Myrtaceae in Australia: Use of Cryobiotechnologies for the Conservation of a Significant Plant Family under Threat
Abstract
:1. Introduction
2. Significance of Myrtaceae
3. Threats to Myrtaceae—A Focus on Myrtle Rust
4. Ex Situ Conservation Efforts
5. Cryobiotechnology Applied to Myrtacaeae
5.1. Eucalyptus
5.2. Syzygium
5.3. Backhousia
5.4. Gossia
5.5. Lenwebbia
5.6. Rhodamnia
5.7. Rhodomyrtus
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilson, P.G. Myrtaceae. The Families and Genera of Vascular Plants. In Flowering Plants Eudicots; Kubitzki, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Govaerts, R.; Sobral, M.; Ashton, P.; Barrie, F.; Holst, B.K.; Landrum, L.L.; Matsumoto, K.; Mazine, F.F.; Lughadha, E.N.; Proença, C.; et al. World checklist of Myrtaceae. Available online: http://wcsp.science.kew.org/ (accessed on 15 December 2021).
- Sunarti, S. Syzygium tinobalum (Myrtaceae), a new species from Central Sulawesi, Indonesia. Reinwardtia 2020, 19, 87–91. [Google Scholar] [CrossRef]
- Nangala, J.; Napangardi, Y.; Napangardi, Y.; Wright, B.R. Ethnobotany of Warrilyu (Eucalyptus pachyphylla F.Muell. [Myrtaceae]): Aboriginal seed food of the Gibson Desert, Western Australia. Econ. Bot. 2019, 73, 416–422. [Google Scholar] [CrossRef]
- ACT Government. Ngunnawal Plant Use: A Traditional Aboriginal Plant Use Guide for the ACT Region; ACT Government: Canberra, ACT, Australia, 2014.
- Hansen, V.; Horsfall, J. Noongar Bush Medicine: Medicinal Plants of the South-West of Western Australia; UWA Publishing: Crawley, Australia, 2016. [Google Scholar]
- Jakubowski, P. Pormpuraaw: Cultural Uses for Plants; Pormpuraaw Arts & Cultural Centre: Pormpuraaw, QLD, Australia, 2016.
- de Paulo Farias, D.; Neri-Numa, I.A.; de Araújo, F.F. A critical review of some fruit trees from the Myrtaceae family as promising sources for food applications with functional claims. Food Chem. 2020, 306, 125630. [Google Scholar] [CrossRef] [PubMed]
- Richmond, R.; Bowyer, M.; Vuong, Q. Australian native fruits: Potential uses as functional food ingredients. J. Funct. Foods 2019, 62, 103547. [Google Scholar] [CrossRef]
- Coppen, J.J.W. (Ed.) Eucalyptus; Taylor & Francis: London, UK, 2002. [Google Scholar]
- Mbobo, T.; Richardson, D.M.; Lucas, E.J.; Wilson, J.R.U. Patterns of introduction, naturalisation, invasion, and impact differ between fleshy- and dry-fruited species of Myrtaceae. Perspect. Plant Ecol. Evol. Syst. 2022, 54, 125648. [Google Scholar] [CrossRef]
- Pratiwi, R.A.; Nurlaeni, Y. The potency of Myrtaceae Family from Cibodas Botanic Gardens (Cianjur, Indonesia) as botanical pesticide. Biodiversitas 2021, 22, 4648–4664. [Google Scholar] [CrossRef]
- Baghshahi, H.; Riasi, A.; Mahdavi, A.H.; Shirazi, A. Antioxidant effects of clove bud (Syzygium aromaticum) extract used with different extenders on ram spermatozoa during cryopreservation. Cryobiology 2014, 69, 482–487. [Google Scholar] [CrossRef]
- Santos, M.V.d.O.; Nascimento, L.E.; Praxedes, E.A.; Borges, A.A.; Silva, A.R.; Bertini, L.M.; Pereira, A.F. Syzygium aromaticum essential oil supplementation during in vitro bovine oocyte maturation improves parthenogenetic embryonic development. Theriogenology 2019, 128, 74–80. [Google Scholar] [CrossRef]
- Cunningham, A.B.; Garnett, S.T.; Gorman, J. Policy lessons from practice: Australian bush products for commercial markets. GeoJournal 2009, 74, 429–440. [Google Scholar] [CrossRef]
- Svoboda, K.; Forrest, M. Eucalyptus for the cut foliage trade. Horticulturalist 2001, 10, 4–7. [Google Scholar]
- Delaporte, K.; Klieber, A.; Sedgley, M. Effect of sucrose at different concentrations and cold dry storage on vase-life of three ornamental Eucalyptus species. J. Hortic. Sci. Biotechnol. 2005, 80, 471–475. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, L.; Xie, J.; Feng, Y.; Tian, J.; He, X.; Li, B.; Wang, L.; Wang, X.; Zhang, Y.; et al. Rhodomyrtus tomentosa (Aiton.): A review of phytochemistry, pharmacology and industrial applications research progress. Food Chem. 2020, 309, 125715. [Google Scholar] [CrossRef] [PubMed]
- Stefanello, M.E.A.; Pascoal, A.C.R.F.; Salvador, M.J. Essential oils from neotropical Myrtaceae: Chemical diversity and biological properties. Chem. Biodivers. 2011, 8, 73–94. [Google Scholar] [CrossRef] [PubMed]
- Eldin Elhawary, S.S.; Eldin Elmotyam, A.K.; Alsayed, D.K.; Zahran, E.M.; Fouad, M.A.; Sleem, A.A.; Elimam, H.; Rashed, M.H.; Hayallah, A.M.; Mohammed, A.F.; et al. Cytotoxic and anti-diabetic potential, metabolic profiling and insilico studies of Syzygium cumini (L.) Skeels belonging to family Myrtaceae. Nat. Prod. Res. 2020, 36, 1026–1030. [Google Scholar] [CrossRef]
- Massaro, C.F.; Katouli, M.; Grkovic, T.; Vu, H.; Quinn, R.J.; Heard, T.A.; Carvalho, C.; Manley-Harris, M.; Wallace, H.M.; Brooks, P. Anti-staphylococcal activity of C-methyl flavanones from propolis of Australian stingless bees (Tetragonula carbonaria) and fruit resins of Corymbia torelliana (Myrtaceae). Fitoterapia 2014, 95, 247–257. [Google Scholar] [CrossRef]
- Carson, C.F.; Mee, B.J.; Riley, T.V. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob. Agents Chemother. 2002, 46, 1914–1920. [Google Scholar] [CrossRef] [Green Version]
- Carson, C.F.; Ashton, L.; Dry, L.; Smith, D.W.; Riley, T.V. Melaleuca alternifolia (tea tree) oil gel (6%) for the treatment of recurrent herpes labialis. J. Antimicrob. Chemother. 2001, 48, 450–451. [Google Scholar] [CrossRef]
- Burke, B.E.; Baillie, J.-E.; Olson, R.D. Essential oil of Australian lemon myrtle (Backhousia citriodora) in the treatment of molluscum contagiosum in children. Biomed. Pharmacother. 2004, 58, 245–247. [Google Scholar] [CrossRef]
- Carneiro, V.C.d.S.; de Lucena, L.B.; Figueiró, R.; Victório, C.P. Larvicidal activity of plants from Myrtaceae against Aedes aegypti L. and Simulium pertinax Kollar (Diptera). Rev. Soc. Bras. Med. Trop. 2021, 54, e00922020. [Google Scholar] [CrossRef]
- Leyva, M.; French-Pacheco, L.; Quintana, F.; Montada, D.; Castex, M.; Hernandez, A.; Marquetti, M.d.C. Melaleuca quinquenervia (Cav.) S.T. Blake (Myrtales: Myrtaceae): Natural alternative for mosquito control. Asian Pac. J. Trop. Med. 2016, 9, 979–984. [Google Scholar] [CrossRef]
- Porusia, M.; Septiyana, D. Larvicidal activity of Melaleuca leucadendra leaves extract against Aedes aegypti. Casp. J. Environ. Sci. 2021, 19, 277–285. [Google Scholar] [CrossRef]
- Senthil Nathan, S. The use of Eucalyptus tereticornis Sm. (Myrtaceae) oil (leaf extract) as a natural larvicidal agent against the malaria vector Anopheles stephensi Liston (Diptera: Culicidae). Bioresour. Technol. 2007, 98, 1856–1860. [Google Scholar] [CrossRef] [PubMed]
- Clarke, M. Australian Native Foods Industry Stocktake; 12/066; Rural Industries Research and Development Corporation: Barton, QLD, Australia, 2012.
- Pilatti, F.K.; Aguiar, T.; Simões, T.; Benson, E.E.; Viana, A.M. In vitro and cryogenic preservation of plant biodiversity in Brazil. In Vitro Cell. Dev. Biol. Plant 2011, 47, 82–98. [Google Scholar] [CrossRef]
- Nirmal, N.P.; Webber, D.; Mereddy, R.; Sultanbawa, Y. Biochemical and functional properties of indigenous Australian herbal infusions. Food Biosci. 2018, 26, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Agboola, S. Functional Properties of Australian bushfoods, 07/030; Rural Industries Research and Development Corporation: Barton, QLD, Australia, 2007. [Google Scholar]
- Konczak, I.; Zabaras, D.; Dunstan, M.; Aguas, P. Antioxidant capacity and phenolic compounds in commercially grown native Australian herbs and spices. Food Chem. 2010, 122, 260–266. [Google Scholar] [CrossRef]
- Alderees, F.; Mereddy, R.; Webber, D.; Nirmal, N.; Sultanbawa, Y. Mechanism of action against food spoilage yeasts and bioactivity of Tasmannia lanceolata, Backhousia citriodora and Syzygium anisatum plant solvent extracts. Foods 2018, 7, 179. [Google Scholar] [CrossRef] [Green Version]
- Singh, H.P.; Kaur, S.; Negi, K.; Kumari, S.; Saini, V.; Batish, D.R.; Kohli, R.K. Assessment of in vitro antioxidant activity of essential oil of Eucalyptus citriodora (lemon-scented Eucalypt; Myrtaceae) and its major constituents. LWT 2012, 48, 237–241. [Google Scholar] [CrossRef]
- Watt, M.P.; Blakeway, F.C.; Mokotedi, M.E.O.; Jain, S.M. Micropropagation of Eucalyptus. In Micropropagation of Woody Trees and Fruits; Jain, S.M., Ishii, K., Eds.; Springer Science+Business Media: Dordrecht, The Netherlands, 2003; Volume 2/75, pp. 217–244. [Google Scholar]
- Arévalo-Marin, E.; Casas, A.; Landrum, L.; Shock, M.P.; Alvarado-Sizzo, H.; Ruiz-Sanchez, E.; Clement, C.R. The taming of Psidium guajava: Natural and cultural history of a neo-tropical fruit. Front. Plant Sci. 2021, 12, 714763. [Google Scholar] [CrossRef]
- Barman, P.; Kumar, R.; Pandey, A.; Bishnoi, C.; Gora, J.; Berwal, M.; Dhaka, S.; Sarolia, D.; Kumar, M.; Pratibha; et al. Can canopy management increase quality fruit production in Syzygium cumini (L.) Skeels? Eur. J. Hortic. Sci. 2021, 86, 371–383. [Google Scholar] [CrossRef]
- Shü, Z.-H.; Shiesh, C.-C.; Lin, H.L. Wax apple (Syzygium samarangense (Blume) Merr. and L.M. Perry) and related species. In Postharvest Biology and Technology of Tropical and Subtropical Fruits; Yahia, E.M., Ed.; Woodhead Publishing: Cambridge, UK, 2011. [Google Scholar]
- Keith, D.A. (Ed.) Australian Vegetation, 3rd ed.; Cambridge Press: Cambridge, UK, 2017. [Google Scholar]
- Myerscough, P.J. Ecology of Myrtaceae with special reference to the Sydney region. Cunninghamia 1998, 5, 787–807. [Google Scholar]
- Wilson, P.G. Family Myrtaceae. Available online: https://plantnet.rbgsyd.nsw.gov.au (accessed on 9 December 2021).
- Williams, J.E.; Woinarski, J.C.Z. (Eds.) Eucalypt Ecology: Individuals to Ecosystems; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Williams, G. Insects associated with flowering of Rhodomyrtus psidioides (Myrtaceae): Is this a Myrtle Rust (Austropuccinia psidii)-induced plant-pollinator interaction Extinction Event? Cunninghamia 2018, 18, 23–27. [Google Scholar] [CrossRef]
- Williams, G.; Adam, P. A preliminary checklist of flower-visiting insects from Syzygium floribundum, Syzygium smithii and Tristaniopsis laurina: Three members of the myrtle rust-vulnerable plant family Myrtaceae. Cunninghamia 2019, 19, 57–74. [Google Scholar] [CrossRef]
- Biffin, E.; Lucas, E.J.; Craven, L.A.; Ribeiro da Costa, I.; Harrington, M.G.; Crisp, M.D. Evolution of exceptional species richness among lineages of fleshy-fruited Myrtaceae. Ann. Bot. 2010, 106, 79–93. [Google Scholar] [CrossRef] [PubMed]
- OEH. Koala-profile. Available online: https://www.environment.nsw.gov.au/threatenedspeciesapp/profile.aspx?id=10616 (accessed on 21 February 2022).
- OEH. Eastern Pygmy-Possum-Profile. Available online: https://www.environment.nsw.gov.au/threatenedspeciesapp/profile.aspx?id=10155 (accessed on 9 February 2022).
- Goldingay, R.L. Characteristics of tree hollows used by Australian birds and bats. Wildl. Res. 2009, 36, 394–409. [Google Scholar] [CrossRef]
- Do, C.M.; Delaporte, K.L.; Schultz, C.J. Benchmarking study of quality parameters of Rivoli Bay selection of Kunzea pomifera (muntries): A new Indigenous crop from Australia. Sci. Hortic. 2017, 219, 287–293. [Google Scholar] [CrossRef]
- Burgman, M.; Keith, D.; Hopper, S.; Widyatmoko, D.; Drill, C. Threat syndromes and conservation of the Australian flora. Biol. Conserv. 2007, 134, 73–82. [Google Scholar] [CrossRef]
- Hoffmann, A.A.; Rymer, P.D.; Byrne, M.; Ruthrof, K.X.; Whinam, J.; McGeoch, M.; Bergstrom, D.M.; Guerin, G.R.; Sparrow, B.; Joseph, L.; et al. Impacts of recent climate change on terrestrial flora and fauna: Some emerging Australian examples. Austral. Ecol. 2019, 44, 3–27. [Google Scholar] [CrossRef] [Green Version]
- Makinson, R.O. Myrtle Rust Reviewed: The Impacts of the Invasive Pathogen Austropuccinia Psidii on the Australian Environment; Plant Biosecurity Cooperative Research Centre: Canberra, ACT, Australia, 2018.
- Roux, J.; Kamgan Nkuekam, G.; Marincowitz, S.; van der Merwe, N.A.; Uchida, J.; Wingfield, M.J.; Chen, S. Cryphonectriaceae associated with rust-infected Syzygium jambos in Hawaii. MycoKeys 2020, 76, 49–79. [Google Scholar] [CrossRef]
- Soewarto, J.; Carriconde, F.; Hugot, N.; Bocs, S.; Hamelin, C.; Maggia, L. Impact of Austropuccinia psidii in New Caledonia, a biodiversity hotspot. For. Pathol. 2017, 48, e12402. [Google Scholar] [CrossRef]
- Summerell, B.A. Managing biological invasions: The impact of exotic diseases on plant communities in Australia. Ann. Missouri Bot. Gard. 2017, 102, 324–330. [Google Scholar] [CrossRef] [Green Version]
- Tommerup, I.C.; Alfenas, A.C.; Old, K.M. Guava rust in Brazil—A threat to Eucalyptus and other Myrtaceae. N. Z. J. For. Sci. 2003, 33, 420–428. [Google Scholar]
- Glen, M.; Alfenas, A.C.; Zauza, E.A.; Wingfield, M.J.; Mohammed, C. Puccinia psidii: A threat to the Australian environment and economy—a review. Australas. Plant Pathol. 2007, 36, 1–16. [Google Scholar] [CrossRef]
- Fensham, R.J.; Carnegie, A.J.; Laffineur, B.; Makinson, R.O.; Pegg, G.S.; Wills, J. Imminent extinction of Australian Myrtaceae by fungal disease. Trends Ecol. Evol. 2020, 35, 554–556. [Google Scholar] [CrossRef] [PubMed]
- Soewarto, J.; Giblin, F.; Carnegie, A.J. Austropuccinia Psidii (Myrtle Rust) Global Host List, Version 2; Australian Network for Plant Conservation: Canberra, ACT, Australia, 2019. [Google Scholar]
- Roux, J.; Greyling, I.; Coutinho, T.A.; Verleur, M.; Wingfield, M.J. The Myrtle rust pathogen, Puccinia psidii, discovered in Africa. IMA Fungus 2013, 4, 155–159. [Google Scholar] [CrossRef]
- McTaggart, A.R.; Roux, J.; Granados, G.M.; Gafur, A.; Tarrigan, M.; Santhakumar, P.; Wingfield, M.J. Rust (Puccinia psidii) recorded in Indonesia poses a threat to forests and forestry in South-East Asia. Australas. Plant Pathol. 2016, 45, 645–652. [Google Scholar] [CrossRef]
- du Plessis, E.; McTaggart, A.R.; Granados, G.M.; Wingfield, M.J.; Roux, J.; Ali, M.I.M.; Pegg, G.S.; Makinson, J.; Purcell, M. First report of myrtle rust caused by Austropuccinia psidii on Rhodomyrtus tomentosa (Myrtaceae) from Singapore. Plant Dis. 2017, 101, 1676. [Google Scholar] [CrossRef]
- Ho, W.H.; Baskarathevan, J.; Griffin, R.L.; Quinn, B.D.; Alexander, B.J.R.; Havell, D.; Ward, N.A.; Pathan, A.K. First Report of Myrtle Rust Caused by Austropuccinia psidii on Metrosideros kermadecensis on Raoul Island and on M. excelsa in Kerikeri, New Zealand. Plant Dis. 2019, 103, 2128. [Google Scholar] [CrossRef]
- Carnegie, A.J.; Lidbetter, J.R.; Walker, J.; Horwood, M.A.; Tesoriero, L.; Glen, M.; Priest, M.J. Uredo rangelii, a taxon in the guava rust complex, newly recorded on Myrtaceae in Australia. Australas. Plant Pathol. 2010, 39, 463–466. [Google Scholar] [CrossRef]
- Carnegie, A.J.; Kathuria, A.; Pegg, G.S.; Entwistle, P.; Nagel, M.; Giblin, F.R. Impact of the invasive rust Puccinia psidii (myrtle rust) on native Myrtaceae in natural ecosystems in Australia. Biol. Invasions 2016, 18, 127–144. [Google Scholar] [CrossRef] [Green Version]
- Berthon, K.; Esperon-Rodriguez, M.; Beaumont, L.J.; Carnegie, A.J.; Leishman, M.R. Assessment and prioritisation of plant species at risk from myrtle rust (Austropuccinia psidii) under current and future climates in Australia. Biol. Conserv. 2018, 218, 154–162. [Google Scholar] [CrossRef]
- Fernandez Winzer, L.; Berthon, K.A.; Carnegie, A.J.; Pegg, G.S.; Leishman, M.R. Austropuccinia psidii on the move: Survey based insights to its geographical distribution, host species, impacts and management in Australia. Biol. Invasions 2019, 21, 1215–1225. [Google Scholar] [CrossRef]
- NSW Threatened Species Scientific Committee. Rhodamnia maideniana C.T. White—Critically Endangered Species listing. Available online: https://www.environment.nsw.gov.au/topics/animals-and-plants/threatened-species/nsw-threatened-species-scientific-committee/determinations/final-determinations/2021/rhodamnia-maideniana-critically-endangered-species-listing#:~:text=Rhodamnia%20maideniana%20C.T.-,White%20%E2%80%93%20Critically%20Endangered%20Species%20listing,Schedule%201%20of%20the%20Act (accessed on 28 March 2022).
- Fensham, R.J.; Radford-Smith, J. Unprecedented extinction of tree species by fungal disease. Biol. Conserv. 2021, 261, 109276. [Google Scholar] [CrossRef]
- Martyn Yenson, A.J.; Offord, C.A.; Meagher, P.F.; Auld, T.; Bush, D.; Coates, D.J.; Commander, L.E.; Guja, L.K.; Norton, S.L.; Makinson, R.O.; et al. Plant Germplasm Conservation in Australia: Strategies and Guidelines for Developing, Managing and Utilising Ex Situ Collections, 3rd ed.; Australian Network for Plant Conservation: Canberra, ACT, Australia, 2021.
- Royal Botanic Gardens Kew. Seed Information Database (SID). Version 7.1. Available online: http://data.kew.org/sid/ (accessed on 1 March 2022).
- Australian Seedbank Partnership. Australian Seed Bank Online. Available online: https://www.seedpartnership.org.au/initiatives/australian-seed-bank-online/ (accessed on 3 March 2022).
- Pence, V.C.; Meyer, A.; Linsky, J.; Gratzfeld, J.; Pritchard, H.W.; Westwood, M.; Beckman Bruns, E. Defining exceptional species—A conceptual framework to expand and advance ex situ conservation of plant diversity beyond conventional seed banking. Biol. Conserv. 2022, 266, 109440. [Google Scholar] [CrossRef]
- Sommerville, K.D.; Cuneo, P.; Errington, G.; Makinson, R.O.; Pederson, S.; Phillips, G.; Rollason, A.; Viler, V.; Offord, C.A. Conservation in the wake of myrtle rust—A case study on two critically endangered Australian rainforest plants. Pac. Conserv. Biol. 2019, 26, 218–229. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, K.N.; Offord, C.A.; Cuneo, P.; Deseo, M.A. A comparative study of seed morphology in relation to desiccation tolerance and other physiological responses in 71 Eastern Australian rainforest species. Plant Species Biol. 2013, 28, 51–62. [Google Scholar] [CrossRef]
- Errington, G.; Offord, C.A.; Catterall, C. Maximising the value of seed collections for horticulture and conservation. In Proceedings of the International Horticultural Congress, Brisbane, OLD, Australia, 17–22 August 2014; Volume 1101, pp. 55–62. [Google Scholar] [CrossRef]
- Sommerville, K.D.; Errington, G.; Newby, Z.-J.; Liyanage, G.S.; Offord, C.A. Assessing the storage potential of Australian rainforest seeds: A decision-making key to aid rapid conservation. Biodivers. Conserv. 2021, 30, 3185–3218. [Google Scholar] [CrossRef]
- Wyse, S.V.; Dickie, J.B. Predicting the global incidence of seed desiccation sensitivity. J. Ecol. 2017, 105, 1082–1093. [Google Scholar] [CrossRef] [Green Version]
- Tweddle, J.C.; Dickie, J.B.; Baskin, C.C.; Baskin, J.M. Ecological aspects of seed desiccation sensitivity. J. Ecol. 2003, 91, 294–304. [Google Scholar] [CrossRef]
- Pegg, G.; Perry, S.; Carnegie, A.; Ireland, K.; Giblin, F. Understanding Myrtle Rust Epidemiology and Host Specificity to Determine Disease Impact in Australia; CRC70186; Cooperative Research Centre for National Plant Biosecurity: Canberra, ACT, Australia, 2012. [Google Scholar]
- Pritchard, H.W. The rise of plant cryobiotechnology and demise of plant cryopreservation? Cryobiology 2018, 85, 160–161. [Google Scholar] [CrossRef]
- Pence, V.C.; Ballesteros, D.; Walters, C.; Reed, B.M.; Philpott, M.; Dixon, K.W.; Pritchard, H.W.; Culley, T.M.; Vanhove, A.-C. Cryobiotechnologies: Tools for expanding long-term ex situ conservation to all plant species. Biol. Conserv. 2020, 250, 108736. [Google Scholar] [CrossRef]
- Kaczmarczyk, A.; Turner, S.R.; Bunn, E.; Mancera, R.L.; Dixon, K.W. Cryopreservation of threatened native Australian species—What have we learned and where to from here? In Vitro Cell. Dev. Biol. Plant 2011, 47, 17–25. [Google Scholar] [CrossRef]
- Funnekotter, B.; Mancera, R.L.; Bunn, E. Advances in understanding the fundamental aspects required for successful cryopreservation of Australian flora. In Vitro Cell. Dev. Biol. Plant 2017, 53, 289–298. [Google Scholar] [CrossRef]
- Govaerts, R.; Sobral, M.; Ashton, P.; Barrie, F.; Holst, B.K.; Landrum, L.L.; Matsumoto, K.; Mazine, F.F.; Lughadha, E.N.; Proença, C.; et al. World Checklist of Myrtaceae; Kew Publishing: Kew, UK, 2008. [Google Scholar]
- Kaya, E.; Alves, A.; Rodrigues, L.; Jenderek, M.; Hernandez-Ellis, M.; Ozudogru, A.; Ellis, D. Cryopreservation of Eucalyptus genetic resources. CryoLetters 2013, 34, 608–618. [Google Scholar] [PubMed]
- Corredoira, E.; Ballester, A.; Ibarra, M.; Vieitez, A.M. Induction of somatic embryogenesis in explants of shoot cultures established from adult Eucalyptus globulus and E. saligna × E. maidenii trees. Tree Physiol. 2015, 35, 678–690. [Google Scholar] [CrossRef]
- Risenga, I.; Watt, P.; Mycock, D. Programmed cell death and necrosis during cryopreparative drying of in vitro Eucalyptus grandis axillary buds. CryoLetters 2013, 34, 583–597. [Google Scholar]
- Trueman, S.J.; Hung, C.D.; Wendling, I. Tissue culture of Corymbia and Eucalyptus. Forests 2018, 9, 84. [Google Scholar] [CrossRef] [Green Version]
- Le Roux, J.J.; Van Staden, J. Micropropagation of Eucalyptus species. HortScience 1991, 26, 199–200. [Google Scholar] [CrossRef]
- McComb, J.; Bennett, I.; Tonkin, C. In vitro propagation of Eucalyptus species. In Tissue Culture of Australian Plants; Taji, A., Williams, R., Eds.; University of New England: Armidale, NSW, Australia, 1996; pp. 112–156. [Google Scholar]
- Bunn, E. Development of in vitro methods for ex situ conservation of Eucalyptus impensa, an endangered mallee from southwest Western Australia. PCTOC 2005, 83, 97–102. [Google Scholar] [CrossRef]
- Bunn, E.; Senaratna, T.; Sivasithamparam, K.; Dixon, K.W. In vitro propagation of Eucalyptus phylacis L. Johnson and K. Hill., a critically endangered relict from Western Australia. In Vitro Cell. Dev. Biol. Plant 2005, 41, 812–815. [Google Scholar] [CrossRef]
- Bunn, E.; Turner, S.; Panaia, M.; Dixon, K.W. Contribution of in vitro technology and cryogenic storage to conservation of indigenous plants. Aust. J. Bot. 2007, 55, 345–355. [Google Scholar] [CrossRef]
- Bunn, E.; Turner, S.R.; Dixon, K.W. Biotechnology for saving rare and threatened flora in a biodiversity hotspot. In Vitro Cell. Dev. Biol. Plant 2011, 47, 188–200. [Google Scholar] [CrossRef]
- Thokoane, N.L. The Development of Short-to-Medium and Long-Term Germplasm Storage Protocols for Eucalyptus Spp. Master’s Thesis, University of Natal, Durban, 1998. [Google Scholar]
- Touchell, D.H.; Dixon, K.W. Cryopreservation of seed of Western Australian native species. Biodivers. Conserv. 1993, 2, 594–602. [Google Scholar] [CrossRef]
- de Sousa, V.A. Cryopreservation of Eucalyptus spp. pollen. Bol. De Pesqui. Florest. 1990, 21, 15–19. [Google Scholar]
- Hatami, F.; Shahab, M.N.; Jebelli, M.; Ghamari-Zare, A.; Tabari, M.; Assareh, M.H. Investigation on possibility of cryopreservation of Eucalyptus microtheca seeds. Iran. J. For. Poplar Res. 2010, 17, 627–636. [Google Scholar]
- Simelane, P.G.; Watt, M.P.; Edwards, N.; Mycock, D.J. Cryostorage of callus produced during indirect oragnogenesis in Eucalyptus grandis × urophylla. S. Afr. J. Bot. 2007, 73, 500. [Google Scholar] [CrossRef] [Green Version]
- Padayachee, K.; Watt, M.P.; Edwards, N.; Mycock, D.J. Physiological responses of Eucalyptus in vitro axillary buds to cryopreparative desiccation and osmotic preculture: Effects of abscisic acid. S. Afr. J. Bot. 2008, 74, 639–646. [Google Scholar] [CrossRef] [Green Version]
- Simelane, P.G. Anatomy and Cryopreservation of Structures Created during Indirect Organogenesis in a Eucalyptus Grandis/ Eucalyptus Urophylla Hybrid. Masters Thesis, University of Witwatersrand, Johannesburg, South Africa, 2009. [Google Scholar]
- Barrueto Cid, L.P.; Machado, A.C.M.G.; Carvalheira, S.B.R.C.; Brasileiro, A.C.M. Plant regeneration from seedling explants of Eucalyptus grandis Eucalyptus grandis × E. urophylla. PCTOC 1999, 56, 17–23. [Google Scholar] [CrossRef]
- Ghamari Zare, A.; Sedaghatti, M.; Emam, M.; Assareh, M.H.; Kiarostami, K. Micropropagation of Eucalyptus maculata from mature stock by tissue culture. Iran. J. For. Poplar Res. 2014, 21, 581–593. [Google Scholar] [CrossRef]
- Errington, G. Storage behaviour of seed of five Australian rainforest Myrtaceae species. Unpublished Honours Major Report. Southern Cross University: Lismore, NSW, Australia, 2013. [Google Scholar]
- van der Walt, K.; Kemp, P.; Sofkova-Bobcheva, S.; Burritt, D.J.; Nadarajan, J. Seed development, germination, and storage behaviour of Syzygium maire (Myrtaceae), a threatened endemic New Zealand tree. N. Z. J. Bot. 2021, 59, 198–216. [Google Scholar] [CrossRef]
- Nadarajan, J.; van der Walt, K.; Lehnebach, C.A.; Saeiahagh, H.; Pathirana, R. Integrated ex situ conservation strategies for endangered New Zealand Myrtaceae species. N. Z. J. Bot. 2021, 59, 72–89. [Google Scholar] [CrossRef]
- Yadav, U.; Lal, M.; Jaiswal, V. In vitro micropropagation of the tropical fruit tree Syzygium cuminii L. PCTOC 1990, 21, 87–92. [Google Scholar] [CrossRef]
- Shatnawi, M.; Johnson, K.; Torpy, F. In vitro propagation and cryostorage of Syzygium francissi (Myrtaceae) by the encapsulation-dehydration method. In Vitro Cell. Dev. Biol. Plant 2004, 40, 403–407. [Google Scholar] [CrossRef]
- Blando, F.; Onlu, S.; Colella, G.; Konczak, I. Plant regeneration from immature seeds of Eugenia myrtifolia Sims. In Vitro Cell. Dev. Biol. Plant 2013, 49, 388–395. [Google Scholar] [CrossRef]
- Malik, S.; Chaudhury, R.; Srivastava; Singh, S. Genetic resources of Syzygium cumini in India: Present status and management. In The Genus Syzygium: Syzygium Cumini and Other Underutilised Species; Nair, K., Ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- van der Walt, K.; Kemp, P.; Sofkova-Bobcheva, S.; Burritt, D.; Nadarajan, J. Evaluation of droplet-vitrification, vacuum infiltration vitrification and encapsulation-dehydration for the cryopreservation of Syzygium maire zygotic embryos. CryoLetters 2021, 42, 202–209. [Google Scholar] [PubMed]
- Rollason, A.; (The Australian PlantBank, Mount Annan, NSW, Australia). Personal communication, 2022.
- Kibbler, H.; Johnston, M.E.; Williams, R.R. Adventitious root formation in cuttings of Backhousia citriodora F. Muell 1. Plant genotype, juvenility and characteristics of cuttings. Sci. Hortic. 2004, 102, 133–143. [Google Scholar] [CrossRef]
- Shapcott, A.; J, P. Comparison of genetic variability in remnant and wide-spread rainforest understorey species of Austromyrtus (Myrtaceae). Biodivers. Conserv. 1996, 5, 881–895. [Google Scholar] [CrossRef]
- Wilson, P.G. Genus Lenwebbia. Available online: https://plantnet.rbgsyd.nsw.gov.au (accessed on 23 January 2022).
- Department of the Environment. Species Profile and Threats Database. Available online: https://www.environment.gov.au/sprat (accessed on 23 January 2022).
- Fernandez-Winzer, L.; Berthon, K.A.; Entwhistle, P.; Manea, A.; Winzer, N.; Pegg, G.S.; Carnegie, A.J.; Leishman, M.R. Direct and indirect community effects of the invasive plant pathogen Austropuccinia psidii (myrtle rust) in eastern Australian rainforests. Biol. Invasions 2020, 22, 2357–2369. [Google Scholar] [CrossRef]
- Department of the Environment. Rhodomyrtus Psidioides. Available online: https://www.environment.gov.au/cgi-bin/sprat/public/publicspecies.pl?taxon_id=19162 (accessed on 28 February 2022).
- Viler, V.; Offord, C.A. Ex situ management including seed orchard establishment for Native Guava (Rhodomyrtus psidioides) affected by Myrtle Rust. Australas. Plant Conserv. 2020, 29, 17–20. [Google Scholar]
- Rahmah, M.; Anwar, A.; Swasti, E. Karamunting (Rhodomyrtus tomentosa) callus induction in vitro. Int. J. Environ. Agric. Biotech. 2020, 5, 459–465. [Google Scholar] [CrossRef]
- Pegg, G.; Taylor, T.; Entwistle, P.; Guymer, G.; Giblin, F.; Carnegie, A. Impact of Austropuccinia psidii (myrtle rust) on Myrtaceae-rich wet sclerophyll forests in south east Queensland. PLoS ONE 2017, 12, e0188058. [Google Scholar] [CrossRef]
- Normah, M.; Sulong, N.; Reed, B.M. Cryopreservation of shoot tips of recalcitrant and tropical species: Advances and strategies. Cryobiology 2019, 87, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Chmielarz, P.; Michalak, M.; Pałucka, M.; Wasileńczyk, U. Successful cryopreservation of Quercus robur plumules. Plant Cell Rep. 2011, 30, 1405–1414. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, K.N.; Ashmore, S.E.; Pritchard, H.W. Thermal analysis and cryopreservation of seeds of Australian wild Citrus species (Rutaceae): Citrus australasica, C. inodora and C. Garrawayi. CryoLetters 2009, 30, 268–279. [Google Scholar]
- Wardani, F.F.; Efendi, D.; Dinarti, D.; Witono, J.R. Cryopreservation of papaya seeds cv. Sukma, Callina, and Caliso: Effect of loading treatment and immersion time in plant vitrification solution-2. Nusantara Biosci. 2019, 11, 71–78. [Google Scholar] [CrossRef]
- Dussert, S.; Chabrillange, N.; Rocquelin, G.; Engelmann, F.; Lopez, M.; Hamon, S. Tolerance of coffee (Coffea spp.) seeds to ultra-low temperature exposure in relation to calorimetric properties of tissue water, lipid composition, and cooling procedure. Physiol. Plant. 2001, 112, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Touchell, D.H.; Turner, S.; Bunn, E.; Dixon, K.W. Cryostorage of stomatic tissues of endangered Australian species. In Biotechnology in Agriculture and Forestry 50: Cryopreservation of Plant Germplasm II; Towill, L., Bajaj, Y., Eds.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Errington, G.; (The Australian PlantBank, Mount Annan, NSW, Australia). Personal communication, 2022.
- Liu, Z.; Bi, W.-L.; Shukla, M.R.; Saxena, P.K. In Vitro Technologies for American Chestnut (Castanea dentata (Marshall) Borkh) Conservation. Plants 2022, 11, 464. [Google Scholar] [CrossRef]
- Uchendu, E.; Leonard, S.; Traber, M.; Reed, B. Vitamins C and E improve regrowth and reduce lipid peroxidation of blackberry shoot tips following cryopreservation. Plant Cell Rep. 2010, 29, 25–35. [Google Scholar] [CrossRef]
- Naidoo, C.; Berjak, P.; Pammenter, N.W.; Varghese, B. The role of reactive oxygen species and antioxidants during precooling stages of axis cryopreservation in recalcitrant Trichilia Dregeana. Bot. 2016, 94, 391–403. [Google Scholar] [CrossRef] [Green Version]
- Streczynski, R.; Clark, H.; Whelehan, L.M.; Ang, S.-T.; Hardstaff, L.K.; Funnekotter, B.; Bunn, E.; Offord, C.A.; Sommerville, K.D.; Mancera, R.L. Current issues in plant cryopreservation and importance for ex situ conservation of threatened Australian native species. Austr. J. Bot. 2019, 67, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Normah, M.; Chin, H.; Hor, Y. Desiccation and Cryopreservation of Embryonic Axes of Hevea brasiliensis Muell. Arg. Perunika 1986, 9, 299–303. [Google Scholar]
- Funnekotter, B.; Kaczmarczyk, A.; Turner, S.R.; Bunn, E.; Zhou, W.; Smith, S.; Flematti, G.; Mancera, R.L. Acclimation-induced changes in cell membrane composition and influence on cryotolerance of in vitro shoots of native plant species. PCTOC 2013, 114, 83–96. [Google Scholar] [CrossRef]
- Menon, A.; Funnekotter, B.; Kaczmarczyk, A.; Bunn, E.; Turner, S.; Mancera, R. Cold-induced changes affect survival after exposure to vitrification solution during cryopreservation in the south-west Australian Mediterranean climate species Lomandra sonderi (Asparagaceae). PCTOC 2014, 119, 347–358. [Google Scholar] [CrossRef]
- Funnekotter, B.; Sortey, A.; Bunn, E.; Turner, S.; Mancera, R. Influence of abiotic stress preconditioning on antioxidant enzymes in shoot tips of Lomandra sonderi (Asparagaceae) prior to cryostorage. Aust. J. Bot. 2016, 64, 260–268. [Google Scholar] [CrossRef]
- Funnekotter, B.; Colville, L.; Kaczmarczyk, A.; Turner, S.R.; Bunn, E.; Mancera, R.L. Monitoring of oxidative status in three native Australian species during cold acclimation and cryopreservation. Plant Cell Rep. 2017, 36, 1903–1916. [Google Scholar] [CrossRef]
- Whelehan, L.; Funnekotter, B.; Leahy, G.; Bunn, E.; Mancera, R.L. Assessing plant metabolic rates during cryopreservation. Cryobiology 2021, 103, 169. [Google Scholar] [CrossRef]
- Whelehan, L.M.; Funnekotter, B.; Bunn, E.; Mancera, R.L. Review: The case for studying mitochondrial function during plant cryopreservation. Plant Sci. 2022, 315, 111134. [Google Scholar] [CrossRef]
- Nadarajan, J.; Mansor, M.; Krishnapillay, B.; Staines, H.J.; Benson, E.E.; Harding, K. Applications of differential scanning calorimetry in developing cryopreservation strategies for Parkia speciosa, a tropical tree producing recalcitrant seeds. CryoLetters 2008, 29, 95–110. [Google Scholar]
- Kaczmarczyk, A.; Funnekotter, B.; Turner, S.R.; Bunn, E.; Bryant, G.; Hunt, T.E.; Mancera, R.L. Development of cryopreservation for Loxocarya cinerea—An endemic Australian plant species important for post-mining restoration. CryoLetters 2013, 34, 508–519. [Google Scholar]
- Funnekotter, B.; Whiteley, S.E.; Turner, S.R.; Bunn, E.; Mancera, R.L. Evaluation of the new vacuum infiltration vitrification (VIV) cryopreservation technique for native Australian plant shoot tips. CryoLetters 2015, 36, 104–113. [Google Scholar]
- Funnekotter, B.; Bunn, E.; Mancera, R.L. Cryo-mesh: A simple alternative cryopreservation protocol. CryoLetters 2017, 38, 155–159. [Google Scholar]
Industry | Uses | Genus or Species | References |
---|---|---|---|
Plantation | Timber, pulp, fuel, charcoal | Eucalyptus spp. e.g., E. camaldulensis, E. globulus, E. grandis and E. tereticornis and their crosses | [1,10] |
Agriculture | Windbreaks | Eucalyptus | [11] |
Pesticides | Eucalyptus, Melaleuca, and others (essential oils) | [10,12] | |
Honey production | Various, mainly Eucalyptus | [1] | |
Livestock breeding | Syzygium aromaticum (essential oils) | [13,14] | |
Horticulture | Ornamental species | Syzygium, Callistemon, and Melaleuca | [1] |
Cut flowers and foliage | Chamelaucium (flowers) | [15] | |
Eucalyptus (foliage) | [16,17] | ||
Medicine | Traditional medicines | Eucalyptus pachyphylla (flowers and sap) | [4] |
Babingtonia camphorosmae (flowers, leaves and stems), Kunzea preissiana (leaves and flowers), Eucalyptus and Corymbia (leaves and gum), Melaleuca radula (leaves) | [6] | ||
Rhodomyrtus tomentosa (flowers, fruit, leaves, bark, sap, roots) | [18] | ||
Various, including Campomanesia, Eugenia and Myrcia | [19] | ||
Diabetes | Syzygium cumini (extracts) | [20] | |
Bacterial infections | Corymbia torelliana, Melaleuca alternifolia (extracts) | [21,22] | |
Viral infections | Melaleuca alternifolia, Backhousia citriodora (extracts) | [23,24] | |
Fungal infections | Eucalyptus (extracts) | [10] | |
Mosquito control | Various, including Eucalyptus and Melaleuca (extracts) | [25,26,27,28] | |
Food | Fresh or processed fruit | Eugenia spp., Kunzea pomifera, Myrciaria cauliflora, Psidium cattleyanum, P. guajava, Syzygium aqueum, S. cumini, S. jambos, S. leuhmannii, S. samarangense | [1,29,30] |
Spices | Backhousia citriodora (leaves), Pimenta dioica (fruit), Syzygium anisatum (leaves), S. aromaticum (flower buds) | [1,29] | |
Teas | Backhousia citriodora, Melaleuca citrolens, Syzygium anisatum (leaves) | [29,31] | |
Additives (flavoring, antioxidant, antibacterial) | Backhousia citriodora, Eucalyptus citriodora, E. olida, E. stragiana, Syzygium anisatum, S. leuhmannii (extracts) | [10,29,32,33,34,35] |
Species | Propagule 1 | Method 2 | Success | References |
---|---|---|---|---|
E. grandis | Axillary bud | LN | Limited | [97] |
E. grandis × E. urophylla | Callus | LN | Limited | [101,103] |
E. grandis | Pollen | LN | Yes | [97] |
E. dunnii, E. urophylla and E. robusta | Pollen | LN | Yes | [99] |
E. burracoppinensis, E. lane-poolei, and E. loxophleba var. gratiae | Seed | LN | Limited | [98] |
E. microtheca | Seed | LN | Yes | [100] |
Various | Shoot tips | LN | Yes | [87] |
Various | Seed and seedlings | SE | Yes | [88] |
E. globulus, E. saligna × E. maidenii | TC material | SE | Yes | [88] |
E. grandis × E. urophylla | Callus | IVC | Yes | [104] |
E. maculata | Cutting | IVC | Yes | [105] |
E. dolorosa, E. graniticola, E. impensa and E.phylacis | Cutting | IVC | Yes | [93,94,95] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hardstaff, L.K.; Sommerville, K.D.; Funnekotter, B.; Bunn, E.; Offord, C.A.; Mancera, R.L. Myrtaceae in Australia: Use of Cryobiotechnologies for the Conservation of a Significant Plant Family under Threat. Plants 2022, 11, 1017. https://doi.org/10.3390/plants11081017
Hardstaff LK, Sommerville KD, Funnekotter B, Bunn E, Offord CA, Mancera RL. Myrtaceae in Australia: Use of Cryobiotechnologies for the Conservation of a Significant Plant Family under Threat. Plants. 2022; 11(8):1017. https://doi.org/10.3390/plants11081017
Chicago/Turabian StyleHardstaff, Lyndle K., Karen D. Sommerville, Bryn Funnekotter, Eric Bunn, Catherine A. Offord, and Ricardo L. Mancera. 2022. "Myrtaceae in Australia: Use of Cryobiotechnologies for the Conservation of a Significant Plant Family under Threat" Plants 11, no. 8: 1017. https://doi.org/10.3390/plants11081017
APA StyleHardstaff, L. K., Sommerville, K. D., Funnekotter, B., Bunn, E., Offord, C. A., & Mancera, R. L. (2022). Myrtaceae in Australia: Use of Cryobiotechnologies for the Conservation of a Significant Plant Family under Threat. Plants, 11(8), 1017. https://doi.org/10.3390/plants11081017