First Study of Improved Nutritional Properties and Anti-Oxidant Activity in Novel Sesame Mutant Lines as Compared to Their Wild-Types
Abstract
:1. Introduction
2. Results
2.1. Variability among the Investigated Genotypes
2.2. Ash Content
2.3. Carbohydrate Content
2.4. Protein Content
2.5. Crude Fiber Content
2.6. Total Phenol Content
2.7. Total Flavonoid Content
2.8. Total Anthocyanin Content
2.9. Total Lignan Content
2.10. Free Radical Scavenging Activity
2.11. Correlation between Biochemical Attributes
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Chemical and Biochemical Seeds Analysis
4.2.1. Ash Content
4.2.2. Carbohydrate Content
4.2.3. Protein Content
4.2.4. Crude Fiber Content
4.2.5. Total Phenol Content
4.2.6. Total Flavonoid Content
4.2.7. Total Anthocyanin Content
4.2.8. Total Lignan Content
4.2.9. Free Radical Scavenging Activity
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pal, D.; Chandra, P.; Sachan, N. Sesame seed in controlling human health and nutrition. In Nuts and Seeds in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2020; pp. 183–210. [Google Scholar] [CrossRef]
- Sani, I.; Okpalaoka, C.C.; Bello, F.; Warra, A.A.; Abdulhamid, A. Flavonoid content and antioxidant potential of white and brown sesame seed oils. Eur. J. Biomed. Pharm. 2014, 1, 56–63. [Google Scholar]
- Shah, N.C. Sesamum indicum (Sesame or Til): Seeds and Oil-A historical and scientific evaluation from Indian perspective. Asian Agric.-Hist. 2016, 20, 3–19. [Google Scholar]
- Dossa, K.; Li, D.; Wang, L.; Zheng, X.; Yu, J.; Wei, X.; Fonceka, D.; Diouf, D.; Liao, B.; Cisse, N.; et al. Dynamic transcriptome landscape of sesame (Sesamum indicum L.) under progressive drought and after rewatering. Genom. Data 2017, 11, 122–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Wang, L.; Gao, Y.; Li, D.; Yu, J.; Zhou, R.; Zhang, X. Genetic dissection and fine mapping of a novel Dt gene associated with determinate growth habit in sesame. BMC Genet. 2018, 19, 38. [Google Scholar] [CrossRef]
- Nahar, L.; Xiao, J.; Sarker, S.D. Introduction of phytonutrients. In Handbook of Dietary Phytochemicals; Springer: Singapore, 2019; pp. 1–17. [Google Scholar] [CrossRef]
- Connor, A.M.; Luby, J.J.; Tong, C.B.; Finn, C.E.; Hancock, J.F. Genotypic and environmental variation in antioxidant activity, total phenolic content, and anthocyanin content among blueberry cultivars. J. Am. Soc. Hortic. Sci. 2002, 127, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Lampart-Szczapa, E.; Korczak, J.; Nogala-Kalucka, M.; Zawirska-Wojtasiak, R. Antioxidant properties of lupin seed products. Food Chem. 2003, 83, 279–285. [Google Scholar] [CrossRef]
- Dar, A.A.; Arumugam, N. Lignans of sesame: Purification methods, biological activities and biosynthesis—A review. Bioorg. Chem. 2013, 50, 1–10. [Google Scholar] [CrossRef]
- Peterson, J.; Dwyer, J. Flavonoids: Dietary occurrence and biochemical activity. Nutr. Res. 1998, 18, 1995–2018. [Google Scholar] [CrossRef]
- Sarker, S.D.; Nahar, L. Chemistry for Pharmacy Students; John Willey Sons Ltd.: Oxford, UK, 2007; pp. 322–324. [Google Scholar]
- Yao, L.H.; Jiang, Y.-M.; Shi, J.; Tomas-Barberan, F.A.; Datta, N.; Singanusong, R.; Chen, S.S. Flavonoids in food and their health benefits. Plant Foods Hum. Nutr. 2004, 59, 113–122. [Google Scholar] [CrossRef]
- Abaza, L.; Msallem, M.; Daoud, D.; Zarrouk, M. Caractérisation des huiles de sept varietes d’olivier tunisiennes. Oléagineux Corps Gras Lipides 2002, 9, 174–179. [Google Scholar] [CrossRef] [Green Version]
- Fawole, O.A.; Amoo, S.O.; Ndhlala, A.R.; Light, M.E.; Finnie, J.F.; Van Staden, J. Anti-inflammatory, anticholinesterase, antioxidant and phytochemical properties of medicinal plants used for pain-related ailments in South Africa. J. Ethnopharmacol. 2010, 127, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Miao, H.; Wei, L.; Li, C.; Zhao, R.; Wang, C. Genetic analysis and QTL mapping of seed coat color in sesame (Sesamum indicum L.). PLoS ONE 2013, 8, e63898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, A.-N.T.; Yu, R.; Chen, C.; Mandlekar, S.; Primiano, T. Signal transduction events elicited by natural products: Role of MAPK and caspase pathways in homeostatic response and induction of apoptosis. Arch. Pharm. Res. 2000, 23, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, L.; Huang, X.; Wang, X.; Yang, R.; Mao, J.; Wang, X.; Wang, X.; Zhang, Q.; Li, P. Identification of Nutritional Components in Black Sesame Determined by Widely Targeted Metabolomics and Traditional Chinese Medicines. Molecules 2018, 23, 1180. [Google Scholar] [CrossRef] [Green Version]
- Arslan, Ç.; Uzun, B.; Ülger, S.; İlhan Çağırgan, M. Determination of oil content and fatty acid composition of sesame mutants suited for intensive management conditions. J. Am. Oil Chem. Soc. 2007, 84, 917–920. [Google Scholar] [CrossRef]
- Madhusudan, K.; Nadaf, H.L.; Motagi, B.N.; Singh, S. Induced mutants with improved nutraceutical traits in sesame (Sesamum indicum L.). In Proceedings of the International Symposium on Induced Mutations in Plants (ISIM), Vienna, Austria, 12–15 August 2008; Bhabha Atomic Research Centre: Mumbai, India, 2008. [Google Scholar]
- Masur, S.; Madhusudan, K. Characterization of induced mutants of sesame (Sesamum indicum L.) for confectionary and quality traits. In Proceedings of the International Conference on Peaceful Uses of Atomic Energy-2009.V.2, New Delhi, India, 29 September–1 October 2009; Bhabha Atomic Research Centre: Mumbai, India, 2009. [Google Scholar]
- El Harfi, M.; Jbilou, M.; Hanine, H.; Rizki, H.; Fechtali, M.; Nabloussi, A. Genetic diversity assessment of moroccan sesame (Sesamum indicum L.) populations using agro-morphological traits. J. Agric. Sci. Technol. A 2018, 8, 296–305. [Google Scholar] [CrossRef] [Green Version]
- El Harfi, M.; Charafi, J.; Houmanat, K.; Hanine, H.; Nabloussi, A. Assessment of genetic diversity in moroccan sesame (Sesamum indicum) using ISSR molecular markers. OCL 2021, 28, 3. [Google Scholar] [CrossRef]
- Kouighat, M.; Channaoui, S.; Labhilili, M.; El Fechtali, M.; Nabloussi, A. Novel genetic variability in sesame induced via ethyl methane sulfonate. J. Crop Improv. 2020, 35, 654–665. [Google Scholar] [CrossRef]
- Kouighat, M.; Hanine, H.; El Fechtali, M.; Nabloussi, A. First report of sesame mutants tolerant to severe drought stress during germination and early seedling growth stages. Plants 2021, 10, 1166. [Google Scholar] [CrossRef]
- Rizki, H.; Kzaiber, F.; Elharfi, M.; Nablousi, A.; Hanine, H. Chemical composition and morphological markers of 35 cultivars of sesame (Sesamum indicum. L) from different areas in Morocco. Int. J. Sci. Res. 2014, 3, 2306–23113. [Google Scholar]
- Gharby, S.; Harhar, H.; Bouzoubaa, Z.; Asdadi, A.; El Yadini, A.; Charrouf, Z. Chemical characterization and oxidative stability of seeds and oil of sesame grown in Morocco. J. Saudi Soc. Agric. Sci. 2017, 16, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Nabloussi, A.; Hanine, H.; Harfi, M.E.; Rizki, H. Moroccan sesame: An overview of seed and oil quality. In Science within Food: Up-to-Date Advances on Research and Educational Ideas; Méndez-Vilas, A., Ed.; Food Science Series; Formatex Research Center S.L.: Badajoz, Spain, 2017; pp. 168–175. ISBN 978-84-947512-1-9. [Google Scholar]
- Yousuf, B.; Gul, K.; Wani, A.A.; Singh, P. Health benefits of anthocyanins and their encapsulation for potential use in food systems: A review. Crit. Rev. Food Sci. Nutr. 2016, 56, 2223–2230. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, X.; Zhou, L.; Li, T.; Brennan, C.; Fu, X.; Liu, R.H. Phenolic content, antioxidant and antiproliferative activities of six varieties of white sesame seeds (Sesamum indicum L.). RSC Adv. 2017, 7, 5751–5758. [Google Scholar] [CrossRef] [Green Version]
- El Khier, M.K.S.; Ishag, K.E.A.; Yagoub, A.A. Chemical composition and oil characteristics of sesame seed cultivars grown in Sudan. Res. J. Agric. Biol. Sci. 2008, 4, 761–766. [Google Scholar]
- Yaseen, G.; Ahmad, M.; Zafar, M.; Akram, A.; Sultana, S.; Ahmed, S.N.; Kilic, O. Sesame (Sesamum indicum L.). In Green Sustainable Process for Chemical and Environmental Engineering and Science; Elsevier: Amsterdam, The Netherlands, 2021; pp. 253–269. [Google Scholar] [CrossRef]
- Zebib, H.; Bultosa, G.; Abera, S. Physico-chemical properties of sesame (Sesamum indicum L.) varieties grown in Northern Area, Ethiopia. Agric. Sci. 2015, 6, 238. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, A.P.; Srivastava, J. Studies on the production of protein isolates from defatted sesame seed (Sesamum indicum) flour and their nutritional profile. ASEAN Food J. 2007, 14, 175. [Google Scholar]
- Gadade, B.V.; Kachare, D.P.; Satbhai, R.D.; Naik, R.M. Nutritional composition and oil quality parameters of sesame (Sesamum indicum L.) genotypes. Int. Res. J. Multidiscip. Stud. 2017, 3, 1–13. [Google Scholar]
- Hassan, M.A. Studies on Egyptian sesame seeds (Sesamum indicum L.) and its products 1-physicochemical analysis and phenolic acids of roasted Egyptian sesame seeds (Sesamum indicum L.). World J. Dairy Food Sci. 2012, 7, 195–201. [Google Scholar]
- Moazzami, A.; Kamal-Eldin, A. Sesame seed oil. In Gourmet and Health-Promoting Specialty Oils; AOCS Press: Amsterdam, The Netherlands; Elsevier: Amsterdam, The Netherlands, 2009; pp. 267–282. [Google Scholar] [CrossRef]
- Ünal, M.K.; Yalçın, H. Proximate composition of Turkish sesame seeds and characterization of their oils. Grasas Aceites 2008, 59, 23–26. [Google Scholar] [CrossRef] [Green Version]
- Nzikou, J.M.; Matos, L.; Bouanga-Kalou, G.; Ndangui, C.B.; Pambou-Tobi, N.P.G.; Kimbonguila, A.; Silou, T.; Linder, M.; Desobry, S. Chemical composition on the seeds and oil of sesame (Sesamum indicum L.) grown in Congo-Brazzaville. Adv. J. Food Sci. Technol. 2009, 1, 6–11. [Google Scholar]
- Ogbonna, P.E.; Ukaan, S.I. Chemical composition and oil quality of seeds of sesame accessions grown in the Nsukka Plains of South Eastern Nigeria. Afr. J. Agric. Res. 2013, 8, 797–803. [Google Scholar] [CrossRef]
- Obiajunwa, E.I.; Adebiyi, F.M.; Omode, P.E. Determination of essential minerals and trace elements in Nigerian sesame seeds, using TXRF technique. Pak. J. Nutr. 2005, 4, 393–395. [Google Scholar]
- Abbas, S.; Sharif, M.K.; Butt, M.S.; Shahid, M. Screening of Pakistani sesame cultivars for nutritive value and bioactive components. Pak. J. Agric. Sci. 2020, 57, 743–751. [Google Scholar]
- Khan, I.U.; Rathore, B.S.; Syed, Z. Evaluation of polyphenols, flavonoids and antioxidant activity in different solvent extracts of sesame (Sesamum indicum L.) genotypes. Int. J Seed Spices 2019, 9, 52–60. [Google Scholar]
- Kurt, C.; Uçar, B.; Akkaya, M.R. Determination of total phenolic content and antioxidant activities of different sesame (Sesamum indicum L.) genotypes. Turk. J. Agric.-Food Sci. Technol. 2020, 8, 1778–1783. [Google Scholar] [CrossRef]
- Zhou, L.; Lin, X.; Abbasi, A.M.; Zheng, B. Phytochemical contents and antioxidant and antiproliferative activities of selected black and white sesame seeds. BioMed Res. Int. 2016, 2016, 8495630. [Google Scholar] [CrossRef] [Green Version]
- Ha, T.J.; Lee, M.-H.; Seo, W.D.; Baek, I.-Y.; Kang, J.E.; Lee, J.H. Changes occurring in nutritional components (phytochemicals and free amino acid) of raw and sprouted seeds of white and black sesame (Sesamum indicum L.) and screening of their antioxidant activities. Food Sci. Biotechnol. 2017, 26, 71–78. [Google Scholar] [CrossRef]
- Shahidi, F.; Liyana-Pathirana, C.M.; Wall, D.S. Antioxidant activity of white and black sesame seeds and their hull fractions. Food Chem. 2006, 99, 478–483. [Google Scholar] [CrossRef]
- Singh, K.K.; Kanbi, V.H.; Chaudhary, M.K. Nutritional evaluation of different varieties of sesame (Sesamum indicum L.). Indian J. Nutr. Diet. 2015, 52, 2. [Google Scholar]
- Yoshioka, Y.; Li, X.; Zhang, T.; Mitani, T.; Yasuda, M.; Nanba, F.; Toda, T.; Yamashita, Y.; Ashida, H. Black soybean seed coat polyphenols prevent AAPH-induced oxidative DNA-damage in HepG2 cells. J. Clin. Biochem. Nutr. 2017, 60, 108–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moazzami, A.A.; Haese, S.L.; Kamal-Eldin, A. Lignan contents in sesame seeds and products. Eur. J. Lipid Sci. Technol. 2007, 109, 1022–1027. [Google Scholar] [CrossRef]
- Shi, L.-K.; Liu, R.-J.; Jin, Q.-Z.; Wang, X.-G. The contents of lignans in sesame seeds and commercial sesame oils of China. J. Am. Oil Chem. Soc. 2017, 94, 1035–1044. [Google Scholar] [CrossRef]
- Reshma, M.V.; Namitha, L.K.; Sundaresan, A.; Ravi Kiran, C. Total phenol content, antioxidant activities and α-glucosidase inhibition of sesame cake extracts. J. Food Biochem. 2013, 37, 723–731. [Google Scholar] [CrossRef]
- Samuel, N.C.; Genevieve, A.C. Proximate analysis and phytochemical properties of sesame (Sesamum indicum L.) seeds grown and consumed in Abakaliki, Ebonyi State, Nigeria. Int. J. Health Med. 2017, 2, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Kuo, P.-C.; Lin, M.-C.; Chen, G.-F.; Yiu, T.-J.; Tzen, J.T. Identification of methanol-soluble compounds in sesame and evaluation of antioxidant potential of its lignans. J. Agric. Food Chem. 2011, 59, 3214–3219. [Google Scholar] [CrossRef]
- Botelho, J.R.S.; Medeiros, N.G.; Rodrigues, A.M.; Araujo, M.E.; Machado, N.T.; Santos, A.G.; Santos, I.R.; Gomes-Leal, W.; Junior, R.N.C. Black sesame (Sesamum indicum L.) seeds extracts by CO2 supercritical fluid extraction: Isotherms of global yield, kinetics data, total fatty acids, phytosterols and neuroprotective effects. J. Supercrit. Fluids 2014, 93, 49–55. [Google Scholar] [CrossRef]
- Das, R.; Bhattacharjee, C. Processing sesame seeds and bioactive fractions. In Processing and Impact on Active Components in Food; Academic Press: Cambridge, MA, USA, 2015; pp. 385–394. [Google Scholar]
- Sun, S.; Zhang, X.; Chen, W.; Zhang, L.; Zhu, H. Production of natural edible melanin by auricularia auricula and its physicochemical properties. Food Chem. 2016, 196, 486–492. [Google Scholar] [CrossRef]
- Saisum, S.; Hudthagosol, C.; Srisorrachatr, S. Effect of black sesame seeds (Sesamum indicum L.) consumption on sleep quality among Thai elderly. Food Appl. Biosci. J. 2020, 8, 68–75. [Google Scholar]
- Lee, K.J.; Lee, J.-R.; Ma, K.-H.; Cho, Y.-H.; Lee, G.-A.; Chung, J.-W. Anthocyanin and isoflavone contents in Korean black soybean landraces and their antioxidant activities. Plant Breed. Biotechnol. 2016, 4, 441–452. [Google Scholar] [CrossRef] [Green Version]
- Hussain, S.A.; Hameed, A.; Ajmal, I.; Nosheen, S.; Suleria, H.A.R.; Song, Y. Effects of sesame seed extract as a natural antioxidant on the oxidative stability of sunflower oil. J. Food Sci. Technol. 2018, 55, 4099–4110. [Google Scholar] [CrossRef] [PubMed]
- Dravie, E.E.; Kortei, N.K.; Essuman, E.K.; Tettey, C.O.; Boakye, A.A.; Hunkpe, G. Antioxidant, phytochemical and physicochemical properties of sesame seed (Sesamum indicum L.). Sci. Afr. 2020, 8, e00349. [Google Scholar] [CrossRef]
- Shao, J.; Zhang, G.; Fu, J.; Zhang, B. Advancement of the preparation methods and biological activity of peptides from sesame oil byproducts: A review. Int. J. Food Prop. 2020, 23, 2189–2200. [Google Scholar] [CrossRef]
- Lu, X.; Song, G.; Huang, J.; Zhang, L.; Sun, Q. Extraction, identification and structure-activity relationship of antioxidant peptides from sesame (Sesamum indicum L.) protein hydrolysate. Food Res. Int. 2019, 116, 707–716. [Google Scholar] [CrossRef]
- Dixit, A.K.; Bhatnagar, D.; Kumar, V.; Rani, A.; Manjaya, J.G.; Bhatnagar, D. Gamma irradiation induced enhancement in isoflavones, total phenol, anthocyanin and antioxidant properties of varying seed coat colored soybean. J. Agric. Food Chem. 2010, 58, 4298–4302. [Google Scholar] [CrossRef]
- Kristamtini, K.; Wiranti, E.W. Clustering of 18 local black rice base on total anthocyanin. Biol. Med. Nat. Prod. Chem. 2017, 6, 47–51. [Google Scholar] [CrossRef] [Green Version]
- Malenčić, D.; Cvejić, J.; Miladinović, J. Polyphenol content and antioxidant properties of colored soybean seeds from central Europe. J. Med. Food 2012, 15, 89–95. [Google Scholar] [CrossRef]
- Todd, J.J.; Vodkin, L.O. Pigmented soybean (Glycine max) seed coats accumulate proanthocyanidins during development. Plant Physiol. 1993, 102, 663–670. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Chang, S.K. Antioxidant capacity of seed coat, dehulled bean, and whole black soybeans in relation to their distributions of total phenolics, phenolic acids, anthocyanins, and isoflavones. J. Agric. Food Chem. 2008, 56, 8365–8373. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, J.; Zhang, X.; Wang, L.; Che, Z. Analysis on genetic diversity and genetic basis of the main sesame cultivars released in China. Agric. Sci. China 2011, 10, 509–518. [Google Scholar] [CrossRef]
- Rababah, T.M.; Al-U’datt, M.; Al-Mahasneh, M.; Obaidat, M.; Almajwal, A.; Odeh, A.; Brewer, S.; Yang, W. Effect of tehina processing and storage in the physical-chemical quality. Int. J. Agric. Biol. Eng. 2016, 9, 218–226. [Google Scholar] [CrossRef]
- Chemists, A.; Horwitz, W. Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 1975; Volume 222. [Google Scholar]
- Energy, F.F. Methods of analysis and conversion factors. Report of a technical workshop. Food Nutr. 2003, 77, 1–93. [Google Scholar]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1994; Available online: https://docplayer.net/49774982-A-o-a-c-1994-official-methods-of-analysis-16th-ed-association-of-official-analytical-chemists-virginia-u-s-a.html (accessed on 6 June 2021).
- Vishwanath, H.S.; Anilakumar, K.R.; Harsha, S.N.; Khanum, F.; Bawa, A.S. In vitro antioxidant activity of Sesamum indicum seeds. Asian J. Pharm. Clin. Res. 2012, 5, 56–60. [Google Scholar]
- Kao, T.-H.; Chen, B.-H. Functional components in soybean cake and their effects on antioxidant activity. J. Agric. Food Chem. 2006, 54, 7544–7555. [Google Scholar] [CrossRef]
- Ryu, D.; Koh, E. Application of response surface methodology to acidified water extraction of black soybeans for improving anthocyanin content, total phenols content and antioxidant activity. Food Chem. 2018, 261, 260–266. [Google Scholar] [CrossRef]
- Kim, K.-S.; Lee, J.-R.; Lee, J.-S. Determination of sesamin and sesamolin in sesame (Sesamum indicum L.) seeds using UV spectrophotometer and HPLC. Korean J. Crop Sci. 2006, 51, 95–100. [Google Scholar]
Source of Variation | DF | Sugar | Protein | Ash | Fiber | TFC | TPC | TAC | Lignans | FRSA |
---|---|---|---|---|---|---|---|---|---|---|
Mean square | ||||||||||
Genotype | 14 | 56.504 ** | 36.186 ** | 0.290 | 1.044 ** | 35.749 *** | 1.753 *** | 0.143 ** | 1.762 *** | 440.997 *** |
Contrast value | ||||||||||
ML13parent vs. MLmutants | 1 | 3.91 ** | 2.25 ** | - | 0.14 ** | 9.08 *** | 0.93 ** | 2.15 *** | 2.3 * | 66.38 *** |
US06parent vs. USmutants | 1 | 64.58 *** | 1.91 ** | - | 7.83 *** | 34.01 *** | 9.76 *** | 4.05 *** | 7.31 *** | 95.25 *** |
USgenotypes vs. MLgenotypes | 1 | 21.52 *** | 14.50 ** | - | 3.21 *** | 3.86 *** | 11.46 *** | 1.89 *** | 9.13 *** | 52.46 *** |
TFC | TPC | TAC | Lignans | FRSA | |
---|---|---|---|---|---|
TFC | 1 | 0.398 ** | 0.278 | 0.254 | 0.656 ** |
TPC | 1 | 0.479 ** | 0.398 ** | 0.850 *** | |
TAC | 1 | 0.303 * | 0.712 *** | ||
Lignans | 1 | 0.312 * | |||
FRSA | 1 |
Lines | Characteristics | Seed Moisture Content (%) |
---|---|---|
“US06” | Parent (wild-type), white seeds | 9.2 |
“US2-7” | Mutant, white seeds | 9.3 |
“US1-DL” | Mutant, white seeds | 9.7 |
“US1-3” | Mutant, white seeds | 9.0 |
“US2-1” | Mutant, white seeds | 11.0 |
“US1-2” | Mutant, white seeds | 9.4 |
“US2-6” | Mutant, black seeds | 9.1 |
“US2-6-1” | Mutant, white seeds | 8.7 |
“US2-6-2” | Mutant, white seeds | 10.2 |
“ML13” | Parent (wild-type), beige seeds | 8.7 |
“ML2-5” | Mutant, brown seeds, tolerant to severe drought during germination | 8.0 |
“ML2-10” | Mutant, brown seeds, tolerant to severe drought during germination | 8.9 |
“ML2-72” | Mutant, brown seeds | 9.5 |
“ML2-37” | Mutant, brown seeds, tolerant to severe drought during germination | 8.7 |
“ML2-68” | Mutant, grey seeds | 9.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kouighat, M.; Nabloussi, A.; Adiba, A.; Fechtali, M.E.; Hanine, H. First Study of Improved Nutritional Properties and Anti-Oxidant Activity in Novel Sesame Mutant Lines as Compared to Their Wild-Types. Plants 2022, 11, 1099. https://doi.org/10.3390/plants11091099
Kouighat M, Nabloussi A, Adiba A, Fechtali ME, Hanine H. First Study of Improved Nutritional Properties and Anti-Oxidant Activity in Novel Sesame Mutant Lines as Compared to Their Wild-Types. Plants. 2022; 11(9):1099. https://doi.org/10.3390/plants11091099
Chicago/Turabian StyleKouighat, Mohamed, Abdelghani Nabloussi, Atman Adiba, Mohamed El Fechtali, and Hafida Hanine. 2022. "First Study of Improved Nutritional Properties and Anti-Oxidant Activity in Novel Sesame Mutant Lines as Compared to Their Wild-Types" Plants 11, no. 9: 1099. https://doi.org/10.3390/plants11091099
APA StyleKouighat, M., Nabloussi, A., Adiba, A., Fechtali, M. E., & Hanine, H. (2022). First Study of Improved Nutritional Properties and Anti-Oxidant Activity in Novel Sesame Mutant Lines as Compared to Their Wild-Types. Plants, 11(9), 1099. https://doi.org/10.3390/plants11091099