidases and Aquaporins Are Associated with High Cold Tolerance in Dajiao (Musa Spp. ’Dajiao’). Front. Plant Sci. 2018, 9, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, W.; Tang, F.; Cai, W.; Zhang, Q.; Zhou, F.; Ning, M.; Tian, H.; Shan, C. ITRAQ-Based Quantitative Proteomics Analysis of Cantaloupe (Cucumis Melo Var. Saccharinus) after Cold Storage. BMC Genom. 2020, 21, 390. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, P.; Ma, F.; Dandekar, A.M.; Cheng, L. Sugar Metabolism and Accumulation in the Fruit of Transgenic Apple Trees with Decreased Sorbitol Synthesis. Hortic. Res. 2018, 5, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nilo-Poyanco, R.; Moraga, C.; Benedetto, G.; Orellana, A.; Almeida, A.M. Shotgun Proteomics of Peach Fruit Reveals Major Metabolic Pathways Associated to Ripening. BMC Genom. 2021, 22, 17. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Gong, F.; Cao, D.; Hu, X.; Wang, W. Advances in Crop Proteomics: PTMs of Proteins under Abiotic Stress. Proteomics 2016, 16, 847–865. [Google Scholar] [CrossRef]
- Carrera, F.P.; Noceda, C.; Maridueña-Zavala, M.G.; Cevallos-Cevallos, J.M. Metabolomics, a Powerful Tool for Understanding Plant Abiotic Stress. Agronomy 2021, 11, 824. [Google Scholar] [CrossRef]
- Isah, T. Stress and Defense Responses in Plant Secondary Metabolites Production. Biol. Res. 2019, 52, 39. [Google Scholar] [CrossRef] [Green Version]
- Brizzolara, S.; Hertog, M.; Tosetti, R.; Nicolai, B.; Tonutti, P. Metabolic Responses to Low Temperature of Three Peach Fruit Cultivars Differently Sensitive to Cold Storage. Front. Plant Sci. 2018, 9, 706. [Google Scholar] [CrossRef] [Green Version]
- Obata, T.; Fernie, A.R. The Use of Metabolomics to Dissect Plant Responses to Abiotic Stresses. Cell. Mol. Life Sci. CMLS 2012, 69, 3225–3243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razzaq, A.; Sadia, B.; Raza, A.; Khalid Hameed, M.; Saleem, F. Metabolomics: A Way Forward for Crop Improvement. Metabolites 2019, 9, 303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wani, S.; Sah, S.; Sanghera, G.S.; Hussain, W.; Singh, N. Genetic Engineering for Cold Stress Tolerance in Crop Plants. In Advances in Genome Science; Rahman, A.-U., Ed.; Bentham Science Publisher: Cambridge, UK, 2016; pp. 173–201. ISBN 9781681081731. [Google Scholar]
- Arora, R.; Wisniewski, M. Accumulation of a 60-KD Dehydrin Protein in Peach Xylem Tissues and Its Relationship to Cold Acclimation. HortScience 1996, 31, 923–925. [Google Scholar] [CrossRef] [Green Version]
- Lauxmann, M.A.; Brun, B.; Borsani, J.; Bustamante, C.A.; Budde, C.O.; Lara, M.v.; Drincovich, M.F. Transcriptomic Profiling during the Post-Harvest of Heat-Treated Dixiland Prunus Persica Fruits: Common and Distinct Response to Heat and Cold. PLoS ONE 2012, 7, e51052. [Google Scholar] [CrossRef]
- Pegoraro, C.; Tadiello, A.; Girardi, C.L.; Chaves, F.C.; Quecini, V.; de Oliveira, A.C.; Trainotti, L.; Rombaldi, C.V. Transcriptional Regulatory Networks Controlling Woolliness in Peach in Response to Preharvest Gibberellin Application and Cold Storage. BMC Plant Biol. 2015, 15, 279. [Google Scholar] [CrossRef] [Green Version]
- Khodakovskaya, M.; McAvoy, R.; Peters, J.; Wu, H.; Li, Y. Enhanced Cold Tolerance in Transgenic Tobacco Expressing a Chloroplast ω-3 Fatty Acid Desaturase Gene under the Control of a Cold-Inducible Promoter. Planta 2006, 223, 1090–1100. [Google Scholar] [CrossRef]
- Agarwal, M.; Hao, Y.; Kapoor, A.; Dong, C.-H.; Fujii, H.; Zheng, X.; Zhu, J.-K. A R2R3 Type MYB Transcription Factor Is Involved in the Cold Regulation of CBF Genes and in Acquired Freezing Tolerance. J. Biol. Chem. 2006, 281, 37636–37645. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Yang, G.; Zhang, J.; Wang, Y.; Zhang, T.; Wang, N.; Jiang, S.; Zhang, Z.; Chen, X. Overexpression of a Repressor MdMYB15L Negatively Regulates Anthocyanin and Cold Tolerance in Red-Fleshed Callus. Biochem. Biophys. Res. Commun. 2018, 500, 405–410. [Google Scholar] [CrossRef]
- Mzid, R.; Zorrig, W.; ben Ayed, R.; ben Hamed, K.; Ayadi, M.; Damak, Y.; Lauvergeat, V.; Hanana, M. The Grapevine VvWRKY2 Gene Enhances Salt and Osmotic Stress Tolerance in Transgenic Nicotiana Tabacum. 3 Biotech 2018, 8, 277. [Google Scholar] [CrossRef]
- Deng, C.; Ye, H.; Fan, M.; Pu, T.; Yan, J. The Rice Transcription Factors OsICE Confer Enhanced Cold Tolerance in Transgenic Arabidopsis. Plant Signal. Behav. 2017, 12, e1316442. [Google Scholar] [CrossRef] [Green Version]
- Ji, H.; Wang, Y.; Cloix, C.; Li, K.; Jenkins, G.I.; Wang, S.; Shang, Z.; Shi, Y.; Yang, S.; Li, X. The Arabidopsis RCC1 Family Protein TCF1 Regulates Freezing Tolerance and Cold Acclimation through Modulating Lignin Biosynthesis. PLoS Genet. 2015, 11, e1005471. [Google Scholar] [CrossRef] [PubMed]
- Wisniewski, M.; Norelli, J.; Bassett, C.; Artlip, T.; Macarisin, D. Ectopic Expression of a Novel Peach (Prunus persica) CBF Transcription Factor in Apple (Malus × Domestica) Results in Short-Day Induced Dormancy and Increased Cold Hardiness. Planta 2011, 233, 971–983. [Google Scholar] [CrossRef] [PubMed]
- Artlip, T.S.; Wisniewski, M.E.; Arora, R.; Norelli, J.L. An Apple Rootstock Overexpressing a Peach CBF Gene Alters Growth and Flowering in the Scion but Does Not Impact Cold Hardiness or Dormancy. Hortic. Res. 2016, 3, 16006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Artlip, T.S.; Artlip, T.S.; Wisniewski, M.E.; Norelli, J.L. Field Evaluation of Apple Overexpressing a Peach CBF Gene Confirms Its Effect on Cold Hardiness, Dormancy, and Growth. Environ. Exp. Bot. 2014, 106, 79–86. [Google Scholar] [CrossRef]
- Cao, K.; Wei, Y.; Chen, Y.; Jiang, S.; Chen, X.; Wang, X.; Shao, X. PpCBF6 Is a Low-Temperature-Sensitive Transcription Factor That Binds the PpVIN2 Promoter in Peach Fruit and Regulates Sucrose Metabolism and Chilling Injury. Postharvest Biol. Technol. 2021, 181, 111681. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.; Jiang, S.; Xu, F.; Wang, H.; Wei, Y.; Shao, X. PpINH1, an Invertase Inhibitor, Interacts with Vacuolar Invertase PpVIN2 in Regulating the Chilling Tolerance of Peach Fruit. Hortic. Res. 2020, 7, 168. [Google Scholar] [CrossRef]
- Yu, L.; Shao, X.; Wei, Y.; Xu, F.; Wang, H. Sucrose Degradation Is Regulated by 1-Methycyclopropene Treatment and Is Related to Chilling Tolerance in Two Peach Cultivars. Postharvest Biol. Technol. 2017, 124, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Shan, T.; Shan, T.; Jin, P.; Zhang, Y.; Huang, Y.; Wang, X.; Zheng, Y. Exogenous Glycine Betaine Treatment Enhances Chilling Tolerance of Peach Fruit during Cold Storage. Postharvest Biol. Technol. 2016, 114, 104–110. [Google Scholar] [CrossRef]
- Cao, S.; Song, C.; Shao, J.; Bian, K.; Chen, W.; Yang, Z. Exogenous Melatonin Treatment Increases Chilling Tolerance and Induces Defense Response in Harvested Peach Fruit during Cold Storage. J. Agric. Food Chem. 2016, 64, 5215–5222. [Google Scholar] [CrossRef]
- Jin, Y.-M.; Piao, R.; Yan, Y.-F.; Chen, M.; Wang, L.; He, H.; Liu, X.; Gao, X.-A.; Jiang, W.; Lin, X.-F. Overexpression of a New Zinc Finger Protein Transcription Factor OsCTZFP8 Improves Cold Tolerance in Rice. Int. J. Genom. 2018, 2018, 5480617. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.-X.; Qin, L.-J.; Zhao, D.-G. Overexpression of the OsIMP Gene Increases the Accumulation of Inositol and Confers Enhanced Cold Tolerance in Tobacco through Modulation of the Antioxidant Enzymes’ Activities. Genes 2017, 8, 179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ku, Y.-S.; Sintaha, M.; Cheung, M.-Y.; Lam, H.-M. Plant Hormone Signaling Crosstalks between Biotic and Abiotic Stress Responses. Int. J. Mol. Sci. 2018, 19, 3206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mega, R.; Meguro-Maoka, A.; Endo, A.; Shimosaka, E.; Murayama, S.; Nambara, E.; Seo, M.; Kanno, Y.; Abrams, S.R.; Sato, Y. Sustained Low Abscisic Acid Levels Increase Seedling Vigor under Cold Stress in Rice (Oryza sativa L.). Sci. Rep. 2015, 5, 13819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.; Shi, H.; Hu, Z.; Liu, A.; Amombo, E.; Chen, L.; Fu, J. ABA Is Involved in Regulation of Cold Stress Response in Bermudagrass. Front. Plant Sci. 2017, 8, 1613. [Google Scholar] [CrossRef] [Green Version]
- Soto, A.; Ruiz, K.B.; Ravaglia, D.; Costa, G.; Torrigiani, P. ABA May Promote or Delay Peach Fruit Ripening through Modulation of Ripening- and Hormone-Related Gene Expression Depending on the Developmental Stage. Plant Physiol. Biochem. 2013, 64, 11–24. [Google Scholar] [CrossRef]
- Zhang, M.; Leng, P.; Zhang, G.; Li, X. Cloning and Functional Analysis of 9-Cis-Epoxycarotenoid Dioxygenase (NCED) Genes Encoding a Key Enzyme during Abscisic Acid Biosynthesis from Peach and Grape Fruits. J. Plant Physiol. 2009, 166, 1241–1252. [Google Scholar] [CrossRef]
- Lee, B.; Henderson, D.A.; Zhu, J.-K. The Arabidopsis Cold-Responsive Transcriptome and Its Regulation by ICE1. Plant Cell 2005, 17, 3155–3175. [Google Scholar] [CrossRef] [Green Version]
- Eremina, M.; Rozhon, W.; Poppenberger, B. Hormonal Control of Cold Stress Responses in Plants. Cell. Mol. Life Sci. 2016, 73, 797–810. [Google Scholar] [CrossRef]
- Li, H.; Ye, K.; Shi, Y.; Cheng, J.; Zhang, X.; Yang, S. BZR1 Positively Regulates Freezing Tolerance via CBF-Dependent and CBF-Independent Pathways in Arabidopsis. Mol. Plant 2017, 10, 545–559. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Chen, P.; Yan, Y.; Bao, C.; Li, X.; Wang, L.; Shen, X.; Li, H.; Liu, X.; Niu, C.; et al. An Atypical R2R3 MYB Transcription Factor Increases Cold Hardiness by CBF-Dependent and CBF-Independent Pathways in Apple. New Phytol. 2018, 218, 201–218. [Google Scholar] [CrossRef]
- Shinozaki, K.; Yamaguchi-Shinozaki, K. Molecular Responses to Dehydration and Low Temperature: Differences and Cross-Talk between Two Stress Signaling Pathways. Curr. Opin. Plant Biol. 2000, 3, 217–223. [Google Scholar] [CrossRef]
- Nakashima, K.; Yamaguchi-Shinozaki, K.; Shinozaki, K. The Transcriptional Regulatory Network in the Drought Response and Its Crosstalk in Abiotic Stress Responses Including Drought, Cold, and Heat. Front. Plant Sci. 2014, 5, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Street, I.H.; Schaller, G.E. Ethylene: A Gaseous Signal in Plants and Bacteria. Biochem 2016, 38, 4–7. [Google Scholar] [CrossRef] [Green Version]
- Catalá, R.; López-Cobollo, R.; Mar Castellano, M.; Angosto, T.; Alonso, J.M.; Ecker, J.R.; Salinas, J. The Arabidopsis 14-3-3 Protein RARE COLD INDUCIBLE 1A Links Low-Temperature Response and Ethylene Biosynthesis to Regulate Freezing Tolerance and Cold Acclimation. Plant Cell 2014, 26, 3326–3342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trainotti, L.; Tadiello, A.; Casadoro, G. The Involvement of Auxin in the Ripening of Climacteric Fruits Comes of Age: The Hormone Plays a Role of Its Own and Has an Intense Interplay with Ethylene in Ripening Peaches. J. Exp. Bot. 2007, 58, 3299–3308. [Google Scholar] [CrossRef] [Green Version]
- Catalá, R.; Salinas, J. The Arabidopsis Ethylene Overproducer Mutant Eto1-3 Displays Enhanced Freezing Tolerance. Plant Signal. Behav. 2015, 10, e989768. [Google Scholar] [CrossRef] [Green Version]
- Kosová, K.; Prášil, I.T.; Vítámvás, P.; Dobrev, P.; Motyka, V.; Floková, K.; Novák, O.; Turečková, V.; Rolčik, J.; Pešek, B.; et al. Complex Phytohormone Responses during the Cold Acclimation of Two Wheat Cultivars Differing in Cold Tolerance, Winter Samanta and Spring Sandra. J. Plant Physiol. 2012, 169, 567–576. [Google Scholar] [CrossRef]
- Guo, Z.; Tan, J.; Zhuo, C.; Wang, C.; Xiang, B.; Wang, Z. Abscisic Acid, H2O2 and Nitric Oxide Interactions Mediated Cold-Induced S-Adenosylmethionine Synthetase in Medicago Sativa Subsp. Falcata That Confers Cold Tolerance through up-Regulating Polyamine Oxidation. Plant Biotechnol. J. 2014, 12, 601–612. [Google Scholar] [CrossRef]
- Sun, X.; Zhao, T.; Gan, S.; Ren, X.; Fang, L.; Karungo, S.K.; Wang, Y.; Chen, L.; Li, S.; Xin, H. Ethylene Positively Regulates Cold Tolerance in Grapevine by Modulating the Expression of Ethylene response factor 057. Sci. Rep. 2016, 6, 24066. [Google Scholar] [CrossRef]
- Lurie, S.; Weksler, A. Effects of 1-Methylcyclopropene on Stone Fruits. Acta Hortic. 2005, 682, 85–90. [Google Scholar] [CrossRef]
- Yang, J.; Duan, G.; Li, C.; Liu, L.; Han, G.; Zhang, Y.; Wang, C. The Crosstalks between Jasmonic Acid and Other Plant Hormone Signaling Highlight the Involvement of Jasmonic Acid as a Core Component in Plant Response to Biotic and Abiotic Stresses. Front. Plant Sci. 2019, 10, 1349. [Google Scholar] [CrossRef] [Green Version]
- Maruyama, K.; Urano, K.; Yoshiwara, K.; Morishita, Y.; Sakurai, N.; Suzuki, H.; Kojima, M.; Sakakibara, H.; Shibata, D.; Saito, K.; et al. Integrated Analysis of the Effects of Cold and Dehydration on Rice Metabolites, Phytohormones, and Gene Transcripts. Plant Physiol. 2014, 164, 1759–1771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Jiang, L.; Wang, F.; Yu, D. Jasmonate Regulates the Inducer of Cbf Expression-C-Repeat Binding Factor/DRE Binding Factor1 Cascade and Freezing Tolerance in Arabidopsis. Plant Cell 2013, 25, 2907–2924. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Song, C.; Brummell, D.A.; Qi, S.; Lin, Q.; Duan, Y. Jasmonic Acid Treatment Alleviates Chilling Injury in Peach Fruit by Promoting Sugar and Ethylene Metabolism. Food Chem. 2021, 338, 128005. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Song, C.; Qi, S.; Lin, Q.; Duan, Y. Jasmonic Acid and Salicylic Acid Induce the Accumulation of Sucrose and Increase Resistance to Chilling Injury in Peach Fruit. J. Sci. Food Agric. 2021, 101, 4250–4255. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Bigotes, A.; Valenzuela-Riffo, F.; Torrejón, M.; Solano, R.; Morales-Quintana, L.; Figueroa, C.R. A New Functional JAZ Degron Sequence in Strawberry JAZ1 Revealed by Structural and Interaction Studies on the COI1-JA-Ile/COR-JAZs Complexes. Sci. Rep. 2020, 10, 11310. [Google Scholar] [CrossRef]
- Du, H.; Liu, H.; Xiong, L. Endogenous Auxin and Jasmonic Acid Levels Are Differentially Modulated by Abiotic Stresses in Rice. Front. Plant Sci. 2013, 4, 397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Jiang, Y.; Han, X.; Wang, H.; Pan, J.; Yu, D. Jasmonate Regulates Leaf Senescence and Tolerance to Cold Stress: Crosstalk with Other Phytohormones. J. Exp. Bot. 2017, 68, 1361–1369. [Google Scholar] [CrossRef]
- Sharma, M.; Laxmi, A. Jasmonates: Emerging Players in Controlling Temperature Stress Tolerance. Front. Plant Sci. 2016, 6, 1129. [Google Scholar] [CrossRef] [Green Version]
- Janda, T.; Szalai, G.; Pál, M. Salicylic Acid Signalling in Plants. Int. J. Mol. Sci. 2020, 21, 2655. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.-J.; Li, L.; Shang, Q.-M.; Liu, X.-Y.; Zhang, Z.-G. Endogenous Salicylic Acid Accumulation Is Required for Chilling Tolerance in Cucumber (Cucumis sativus L.) Seedlings. Planta 2014, 240, 687–700. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Cao, S.; Zheng, Y.; Jiang, Y. Combined Salicyclic Acid and Ultrasound Treatments for Reducing the Chilling Injury on Peach Fruit. J. Agric. Food Chem. 2012, 60, 1209–1212. [Google Scholar] [CrossRef]
- Kim, Y.; Park, S.; Gilmour, S.J.; Thomashow, M.F. Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis. Plant J. 2013, 75, 364–376. [Google Scholar] [CrossRef] [PubMed]
- Miura, K.; Ohta, M. SIZ1, a Small Ubiquitin-Related Modifier Ligase, Controls Cold Signaling through Regulation of Salicylic Acid Accumulation. J. Plant Physiol. 2010, 167, 555–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, J.; Zhao, H.; Liu, W.; Li, L.; He, Y. Role of Cytokinin and Salicylic Acid in Plant Growth at Low Temperatures. Plant Growth Regul. 2008, 57, 211. [Google Scholar] [CrossRef]
- Zhang, B.; Ma, R.; Guo, L.; Song, Z.; Yu, M. Effects of Exogenous Salicylic Acid on Physiological Traits and CBF Gene Expression in Peach Floral Organs under Freezing Stress. Arch. Biol. Sci. 2017, 69, 585–592. [Google Scholar] [CrossRef] [Green Version]
Genes | Cellular Role | Functions | References |
---|---|---|---|
CBF C-repeat binding factor | Transcription factor |
| [86,87,88] |
PpCBF6 (C-repeat binding Factor), PpVIN2 (vacuolar invertase) | Transcription factor |
| [89] |
PpINH1 (Invertase inhibitors) | Regulators of sucrose metabolism |
| [90] |
1-Methylcyclopropene | Ethylene perception inhibition |
| [91] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muthuramalingam, P.; Shin, H.; Adarshan, S.; Jeyasri, R.; Priya, A.; Chen, J.-T.; Ramesh, M. Molecular Insights into Freezing Stress in Peach Based on Multi-Omics and Biotechnology: An Overview. Plants 2022, 11, 812. https://doi.org/10.3390/plants11060812
Muthuramalingam P, Shin H, Adarshan S, Jeyasri R, Priya A, Chen J-T, Ramesh M. Molecular Insights into Freezing Stress in Peach Based on Multi-Omics and Biotechnology: An Overview. Plants. 2022; 11(6):812. https://doi.org/10.3390/plants11060812
Chicago/Turabian StyleMuthuramalingam, Pandiyan, Hyunsuk Shin, Sivakumar Adarshan, Rajendran Jeyasri, Arumugam Priya, Jen-Tsung Chen, and Manikandan Ramesh. 2022. "Molecular Insights into Freezing Stress in Peach Based on Multi-Omics and Biotechnology: An Overview" Plants 11, no. 6: 812. https://doi.org/10.3390/plants11060812
APA StyleMuthuramalingam, P., Shin, H., Adarshan, S., Jeyasri, R., Priya, A., Chen, J. -T., & Ramesh, M. (2022). Molecular Insights into Freezing Stress in Peach Based on Multi-Omics and Biotechnology: An Overview. Plants, 11(6), 812. https://doi.org/10.3390/plants11060812