Pistacia Root and Leaf Extracts as Potential Bioherbicides
Abstract
:1. Introduction
2. Results
2.1. Field Study
2.2. Germination Bioassays
2.3. Determination of Total Phenolic Compounds and Flavonoids
3. Discussion
4. Materials and Methods
4.1. Field Study
4.1.1. Location and Orchard Characteristics
4.1.2. Parameters Analyzed
4.2. Germination Bioassays
4.2.1. Preparation of Root and Leaf Pistachio Aqueous Extracts
4.2.2. Bioassay Procedure
4.3. Extraction and Determination of Phenolic Compounds
4.3.1. Extract Preparation
4.3.2. Determination of Total Phenols
4.3.3. Determination of Flavone and Flavonol Content
4.3.4. Determination of Flavanones and Dihydroflavonols
4.3.5. Identification and Quantification of Individual Phenolic Compounds
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Puig, C.G.; Alvarez-Iglesias, L.; Reigosa, M.J.; Pedrol, N. Eucalyptus globulus leaves incorporated as green manure for weed control in maize. Weed Sci. 2013, 61, 154–161. [Google Scholar] [CrossRef]
- Einhellig, F.A. Interactions involving allelopathy in cropping systems. Agron. J. 1996, 88, 886–893. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. Allelopathy of Knotweeds as Invasive Plants. Plants 2022, 11, 3. [Google Scholar] [CrossRef] [PubMed]
- Duke, S.O.; Dayan, F.E.; Rimando, A.M.; Schrader, K.K.; Aliotta, G.; Oliva, A.; Romagni, J.G. Chemicals from nature for weed management. Weed Sci. 2002, 50, 138–151. [Google Scholar] [CrossRef]
- Cheng, F.; Cheng, Z. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front. Plant Sci. 2015, 6, 1020. [Google Scholar] [CrossRef] [PubMed]
- Scopel, E.; Triomphe, B.; Affholder, F.; Da Silva, F.A.; Corbeels, M.; Xavier, J.H.; Lahmar, R.; Recous, S.; Bernoux, M.; Blanchart, E.; et al. Conservation agriculture cropping systems in temperate and tropical conditions, performances and impacts. A review. Agron. Sustain. Dev. 2013, 33, 113–130. [Google Scholar] [CrossRef]
- Abd El-Gawad, A.M.; Mashaly, I.A.; Abu Ziada, M.E.; Deweeb, M.R. Phytotoxicity of three Plantago species on germination and seedling growth of hairy beggarticks (Bidens pilosa L.). Egypt. J. Basic Appl. Sci. 2015, 2, 303–309. [Google Scholar] [CrossRef] [Green Version]
- Ogata, T.; Hamachi, M.; Nishi, K. Organic Herbicide for Paddy Field. Tokyo: Japan Patent Office. Japan Patent No 2008050329, 6 March 2008. [Google Scholar]
- Miyake, Y. Plant Growth Inhibitor. Tokyo: Japan Patent Office. Japan Patent No 2009274970, 26 November 2009. [Google Scholar]
- Gercheva, P.; Zhivondov, A.; Nacheva, L.; Avanzato, D. Transsexual forms of pistachio (Pistacia terebinthus L.) from Bulgaria—Biotechnological approaches for preservation, multiplication and inclusion in selection programs. Bulg. J. Agric. Sci. 2008, 14, 449–453. [Google Scholar]
- Alyousef, A.; Ibrahim, G. Inhibitory effect of fruit hull and leaves of pistachio on weed growth in pots. Int. J. PharmTech Res. 2015, 7, 365–369. [Google Scholar]
- Taghvaeefard, N.; Sadeghi, H. Allelopathic effect of Pistacia khinjuk leaf extracts on Chenopodium album, Physalis alkekengi and Amaranthus retroflexus. Agric. Adv. 2014, 3, 33–37. [Google Scholar]
- Tahir, N.A.; Ahmed, J.O.; Azeez, H.A.; Palani, W.R.; Omer, D.A. Phytochemical, antibacterial, antioxidant and phytotoxicity screening of the extracts collected from the fruit and root of wild mt. Atlas mastic tree (Pistacia atlantica subsp. Kurdica). Appl. Ecol. Environ. Res. 2019, 17, 4417–4429. [Google Scholar] [CrossRef]
- Couceiro López, J.F.; Guerrero Villaseñor, J.; Gijón López, M.C.; Moriana Elvira, A.; Pérez López, D.; Rodríguez de Francisco, M. El Cultivo del Pistacho; Mundi-Prensa Ed. (Paraninfo Group): Madrid, Spain, 2017. [Google Scholar]
- Westwood, J.H.; Charudattan, R.; Duke, S.O.; Fennimore, S.A.; Marrone, P.; Slaughter, D.C.; Swanton, C.; Zollinger, R. Weed management in 2050: Perspectives on the future of weed science. Weed Sci. 2018, 66, 275–285. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.H.; Wang, Q.; Ruan, X.; Pan, C.D.; Jiang, D.A. Phenolics and Plant Allelopathy. Molecules 2010, 15, 8933–8952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Romero, M.; Zurek, G.; Schneider, B.; Baessmann, C.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Automated identification of phenolics in plant-derived foods by using library search approach. Food Chem. 2011, 124, 370–386. [Google Scholar] [CrossRef]
- Vladimir-Knežević, S.; Blažeković, B.; Štefan, M.B.; Babac, M. Plant Polyphenols as Antioxidants Influencing Human Health. In Phytochemicals as Nutraceuticals—Global Approaches to Their Role in Nutrition and Health; IntechOpen: Rijeka, Croatia, 2012; pp. 155–180. [Google Scholar]
- Robbins, R.J. Phenolic acids in foods: An overview of analytical methodology. J. Agric. Food Chem. 2003, 51, 2866–2887. [Google Scholar] [CrossRef] [PubMed]
- Chung, I.M.; Ahn, J.K.; Yun, S.J. Identification of allelopathic compounds from rice (Oryza sativa L.) straw and their biological activity. Can. J. Plant Sci. 2001, 81, 815–819. [Google Scholar]
- Wu, H.; Pratley, J.; Lemerle, D.; Haig, T. Evaluation of seedling allelopathy in 453 wheat (Triticum aestivum) accessions against annual ryegrass (Lolium rigidum) by the equal-compartment-agar method. Aus. J. Agric. Res. 2000, 51, 937–944. [Google Scholar] [CrossRef]
- Zhang, T.T.; Zheng, C.Y.; Hu, W.; Xu, W.W.; Wang, H.F. The allelopathy and allelopathic mechanism of phenolic acids on toxic Microcystis aeruginosa. J. Appl. Phycol. 2010, 22, 71–77. [Google Scholar] [CrossRef]
- Einhellig, F.A.; Rasmussen, J.A. Effects of three phenolic acids on chlorophyll content and growth of soybean and grain sorghum seedlings. J. Chem. Ecol. 1979, 5, 815–824. [Google Scholar] [CrossRef]
- Alsaadawi, I.S.; Sattaa, M.A.; Mahmoud, B.A. Effects of three phenolic acids on chlorophyll content and ions uptake in cowpea seedlings. J. Chem. Ecol. 1986, 12, 221–227. [Google Scholar] [CrossRef]
- Baziramakenga, R.; Leroux, G.D.; Simard, R.R.; Nadeau, P. Allelopathic effects of phenolic acids on nucleic acid and protein levels in soybean seedlings. Can. J. Bot. 1997, 75, 445–450. [Google Scholar] [CrossRef]
- Inderjit, S.; Weston, L.A. Root exudates: An overview. In Root Ecology; De Kroon, H., Visser, E.J.W., Eds.; Springer: Heidelberg, Germany, 2003; pp. 235–255. [Google Scholar]
- Cirujeda, A.; Aibar, J.; Zaragoza, C. Remarkable changes of weed species in Spanish cereal fields from 1976 to 2007. Agron. Sust. Dev. 2011, 31, 675–688. [Google Scholar] [CrossRef]
- Froud-Williams, R.J.; Drennan, D.S.H.; Chancellor, R.J. Influence of cultivation regime on weed floras of arable cropping systems. J. Appl. Ecol. 1983, 20, 187–197. [Google Scholar] [CrossRef]
- Pyšek, P.; Jarošík, V.; Kropáč, Z.; Chytrý, M.; Wild, J.; Tichý, L. Effects of abiotic factors on species richness and cover in Central European weed communities. Agric. Ecosyst. Environ. 2005, 109, 1–8. [Google Scholar] [CrossRef]
- Komai, C.S.; Tang-CS Nisimoto, R.K. Phenolic composition and its seasonal variation in Calluna vulgaris. Phytochemistry 1991, 21, 1397–1401. [Google Scholar]
- Zamorano, C. Alelopatía: Un Nuevo reto en la ciencia de las arvenses en el tropico. Agron 2006, 14, 7–15. [Google Scholar]
- Pardo-Muras, M.; Puig, C.G.; Souto, X.C.; Pedrol, N. Water-soluble phenolic acids and flavonoids involved in the bioherbicidal potential of Ulex europaeus and Cytisus scoparius. S. Afr. J. Bot. 2020, 133, 201–211. [Google Scholar] [CrossRef]
- Maharjan, S.; Shrestha, B.B.; Jha, P.K. Allelopathic effects of aqueous extract of leaves of Parthenium hysterophorus L. on seed germination and seedling growth of some cultivated and wild herbaceous species. Sci. World J. 2007, 5, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Tefera, T. Allelopathic effects of Parthenium hysterophorus extracts on seed germination and seedling growth of Eragrostis tef. J. Agron Crop Sci. 2002, 188, 306–310. [Google Scholar] [CrossRef]
- Wu, A.P.; Yu, H.; Gao, S.Q.; Huang, Z.Y.; He, W.M.; Miao, S.L.; Dong, M. Differential belowground allelopathic effects of leaf and root of Mikania micrantha. Trees Struct. Func. 2009, 23, 11–17. [Google Scholar] [CrossRef]
- Qasem, J.R.; Foy, C.L. Weed allelopathy, its ecological impacts and future prospects: A review. J. Crop. Prod. 2001, 4, 43–119. [Google Scholar] [CrossRef]
- Hunter, M.E.; Mengers, E.S. Allelopathic effects and root distribution of Ceratiola ericoldes (Empetraceae) on seven rosemary scrub species. Am. J. Bot. 2002, 89, 1113–1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajendiran, K. Simple and rapid squash schedule for the root tips of Helianthus annuus L. to determine the environmental clastogens. J. Ecotoxicol. Environ. Monit. 2005, 15, 291–295. [Google Scholar]
- Boumaiza, R.; Snoussi, A.; Cirkovic-Velickovic, T.; Bouzouita, N. Phenolic composition and antioxidant activity of different parts of Pistacia vera L. Mediterr. J. Chem. 2016, 6, 658–664. [Google Scholar] [CrossRef] [Green Version]
- Özbek, H.N.; Halahlih, F.; Göğüş, F.; Yanik, D.K.; Azaizeh, H. Pistachio (Pistacia vera L.) Hull as a Potential Source of Phenolic Compounds: Evaluation of Ethanol–Water Binary Solvent Extraction on Antioxidant Activity and Phenolic Content of Pistachio Hull Extracts. Waste Biomass Valor. 2020, 11, 2101–2110. [Google Scholar] [CrossRef]
- Yemmen, M.; Landolsi, A.; Ben Hamida, J.; Mégraud, F.; Trabelsi, M.A. Antioxidant activities, anticancer activity and polyphenols profiles of leaf, fruit and stem extracts of Pistacia lenticus from Tunisia. Cell. Mol. Biol. 2017, 63, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Elez Garofulić, I.E.; Kruk, V.; Martić, A.; Martić, I.; Zorić, Z.; Pedisić, S.; Dragović, S.; Dragović-Uzelac, V. Evaluation of Polyphenolic Profile and Antioxidant Activity of Pistacia lentiscus L. Leaves and Fruit Extract Obtained by Optimized Microwave-Assisted Extraction. Foods 2020, 9, 1556. [Google Scholar] [CrossRef] [PubMed]
- Rigane, G.; Ghazghazi, H.; Aoudhi, C.; Ben Salem, R.; Nasr, Z. Phenolic content, antioxidant capacity and antimicrobial activity of leaf extracts from Pistacia atlantica. Nat. Prod. Res. 2017, 31, 696–699. [Google Scholar] [CrossRef]
- Toul, F.; Belyagoubi-Benhammou, N.; Zitouni, A.; Atik-Bekkara, F. Antioxidant activity and phenolic profile of different organs of Pistacia atlantica Desf. Subsp. Atlantica from Algeria. Nat. Prod. Res. 2017, 31, 718–723. [Google Scholar] [CrossRef]
- Amel, Z.; Babuka, B.B.; Nacéra, G.; Fethi, T.; Fawzua, A.B. Assessment of phytochemical composition antioxidant properties of extracts from the leaf, stem, fruit and root of Pistacia lentiscus L. Int. J. Pharmacogn. Phytochem. Res. 2016, 8, 627–633. [Google Scholar]
- Nadernejad, N.; Ahmadimoghadam, A.; Hossyinifard, J.; Poorseyedi, S. Effect of different rootstocks on PAL activity and phenolic compounds in flowers, leaves hulls and kernels of three pistachio (Pistacia vera L.) cultivars. Trees 2013, 27, 1681–1689. [Google Scholar] [CrossRef]
- Seal, A.N.; Pratley, J.E.; Haig, T.; An, M. Identification and quantification of compounds in a series of allelopathic and non-allelopathic rice root exudates. J. Chem. Ecol. 2004, 30, 1647–1662. [Google Scholar] [CrossRef] [PubMed]
- Hatamnia, A.A.; Rostamzad, A.; Hosseini, M.; Abbaspour, N.; Darvishzadeh, R.; Malekzadeh, P.; Aminadeh, B.M. Antioxidant capacity and phenolic composition of leaves from 10 Bene (Pistacia atlantica subsp. Kurdica) genotypes. Nat. Prod. Res. 2016, 30, 600–604. [Google Scholar] [CrossRef] [PubMed]
- Benamar, H.; Marouf, A.; Bennaceur, M. Phytochemical composition, antioxidant and acetylcholinesterase inhibitory activies of aqueous extract and fractions of Pistacia atlantica subps atlantica from Algeria. J. Herbs Spices Med. Plants 2018, 24, 229–244. [Google Scholar] [CrossRef]
- Yousfi, M.; Djeridane, A.; Bombarda, I.; Duhem, B.; Gaydou, E.M. Isolation and characterization of a new hispolone derivative from antioxidant estracts of Pistacia atlantica. Phytother. Res. 2009, 23, 1237–1242. [Google Scholar] [CrossRef]
- Mehenni, C.; Atmani-Kilani, D.; Dumarcay, S.; Perrin, D.; Gerardin, P.; Atmani, D. Hepatoprotective and antidiabetic effects of Pistacia lenticus leaf and fruit extracts. J. Food Drug Anal. 2016, 24, 653–669. [Google Scholar] [CrossRef]
- Ahmed, Z.B.; Yousfi, M.; Viaene, J.; Dejaegher, B.; Demeyer, K.; Vander Heyden, Y. Four Pistacia atlantica subspecies (atlantica, cabulica, kurdica and mutica): A review of their botany, ethnobotany, phytochemistry and pharmacology. J. Ethnopharmacol. 2021, 265, 113329–113357. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Masi, M.; Cimmino, A.; Vilariño, S.; Evidente, A. Allelopathic Effect of Quercetin, a Flavonoid from Fagopyrum esculentum Roots in the Radicle Growth of Phelipanche ramosa: Quercetin Natural and Semisynthetic Analogues Were Used for a Structure-Activity Relationship Investigation. Plants 2021, 10, 543. [Google Scholar] [CrossRef]
- Rudrappa, T.; Bonsall, J.; Gallagher, J.L.; Seliskar, D.M.; Bais, H.P. Root-secreted allelochemical in the noxious weed Phragmites australis deploys a reactive oxygen species response and microtubule assembly disruption to execute rhizotoxicity. J. Chem. Ecol. 2007, 33, 1898–1918. [Google Scholar] [CrossRef]
- Bais, H.P.; Vepachedu, R.; Gilroy, S.; Callaway, R.M.; Vivanco, J.M. Allelopathy and exotic plant invasion: From molecules and genes to species interactions. Science 2003, 301, 1377–1380. [Google Scholar] [CrossRef]
- Pollock, J.L.; Callaway, R.M.; Thelen, G.C.; Holben, W.E. Catechin–metal interactions as a mechanism for conditional allelopathy by the invasive plant Centaurea maculosa. J. Ecol. 2009, 97, 1234–1242. [Google Scholar] [CrossRef]
- Nasir, H.; Iqbal, Z.; Hiradate, S.; Fujii, Y. Allelopathic potential of Robinia pseudo-acacia L. J. Chem. Ecol. 2005, 31, 2179–2192. [Google Scholar] [CrossRef] [PubMed]
- Paszkowski, W.L.; Kremer, R.J. Biological activity and tentative identification of flavonoid components in velvetleaf (Abutilon theophrasti Medik.) seed coats. J. Chem. Ecol. 1988, 14, 1573–1582. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.; Aoki, M.; Yogo, Y. Effect of naringenin on the growth and lignin biosynthesis of gramineous plants. Weed Biol. Manag. 2004, 4, 49–55. [Google Scholar] [CrossRef]
- Yang, Q.H.; Ye, W.H.; Liao, F.L.; Yin, X.J. Effects of allelochemicals on seed germination. Chin. J. Ecol. 2005, 24, 1459–1465. [Google Scholar]
- Li, S.T.; Zhou, J.M.; Wang, H.Y.; Chen, X.Q. Allelopathic mechanism of plants. Rural Eco-Environ. 2001, 17, 52–55. [Google Scholar]
- Lin, L.D.; Wu, J.Y.; Ho, K.P.; Qi, S.Y. Ultrasound-induced physio-logical effects and secondary metabolite saponin production in Panax ginsengcell cultures. Ultrasound Med. Biol. 2001, 27, 1147–1152. [Google Scholar] [CrossRef]
- Parfitt, D.E.; Craig, E.K.; Maranto, J. Pistachio cultivars. In Pistachio Production Manual; Ferguson, L., Haviland, D.R., Eds.; UCANR Publications: Richmond, CA, USA, 2016; Volume 3545, pp. 59–64. [Google Scholar]
- Beede, R.H.; Reyes, H.; Sanden, B.L.; Grattan, S.R.; Epstein, L. Pistachio rootstocks. In Pistachio Production Manual, 4th ed.; Ferguson, L., Haviland, D.R., Eds.; UCANR Publications: Richmond, CA, USA, 2005; Volume 3545, pp. 65–74. [Google Scholar]
- Zucconi, F.; Pera, A.; Forte, M.; De Bertoldi, M. Evaluating toxicity in immature compost. Biocycle 1981, 22, 54–57. [Google Scholar]
- Betances-Salcedo, E.; Revilla, I.; Vivar-Quintana, A.M.; González-Martín, M.I. Flavonoid and antioxidant capacity of propolis prediction using near infrared spectroscopy. Sensors 2017, 17, 1647. [Google Scholar] [CrossRef] [Green Version]
- Valencia, D.; Alday, E.; Robles-Zepeda, R.; Garibay-Escobar, A.; Galvez-Ruiz, J.C.; Salas-Reyes, M.; Jiménez-Estrada, M.; Velazquez-Contreras, E.; Hernandez, J.; Velazquez, C. Seasonal effect on chemical composition and biological activities of Sonoran propolis. Food Chem. 2012, 131, 645–651. [Google Scholar] [CrossRef]
- Popova, M.; Bankova, V.; Butovska, D.; Petkov, V.; Nikolova-Damyanova, B.; Sabatini, A.G.; Marcazzan, G.L.; Bogdanov, S. Validated methods for the quantification of biologically active constituents of poplar-type propolis. Phytochem. Anal. 2004, 15, 235–240. [Google Scholar] [CrossRef]
- Vivar-Quintana, A.M.; González-Martín, M.I.; Revilla, I.; Betances-Salcedo, E.V. Determination, and quantification of phenolic acids in raw propolis by reversed phase high performance liquid chromatography. Feasibility study for the use of near infrared spectroscopy. J. Apicult. Res. 2018, 57, 648–656. [Google Scholar] [CrossRef]
- Bartlett, M.S. The square root transformation in analysis of variance. Suppl. J. R. Stat. Soc. 1936, 3, 68. [Google Scholar] [CrossRef]
Place of Sampling | Biomass (g.m.s./m2) | Density (pl/m2) | N° Species/m2 | Richness of Species (Margalef’s Index) |
---|---|---|---|---|
>4-year-old trees | 32.6 ± 4.8 c | 100.1 ± 12.9 b | 23.75 ± 1.8 b | 0.71 ± 0.1 b |
2–3-year-old trees | 57.5 ± 6.2 b,c | 120.9 ± 20.7.8 b | 25.3 ± 2.4 b | 0.77 ± 0.1 b |
Beyond influence | 63.7 ± 4.6 a | 241.14 ± 25.8 a | 43.15 ± 3.2 a | 1.45 ± 0.2 a |
Weed Species | Under Canopy Young Trees (Individuals/m2) | Under Canopy > 4-Year-Old Trees (Individuals/m2) | Beyond Influence of Pistachio Trees (Individuals/m2) |
---|---|---|---|
Bromus diandrus | 10.00 ± 7.9 b | 22.14 ± 12.2 b | 122.78 ± 18.2 a |
Centaurea melitensis | 1.67 ± 1.2 a | 1.00 ± 2.2 a | 5.00 ± 2.1 b |
Conyza canadensis | 24.84 ± 4.2 a,b | 18.24 ± 6.2 b | 37.78 ± 3.2 a |
Datura stramonium | 8.5 ± 4.5 b | 4.50 ± 2.25 b | 21.2 ± 6.25 a |
Echium vulgare | 2.00 ± 1.8 b | 1.00 ± 2.3 b | 5.00 ± 1.1 a |
Epilobium brachycarpum | 30.00 ± 6.2 b | 20.65 ± 5.2 b | 45.00 ± 3.2 a |
Erigeron bonariensis | 7.78 ± 2.2 a,b | 6.11 ± 1.2 b | 12.50 ± 4.2 a |
Lactuca serriola | 7.95 ± 2.95 a,b | 6.74 ± 2.15 b | 12.38 ± 2.31 a |
Lolium rigidum | 62.14 ± 26.2 a,b | 26.05 ± 20.2 b | 75.00 ± 18.2 a |
Rumex acetosa | 7.78 ± 3.2 a | 8.33 ± 2.2 a | 10.50 ± 4.2 a |
Scabiosa triandra | 5.71 ± 1.2 b | 5.00 ± 1.6 b | 13.00 ± 3.3 a |
Sinapis arvensis | 1.67 ± 2.4 b | 1.00 ± 1.2 b | 7.14 ± 2.2 a |
Solanum nigrum | 2.50 ± 2.2 a | 1.25 ± 2.2 a | 5.00 ± 3.3 a |
Sonchus asper | 7.00 ± 4.6 a | 6.67 ± 3.2 a | 10.63 ± 5.2 a |
Taraxacum officinale | 3.00 ± 1.2 a | 1.00 ± 2.2 a | 2.50 ± 1.7 a |
Weeds | Parameters | Water Control | Root Extract | Rhizosphere Soil | Leaf Extract |
---|---|---|---|---|---|
Bromus diandrus | G (%) | 33.33 ± 10.3 a | 20 ± 10.0 a | 36.67 ± 15.3 a | 33.33 ± 5.8 a |
Radicle length (mm) | 2.99 ± 1.0 a,b | 4.47 ± 1.3 a | 3.87 ± 3.8 a | 0.72 ± 0.4 b | |
Epicotyl length (mm) | 0.69 ± 0.5 a | 1.15 ± 0.9 a | 1.02 ± 1.4 a | 0.64 ± 0.5 a | |
GI (%) | 89.71 | 142.40 | 24.08 | ||
Centaurea melitensis | G (%) | 61.67 ± 29.9 a | 20 ± 11.8 a,b | 66.67 ± 20.8 a | 16.67 ± 5.8 b |
Radicle length (mm) | 1.69 ± 0.7 b | 2.1 ± 0.9 a,b | 3.33 ± 1.3 a | 0.14 ± 0.1 c | |
Epicotyl length (mm) | 1.18 ± 0.5 c | 2.23 ± 0.7 b | 3.24 ± 1.16 a | 0.12 ± 0.1 d | |
GI (%) | 40.30 | 213.02 | 2.24 | ||
Conyza canadensis | G (%) | 76.67 ± 8.2 a | 66.67 ± 15.3 a | 86.87 ± 5.8 a | 10 ± 0.8 b |
Radicle length (mm) | 0.35 ± 0.1 a | 0.32 ± 0.1 a | 0.38 ± 0.1 a | 0.1 ± 0.0 b | |
Epicotyl length (mm) | 0.35 ± 0.2 ab | 0.57 ± 0.2 b | 0.85 ± 0.3 a | 0.13 ± 0.1 c | |
GI (%) | 79.50 | 123.02 | 3.73 | ||
Echium vulgare | G (%) | 23.33 ± 11.1 a | 6.67 ± 4.3 a | 6.67 ± 5.2 a | |
Radicle length (mm) | 1.52 ± 1.5 ab | 1.85 ± 1.8 a,b | 2.05 ± 1.1 a | N.G. | |
Epicotyl length (mm) | 0.53 ± 0.5 b | 1.2 ± 1.2 a,b | 2.7 ± 0.5 a | ||
GI (%) | 35,03 | 38,81 | |||
Lactuca serriola | G (%) | 60.00 ± 26.0 a | 13.33 ± 5.2 a,b | 63.33 ± 13.7 a | 3.33 ± 5.8 b |
Radicle length (mm) | 1.72 ± 1.3 a | 1.02 ± 1.0 a,b | 1.87 ± 0.6 a | 0.2 ± 0.0 b | |
Epicotyl length (mm) | 1.11 ± 0.9 b | 0.52 ± 0.5 c | 2.78 ± 0.4 a | 0.4 ± 0.0 c | |
GI (%) | 13.18 | 114.75 | 0.65 | ||
Rumex acetosa | G (%) | 33.33 ± 23.1 a | 20.00 ± 10.0 a | ||
Radicle length (mm) | 1.86 ± 2.1 b | 5.02 ± 0.9 a | N.G. | N.G. | |
Epicotyl length (mm) | 1.13 ± 1.2 b | 3.17 ± 0.5 a | |||
GI (%) | 161.95 | ||||
Scabiosa triandra | G (%) | 56.67 ± 23.5 a | 20.00 ± 10.0 b | 16.67 ± 11.5 b | |
Radicle length (mm) | 3.18 ± 1.6 a | 1.57 ± 1.1 b | 0.98 ± 1.1 b | N.G. | |
Epicotyl length (mm) | 1.24 ± 0.6 a | 0.58 ± 0.8 a,b | 1.4 ± 1.0 a | ||
GI (%) | 17.42 | 9.07 | |||
Sinapis arvensis | G (%) | 41.67 ± 27.9 a | 46.67 ± 41.6 a | 26.67 ± 11.5 a | |
Radicle length (mm) | 1.60 ± 0.7 a | 1.27 ± 0.4 b | 0.95 ± 0.5 b | N.G. | |
Epicotyl length (mm) | 1.96 ± 0.5 b | 2.52 ± 0.5 a | 1.91 ± 0.8 b | ||
GI (%) | 88.90 | 38.00 | |||
Solanum nigrum | G (%) | 93.33 ± 10.1 a | 36.67 ± 42.2 a,b | 20 ± 15.5 b | 13.33 ± 11.5 b |
Radicle length (mm) | 1.43 ± 0.6 a | 1.05 ± 0.3 a,b | 0.55 ± 0.3 b | 0.45 ± 0.17 b | |
Epicotyl length (mm) | 2.11 ± 2.1 a | 1.33 ± 0.5 a | 0.25 ± 0.2 a | 0.15 ± 0.13 a | |
GI (%) | 28.85 | 8.24 | 4.49 | ||
Sonchus asper | G (%) | 43.33 ± 26.0 a,b | 31.67 ± 18.3 b | 26.67 ± 10.3 b | 3.33 ± 5.8 c |
Radicle length (mm) | 1.93 ± 0.8 a | 1.07 ± 0.3 b | 0.95 ± 0.3 b | 0.90 ± 0.1 b | |
Epicotyl length (mm) | 1.86 ± 1.0 b | 1.76 ± 0.9 b | 2.65 ± 0.7 a | 2.1 ± 0.1 b | |
GI (%) | 40.52 | 30.30 | 3.58 | ||
Taraxacum officinale | G (%) | 76.67 ± 25.8 a | 93.33 ± 8.2 a | 70 ± 35.2 a | |
Radicle length (mm) | 0.86 ± 0.5 a | 0.96 ± 0.5 a | 0.82 ± 0.5 a | N.G. | |
Epicotyl length (mm) | 2.29 ± 1.3 a | 2.66 ± 0.9 a | 2.61 ± 1.3 a | ||
GI (%) | 135.88 | 87.05 |
Methanol–Water Extract | Water Extract | |||
---|---|---|---|---|
Leaf | Root | Leaf | Root | |
Total phenols 1 | 127.85 ± 30.81 a | 68.00 ± 8.72 a,b | 45.28 ± 17.44 b | 13.24 ± 0.02 b |
Flavones and flavonols 2 | 49.71 ± 1.89 a | 13.72 ± 9.68 b,c | 33.01 ± 0.47 a,b | 1.77 ± 0.79 c |
Flavanones and dihydroflavonols 3 | 27.44 ± 0.18 a | 25.01 ± 1.24 a | 26.49 ± 4.25 a | 10.79 ± 1.08 b |
Methanol–Water Extract | Water Extract | |||
---|---|---|---|---|
Leaf | Root | Leaf | Root | |
Gallic acid | 63.03 ± 0.02 b | 30.27 ± 2.63 c | 205.55 ± 2.42 a | 60.61 ± 2.08 b |
Rutin | 80.73 ± 0.26 a | ND | 85.37 ± 9.87 a | ND |
Catechin | 91.77 ± 0.75 b | 17.02 ± 9.31 c | 113.95 ± 2.49 a | 27.27 ± 1.71 c |
Myricetin | 83.23 ± 1.30 b | 1.75 ± 2.42 c | 140.17 ± 1.83 a | ND |
Quercetin | 263.24 ± 3.57 a | 1.66 ± 2.32 c | 158.76 ± 1.74 b | ND |
Naringenin | 1.23 ± 0.07 a | ND | 0.86 ± 0.74 a | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saludes-Zanfaño, M.I.; Vivar-Quintana, A.M.; Morales-Corts, M.R. Pistacia Root and Leaf Extracts as Potential Bioherbicides. Plants 2022, 11, 916. https://doi.org/10.3390/plants11070916
Saludes-Zanfaño MI, Vivar-Quintana AM, Morales-Corts MR. Pistacia Root and Leaf Extracts as Potential Bioherbicides. Plants. 2022; 11(7):916. https://doi.org/10.3390/plants11070916
Chicago/Turabian StyleSaludes-Zanfaño, Marta I., Ana M. Vivar-Quintana, and María Remedios Morales-Corts. 2022. "Pistacia Root and Leaf Extracts as Potential Bioherbicides" Plants 11, no. 7: 916. https://doi.org/10.3390/plants11070916
APA StyleSaludes-Zanfaño, M. I., Vivar-Quintana, A. M., & Morales-Corts, M. R. (2022). Pistacia Root and Leaf Extracts as Potential Bioherbicides. Plants, 11(7), 916. https://doi.org/10.3390/plants11070916